
Chapter 2
Local Causal Discovery with a Simple
PC Algorithm

Abstract This chapter presents the PC-simple algorithm and illustrates how to
use the algorithm in the exploration for local causal relationships around a target
variable. PC-simple is a simplified version of the PC algorithm, a classic method
for learning a complete casual Bayesian network. We firstly discuss how the PC
algorithm establishes causal relationships by the way of detecting persistent asso-
ciations, then we introduce PC-simple in detail, followed by the discussions on
PC-simple. The last section of this chapter introduces the R implementation of PC-
simple.

2.1 Introduction

Bayesian networks [6, 8], a type of probabilistic graphical models [4], are a major
means of causal representation and inference. Given the set of variables representing
a domain, a Bayesian network presents the full joint probability of the variables by
a directed acyclic graph (DAG) containing nodes representing the variables and arcs
indicating dependence relationships between the variables.

More formally, with a set of variables, V, a Bayesian network consists of a
structure, the DAG, G = (V,E), and the joint probability distribution P(V) such
that the Markov condition holds, i.e. for each node X ∈ V, given its parent nodes
Pa(X)⊂ V, X is independent of all of its non-descendant nodes according to P(V).
Hence a Bayesian network provides a graphical representation of the conditional
independence relationships among all the variables in V, and as a result of the
Markov condition the full joint probability distribution P(V) can be factored into
P(V) = ∏X∈V P(X |Pa(X)).

In the exemplar Bayesian network in Fig. 2.1, conditioning on an empty set of
parents, A is independent of all its non-descendents, D, E and H; given A, variables
B and C are independent of each other and they both are independent of D, E and
H; D and E both have no parents, apart from being independent of each other they
both are independent of A, B, C, Z and H; conditioning on its parents D, E, and Z,
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Fig. 2.1: An example Bayesian network

F is independent of A, B, C, and H; G is independent of any other variable given
its parent F ; H is isolated so it is independent of all other nodes; and finally Z
is independent of A, D, E and H given its parents B and C. Furthermore, let V
be the set of variables in the Bayesian network, the joint probability distribution
P(V) = P(A)P(B|A)P(C|A)P(D)P(E)P(F|D,E,Z)P(G|F)P(H)P(Z|B,C).

A causal Bayesian network is a Bayesian network when its structure is considered
as a causal DAG, i.e. an edge X → Y in the DAG represents that X is a direct cause
of Y . When the set of causal assumptions (discussed in Sect. 2.3.3) are made to link
causal relationships and probability distributions, we can learn the causal structures
from observational data.

We can discover causal relationships in a data set by learning the structure of a
causal Bayesion network, but we may not know the directions of the causal relation-
ships since the orientation of edges in a Bayesian network may not be completely
determined only based on the data set (Please read Sect. 2.3.3 for detailed discus-
sions). Therefore by learning a Bayesian network from a data set, we can conclude
that two variables have a causal relationship but we may not know which variable is
the cause and which variable is the effect.

The PC algorithm [5, 8] is a commonly used method for learning the structure of
a causal Bayesian network. With a data set, for a pair of variables or nodes (X ,Y ),
the PC algorithm tests their conditional independence given the other variables, and
it claims the non-existence of a causal relationship between X and Y , i.e. no edge
to be drawn between X and Y , once it finds that X and Y are independent given
some other variables. In other words, to determine whether there exists a persistent
association between X and Y , the PC algorithm tests the association conditioning
on all sub sets of all variables other than X and Y . The relationship is considered as
causal only when the association exists given each of the conditioning sets.

Let us consider an exemplar binary data set containing attributes, Gender, College
education, High school education, Manager, Clerk, and Salary, where the values of
the variables are {male, female} for Gender, {high, low} for Salary, and {yes, no}
for all other variables. Note that we use the term target variable to represent the
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outcome or effect, and predictor variables to represent the inputs or potential causes
in this book. For example, variable Salary in this example is the target variable
whose value is affected by other variables, and the remaining variables are predictor
variables representing possible causes for having a high/low salary. To find out if
Gender and Salary have a causal relationship, the independence between Gender and
Salary is tested conditioning on each of the subsets of the other variables {College
education, High school education, Manager, Clerk}, including the empty set. In the
worst case, for each predictor variable, the number of conditional independence tests
is 2m−1 where m is the number of predictor variables. Therefore, the PC algorithm
only works on a data set with a small number of predictor variables.

In its algorithmic description, PC starts with a complete (undirected) graph with
all the variables, V, and removes the edge between a pair of nodes X and Y immedi-
ately after a subset S ⊆ V\{X ,Y} is found such that X and Y are independent given
S. In order to reduce the number of conditional independence tests, the PC algorithm
searches for the conditioning set for a pair of nodes in a level by level manner, i.e.
searching the conditioning sets with k+1 variables only when the search of all size
k conditioning sets fails.

PC-simple [2] was originally developed for efficient variable selection in high
dimensional linear regression models. The algorithm produces a set of variables
which have strong influence on the target variable. Interestingly this algorithm
turned out to be a simplified version of the PC algorithm. This possibly explains why
the implementation of PC-simple by its authors (named as PC-select) is included in
pcalg [3], the R-package of the methods for causal inference with graphical models.

PC-simple utilises the same idea as the PC algorithm to detect persistent associ-
ations, and it also conducts a level-wise search for the conditioning set for a pair of
nodes. However, instead of learning a causal DAG that captures all the causal rela-
tionships among all the given variables, PC-simple can be used to discover the local
relationships around a given response or target variable. That is, given the data set
D for a set of variables (X1,X2, . . . ,Xm,Z) where Z is the target variable, PC-simple
identifies all the possible direct causes and effects of Z, i.e. all Z’s parents and chil-
dren if we use the terminology for DAGs. In this case, it may be more meaningful
to interpret the acronym “PC” in PC-simple as Parents and Children, instead of the
names of the inventors (Peter Spirtes and Clark Glymour) of the PC algorithm.

With the goal of local relationship discovery, the algorithmic design of PC-
simple, although follows the basic procedure of the PC algorithm, it has been sim-
plified as presented in the next section.

2.2 The PC-simple Algorithm

Before describing the PC-simple algorithm, we firstly formally define conditional
independence as follows.

Definition 2.1 (Conditional independence). Two variables X and Z are condition-
ally independent given a set of variables S, denoted as Ind(X ,Z|S), if P(X = x,Z =
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z|S = s) = P(X = x|S = s)P(Z = z|S = s) for all the values of X , Z, and S, such that
P(S = s) > 0. The cardinality or size of S, denoted as |S|, is known as the order of
the conditional independence.

Given a data set D for a set of variables, the conditional independence between
any two of the variables given any other variables can be tested using the data set at a
specified significance level. Details of the commonly used conditional independence
test methods are provided in Appendix A.

As shown in Algorithm 2.1 PC-simple takes as input the data set D for predictor
variables X1,X2, . . . ,Xm and the target variable Z, and produces PC, the set of parents
and children of Z. The input parameter for the algorithm is the significance level
used for conditional independence tests.

Initially the PC set (i.e. PC0) contains all the predictor variables (Line 2 of Algo-
rithm 2.1), and then PC-simple removes from the PC set those variables that are not
Z’s parents or children via conditional independence tests. The tests are done level
by level of the cardinality of the conditioning sets, starting with an empty condition-
ing set (i.e. order zero conditional tests are done first). Each iteration of the while
loop (Lines 3–12) generates PCk from PCk−1 with the removal of variables that are
independent of Z conditioning on k−1 variables in PCk−1.

Specifically, in the first iteration, PC-simple initially lets PC1 equal to PC0 (Line
5 with k = 1), then it checks through PC0 (Lines 6 to 11 with k = 1), and if a variable
in PC0 is independent of Z given an empty set (note that in Line 7, |S| = 0 when
k = 1), PC1 is updated by removing the independent variable from it (Lines 8 and 9).
At the end of the first iteration, PC1 contains only the variables that are associated
with Z. In the second iteration, PC-simple initially lets PC2 equal to PC1, then it
updates PC2 by removing from it the variables that are independent of Z given any
other single variable in PC1. Similarly in the third iteration, PC3 is initially equal
to PC2, then PC3 is updated by removing from it the variables that are independent
of Z given any other two variables in PC2. This process iterates until the number of
variables in PCk is not more than k, and PCk is output as the final PC set.

In the following, we use an example to run through the PC-simple algorithm.

Example 2.1. Supposing that we have a data set for variables {A,B,C,D,E,F,G,H}
and the target variable Z, such that the results of the conditional independence
tests based on the data set can be represented by the Bayesian network structure
in Fig. 2.1. Then the steps of PC-simple are given as the following.

1. k = 0 and PC0 = {A,B,C,D,E,F,G,H}.
2. As |PC0|> 0, enter the while loop.
3. k = 1 and PC1 = PC0 = {A,B,C,D,E,F,G,H}.
4. For each variable in PC1, order zero independence test with Z is conducted given

S= /0. At the end of this iteration of the while loop, D, E and H are removed from
PC1 since they are independent of Z, and PC1 = {A,B,C,F,G}.

5. |PC1|> k (k = 1), start the second iteration of the while loop.
6. k = 2 and PC2 = PC1 = {A,B,C,F,G}.
7. For each of the five variables in PC2, order one independence tests are conducted

conditioning on any other single variable in PC1 each time (|S|= 1). At the end
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Algorithm 2.1: The PC-simple algorithm [2]
Input: D, a data set for the set of predictor variables X = {X1,X2, . . . ,Xm} and the target
variable Z; and α , significance level for conditional independence tests.
Output: PC, the subset of {X1,X2, . . . ,Xm} that comprises parents and children of Z

1: let k = 0
2: let PCk = {X1,X2, . . . ,Xm}
3: while |PCk|> k do
4: let k = k+1
5: let PCk = PCk−1

6: for each X ∈ PCk−1 do
7: for each S ∈ PCk−1 \{X} and |S|= k−1 do
8: if X and Z are independent given S at significance level α
9: let PCk = PCk \{X}

10: end for
11: end for
12: end while
13: output PCk

of this iteration, only G is removed from the PC set and PC2 = {A,B,C,F} (see
Fig. 2.1 which shows that G is independent of Z given its parent F , which blocks
G and Z).

8. |PC2|> k (k = 2), start the third iteration of the while loop.
9. k = 3 and PC3 = PC2 = {A,B,C,F}.

10. For each of the four variables, its independence with Z is tested given the com-
bination of any other two variables in PC2. Then at the end of this iteration,
A is removed as Z is independent of A given its two parents B and C, and
PC3 = {B,C,F}.

11. Since |PC3|= k (k = 3), the while loop exits, and PC3 is output as the final PC
set of Z. PC = {B,C,F}.

That is, the PC set of Z is {B,C,F}, which is consistent with the structure in Figure
2.1.

2.3 Discussions

2.3.1 Complexity of PC-simple

Referring to Algorithm 2.1, the complexity of PC-simple comes from the time
taken for conditional independence tests. In the worst case, i.e. all the variables
X1,X2, . . . ,Xm are parents or children of Z, the maximum order of conditional inde-
pendence tests is m−1 (starting with order zero test); at level k (0 ≤ k ≤ m−1), all
the m variables in {X1,X2, . . . ,Xm} need to be tested for conditional independence
with Z; and for each of the variables, there are up to

(m−1
k

)
conditioning sets to be
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tested. Therefore overall, in the worst case, the number of conditional independence
tests is m∑m−1

k=0

(m−1
k

)
, which is m2m−1. Hence in the worst case, the time complex-

ity of PC-simple is exponential to the number of variables, which means that when
the number of variables or m increases, the performance of PC-simple may degrade
dramatically.

However, if most of the variables in {X1,X2, . . . ,Xm} are not direct causes or
effects of Z (or the degree of Z is small in an underlying Bayesian network), the
size of the PC set is reduced quickly, and the same for the number of conditioning
sets in each iteration of the while loop. So the while loop will be completed after a
relatively small number of iterations because (|PCk|> k) is violated.

Hence when the number of direct causes and effects of a target is small, PC-
simple can handle high dimensional data sets. For example, in [2] PC-simple was
applied to a real world data set with over 4000 variables. Such data sets are called
sparse data sets since the underlying Bayesian networks are sparse (the degree of a
node is very small). Normally, when the number of causal variables is 30 or more,
PC-simple will not work well on a normal desktop computer.

2.3.2 False Discoveries of PC-simple

There are two sources for the false discoveries of PC-simple (1) algorithm design;
and (2) input data.

Referring to Algorithm 2.1, PC-simple updates the PC set of Z after order k con-
ditional independence tests are done, by removing all the variables that have been
tested to be conditionally independent of Z. This update is reasonable in terms of
removing conditionally independent variables of Z as a result of order k conditional
independence tests. However, as the independence tests at the next level will be
conditioned on the subsets of the updated PC set, the removed variables will not be
considered as part of the conditioning sets, which will lead to false discoveries.

For example, supposing Fig. 2.2 shows the underlying causal relationships
among the nine variables, where the true PC set of the target variable Z is {B,C,F}.
However, the discovered PC set by PC-simple will also include G (assuming all the
conditional independence tests are correct), which is a false positive. This is caused
by the removal of E based on the result of order zero conditional independence test,
as E is independent of Z (given an empty set). So E will not be in any of the condi-
tioning sets for higher order conditional independence tests, and as a result, G will
not be removed since G is independent of Z given both E and F (G’s parents). G is
included in the final PC list of Z as a false positive.

In [1], the idea of a symmetry correction is introduced to remove such false posi-
tives in local causal discovery. If G is a true parent or a child node of Z, then Z should
be in the PC set of G. Let PC(Z) and PC(G) be the PC sets of Z and G respectively.
In the example, PC-simple outputs PC(Z) = {B,C,F,G}, and PC(G) = {E,F}. Z
is not in PC(G). Based on the symmetry property, G should not be in PC(Z) and
hence be removed. The symmetry correction, however, introduces higher time com-
plexity because we need to test the symmetry for each variable in PC(Z) in order to
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Fig. 2.2: An example scenario for false discovery of PC-simple

remove the false positives. The studies in [1] with a number of real world data sets
have shown that the situations in which the false positives may occur are not often
in practice.

PC-simple will produce false discoveries if a conditional independence test is
incorrect at any stage. An incorrect test causes a variable to be falsely removed or
included, and such a false exclusion or inclusion will result in incorrect conditioning
sets for conditional independence tests at the following levels. As a consequence,
an incorrect test result may cause a chain of false positives and/or false negatives.
Therefore the algorithms should be used with caution if there is no sufficient num-
ber of samples or there is selection bias in the collection of samples. A number of
different conditional independent tests should be used to ensure the reliability of the
results.

2.3.3 The Causal Assumptions

PC-simple is based on causal Bayesian network theory, and it follows the same
causal assumptions as those by causal Bayesian networks. In the context of causal
Bayesian networks, to link a causal graph with a probability distribution, the two
essential causal assumptions are the Causal Markov Condition and the Faithfulness
Condition, as described below.

Let G = (V,E) be a directed acyclic graph (DAG), where the nodes V represent
a set of random variables and the edges E represent causal relationships between
the nodes. An edge from a node X to a node Y indicates that X is a direct cause of
Y , and X is known as the parent of Y . Let P(V) be the joint probability distribution
of V.

Assumption 2.1 (Causal Markov Condition [8]) G and P(V) satisfy the Causal
Markov Condition if and only if given the set of all its parents, a node of G is
independent of all its non-descendents according to P(V).
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Simply speaking, this condition states that every edge in a DAG implies a prob-
abilistic dependence. In other words, this condition has drawn a one way link from
edges to dependencies.

However, it may be possible that some of the conditional independence relation-
ships are not reflected by the DAG, so we need the following assumption to draw
the link from dependencies to edges.

Assumption 2.2 (Faithfulness Condition [8]) G and P(V) satisfy the Faithfulness
Condition if and only if every conditional independence relationship in P(V),
Ind(X ,Z|S) is reflected in G in the way that S is the set of all parents of X (or
Z) and Z (or X) is not a descendent or a parent of X (or Z).

In other words, Faithfulness Condition assumes that if two variables are proba-
bilistically dependent, there must be a corresponding edge between the two variables
in the graph.

With the above two conditions, we have established the mapping between con-
ditional dependence relationships specified by P(V) and the causal relationships
(edges) represented by a causal DAG. Therefore, an algorithm that discovers the
correct conditional independence relationships also produces the mapped true causal
relationships.

There may be more than one causal DAGs which faithfully reflect the same
conditional independence relationships in a probability distribution. However, these
DAGs have the same and unique underlying undirected graph (skeleton), although
the directions of edges in the DAGs may be different [5]. For example, the DAGs
A → B and A ← B reflect the same conditional independence relationship ¬Ind(A,
B| /0), i.e. A and B are dependent. The skeleton of both DAGs is A−B.

In causal Bayesian network structure learning, an algorithm is able to obtain
from the data (with sufficient number of samples) an equivalence class of the causal
DAGs [5]. The equivalence class can be represented as a partially directed graph,
where a directed edge X → Y indicates that all causal DAGs in the class have the
edge X → Y and an undirected edge X −Y shows that some of the causal DAGs in
the class contain X → Y while some of them contain X ← Y .

The set of parents and children nodes of a node in a learned causal Bayesian
network are deterministic although the direction of the edge between a node in the
set and the target node may be nondeterministic. Local causal discovery algorithms
like PC-simple and HITON-PC are able to learn a unique parents and children set of
Z in a data set with sufficient number of samples under the same causal assumptions.
The cause-effect relationships around a given target variable Z are not directed,
i.e. we do not know whether a variable in the learned set is the cause or effect of
the target variable. Nevertheless, the undirected causal relationships are useful for
causal exploration as discussed in Chap. 1.

Here we indeed have also assumed the following causal sufficiency about the
data sets used by the algorithms.

Assumption 2.3 (Causal sufficiency [8]) For every pair of variables which have
their observed values in a given data set, all their common causes also have obser-
vations in the data set.
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This assumption assumes that there is no unmeasured or hidden causes. For
example, if a common cause of two variables is unobserved in a data set, PC-simple
may conclude that the two variables have a causal relationship while in fact they do
not.

2.4 An Implementation of PC-simple

PC-simple [2] is implemented in pcalg [3] as the pcSelect function. In this sec-
tion, we present some examples in R [7] to demonstrate the usage of the pcSelect
function. We assume that readers are familiar with R. If not, the R introduction doc-
umentation can be found in [9].

2.4.1 Example 1: Using PC-simple in pcalg

In this example, we use the built-in data set, gmB, in the pcalg package for demon-
strating the usage of the pcSelect function. The gmB data set includes five binary
variables (columns) with 5000 samples (rows). The data is stored in gmB$x and the
known true DAG is gmB$g as shown in Fig. 2.3. In the following, we assume that
variable V 2 (i.e. node 2 in Fig. 2.3) is the target variable and other variables are
predictor variables, and we apply the PC-simple algorithm to the gmB data set.

Fig. 2.3: The ground truth Bayesian network of the gmB data set

> library(pcalg)
> library(Rgraphviz) # for drawing graphs
> data(gmB)
> plot(gmB$g)
> results = pcSelect(gmB$x[,2], gmB$x[,-2], alpha=0.01)
> results
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$G
V1 V3 V4 V5

TRUE FALSE TRUE TRUE
$zMin
[1] 29.4191620 0.6714314 5.5774279 44.3422923

The result ($G) demonstrates that variables V1, V4, V5 are in the parents and
children set of the target variable, while variable V3 is not. zMin is the set of z-
values of the conditional independence tests corresponding to each of the predictor
variables. The bigger a z-value is, the stronger the association the predictor variable
and the target variable have. More details on the conditional independence test used
in PC-simple can be found in Appendix A.

2.4.2 Example 2: Using the Data Sets of Figs. 2.1 and 2.2

The data set that has the same dependence relationships as the Bayesian network
shown in Fig. 2.1 can be downloaded from:

http://nugget.unisa.edu.au/Causalbook/

The data set contains eight predictor variables and the target variable as described in
Example 2.1. The data set was generated using the TETRAD software downloaded
from http://www.phil.cmu.edu/tetrad/. Assume that the data set Example21.csv has
been downloaded and stored in the R working directory. We now use the pcSelect
function to find the parents and children set of Z.

> library(pcalg)
> data=read.csv("Example21.csv", header=TRUE, sep=",")
> pcSimple.Z=pcSelect(data[,9], data[,-9], alpha=0.01)
> pcSimple.Z
$G

A B C D E F G H
FALSE TRUE TRUE FALSE FALSE TRUE FALSE FALSE
$zMin
[1] 1.85790685 144.57474808 16.65675448 0.27538423
[5] 0.76391512 15.94735566 0.07287629 0.23537966

The parents and children set of Z is {B,C,F}, which is consistent with the graph
in Example 2.1. We can also verify this result against the global causal structure
(Fig. 2.4) learned by the PC algorithm [5, 8]. The DAGs in Figs. 2.1 and 2.4 have
the same skeleton and Z has the same PC set in both Figures. The following codes
are used to learn the causal structure from the Example21.csv data set using the PC
algorithm.



http://www.springer.com/978-3-319-14432-0


	2 Local Causal Discovery with a Simple PC Algorithm
	2.1 Introduction
	2.2 The PC-simple Algorithm
	2.3 Discussions
	2.3.1 Complexity of PC-simple
	2.3.2 False Discoveries of PC-simple
	2.3.3 The Causal Assumptions

	2.4 An Implementation of PC-simple
	2.4.1 Example 1: Using PC-simple in pcalg
	2.4.2 Example 2: Using the Data Sets of Figs. 2.1 and  2.2





