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Abstract

Motivation: Identifying cancer driver genes is a key task in cancer informatics. Most existing methods are focused
on individual cancer drivers which regulate biological processes leading to cancer. However, the effect of a single
gene may not be sufficient to drive cancer progression. Here, we hypothesize that there are driver gene groups that work
in concert to regulate cancer, and we develop a novel computational method to detect those driver gene groups.

Results: We develop a novel method named DriverGroup to detect driver gene groups by using gene expression and
gene interaction data. The proposed method has three stages: (i) constructing the gene network, (ii) discovering critical
nodes of the constructed network and (iii) identifying driver gene groups based on the discovered critical nodes.
Before evaluating the performance of DriverGroup in detecting cancer driver groups, we firstly assess its performance
in detecting the influence of gene groups, a key step of DriverGroup. The application of DriverGroup to DREAM4 data
demonstrates that it is more effective than other methods in detecting the regulation of gene groups. We then apply
DriverGroup to the BRCA dataset to identify driver groups for breast cancer. The identified driver groups are promising
as several group members are confirmed to be related to cancer in literature. We further use the predicted driver
groups in survival analysis and the results show that the survival curves of patient subpopulations classified using the
predicted driver groups are significantly differentiated, indicating the usefulness of DriverGroup.

Availability and implementation: DriverGroup is available at https://github.com/pvvhoang/DriverGroup

Contact: Thuc.Le@unisa.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

It is important to identify cancer drivers and their regulatory mecha-
nisms due to their critical role in the initialization and progression of
cancer. Understanding cancer drivers is beneficial for the design of effect-
ive cancer treatments too. Thus, several computational methods have
been developed to discover cancer drivers, for example OncodriveFM
(Gonzalez-Perez and Lopez-Bigas, 2012), OncodriveCLUST (Tamborero
et al., 2013), ActiveDriver (Reimand and Bader, 2013), DawnRank (Hou
and Ma, 2014) and CBNA (Pham et al., 2019).

These methods, however, only identify single genes as cancer
drivers, whereas there is evidence showing that genes work together
to regulate the same targets and the regulation of individual genes
might not have significant impacts (Cursons et al., 2018; Karim
et al., 2016). Furthermore, researchers have started to conduct wet-
lab experiments to investigate the regulation by groups of genes in
biological processes (Cursons et al., 2018). All these highlight the
importance of studying biological components working in groups.

In this article, we introduce the concept of ‘driver gene group’,
which is a set of genes that work in concert to regulate cancer or

cancer markers. The driver gene groups are different from the gene
modules studied by recent methods such as WeSME (Kim et al.,
2017), MEMo (Ciriello et al., 2012) and iMCMC (Zhang et al.,
2013). WeSME discovers cancer drivers by using statistical tests to
evaluate the mutual exclusivity of mutations of gene pairs and the
pairs whose mutations have a significant mutual exclusivity are con-
sidered as modular candidate drivers. Similar to WeSME, MEMo
and iMCMC also use mutual exclusivity of gene mutations in detect-
ing cancer drivers. However, instead of testing the mutual exclusiv-
ity of mutations of gene pairs, MEMo and iMCMC test the mutual
exclusivity of mutations of genes in modules. The modules include
genes which are recurrently altered in samples and likely to belong
to the same pathway (in MEMo) or coherent subnetworks with
large weights in both edges and nodes (in iMCMC).

Although the above methods detect modules of cancer drivers,
members in each of the modules may not work jointly to regulate
targets to drive cancer as the mutation in a single member of a mod-
ule may have been sufficient to trigger cancer development (Kim
et al., 2017). However, the idea of driver gene groups is that all
genes in a group collaboratively drive cancer. In addition, these
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methods only deal with coding genes while cancer drivers may be
non-coding genes since a large portion of mutations may exist in
non-coding regions (Yang et al., 2016a), and non-coding genes can
regulate gene targets to drive cancer (Puente et al., 2015; Weinhold
et al., 2014). Thus, there is a strong need for novel methods to iden-
tify driver groups of which the members work in concert to progress
cancer while considering both coding and non-coding genes.

In this article, we propose a novel method named DriverGroup
to identify both coding driver gene groups (i.e. driver groups includ-
ing coding genes) and non-coding driver gene groups (i.e. driver
groups including non-coding genes). As proliferation is associated
with cancer development (Lopez-Saez et al., 1998; Feitelson et al.,
2015) and proliferation genes are related to the prognosis of cancer
patients (Li et al., 2018), we identify driver gene groups by detecting
groups of genes which collaboratively regulate proliferation genes.

Our method is based on the gene network and its critical nodes
(i.e. nodes playing a central role in controlling the whole network)
to identify driver gene groups. Because of the important role of crit-
ical nodes, we consider them as members of driver gene groups.
Inspired by the Influence Maximization (IM) problem (Gong et al.,
2016; Yang et al., 2016b) which identifies k-seed sets (i.e. sets have
k seed nodes) with the maximum influence in a network, we develop
novel algorithms to compute the influence of a group of critical
nodes on the proliferation genes. At the end, a driver gene group is a
maximal subset of critical nodes which have the maximum impact
on the proliferation genes, i.e., adding or removing one critical node
from the subset will decrease the impact of the subset.

Before evaluating DriverGroup in identifying driver gene groups,
we firstly assess its ability in discovering the influence of the gene
groups in a network using the DREAM4 data from the DREAM4 In
Silico Network Challenge (Marbach et al., 2010; Schaffter et al.,
2011). We then compare DriverGroup with jointIDA (Nandy et al.,
2017), a method used to estimate the joint effects of a group of vari-
ables on other variables, and the random method. Our method out-
performs both jointIDA (Nandy et al., 2017) and the random
method in most cases. We then use the BRCA dataset for identifying
driver gene groups and several members of the driver groups pre-
dicted by DriverGroup are confirmed to be related to cancer by lit-
erature, suggesting the biological meaning of the findings of the
proposed method. The analysis of the driver groups predicted by
DriverGroup in prognosis shows that the subtypes identified based
on the predicted driver groups have significant prognostic values for
survival analysis (i.e. P-values <0.05), indicating that the driver
groups identified by DriverGroup may have important clinical
implications for cancer treatment. We also apply DriverGroup to
the study of synthetic lethality and miRNA driver groups of
epithelial-mesenchymal transition (EMT). All the results show the
potential of DriverGroup as a framework for studying molecular
mechanisms of the progression of cancer.

2 Datasets and methods

2.1 Datasets
In this study, we use the BRCA dataset of TCGA (The Cancer
Genome Atlas Research Network et al., 2013). This dataset contains
the expression data of miRNAs, TFs and mRNAs of tumour/normal
samples. The tumour samples are used to identify edges of the gene
network, and the normal samples are used to compute node weights.
The TF list, which is used to detect which genes are TF genes in the
expression dataset, is obtained from Lizio et al. (2017). We also use
interaction data (i.e. target binding information), including PPIs
(Vinayagam et al., 2011), miRNA-TF/mRNA interactions
[miRTarBase 6.1 (Chou et al., 2016), TarBase 7.0 (Vlachos et al.,
2015), miRWalk 2.0 (Dweep and Gretz, 2015) and TargetScan 7.0
(Agarwal et al., 2015)], and TF-miRNA interactions [TransmiR 2.0
(Wang et al., 2010)] to refine the built gene network. In addition, to
evaluate the performance of DriverGroup in detecting the influence
of gene groups in a network, we use DREAM4 data obtained from
the DREAM4 In Silico Network Challenge (Marbach et al., 2010;
Schaffter et al., 2011). We also use the SynLethDB synthetic lethality

database (Guo et al., 2016) for identifying synthetic lethality, the
EMT signatures (Tan et al., 2014) and the EMT miRNAs (Cursons
et al., 2018) for discovering EMT driver groups. More details of these
datasets will be introduced in the following sections. All these datasets
are available at https://github.com/pvvhoang/DriverGroup.

2.2 Drivergroup
2.2.1 Overview

An overview of DriverGroup, the proposed method for identifying
driver gene groups, is shown in Figure 1. DriverGroup includes three
stages: (i) constructing the miRNA-TF-mRNA network, (ii) discover-
ing critical nodes in the constructed network and (iii) identifying
driver gene groups. Particularly, we firstly construct the network
using the matched expression data of mRNAs, transcription factors
(TFs) and miRNAs of a given cohort of cancer patients. Then the
directed PPI network (Vinayagam et al., 2011) and the target binding
information are used to refine the network by removing those interac-
tions not supported by these databases. Next, we discover critical
nodes of the network by applying control theory (Kalman, 1963) and
the Network Control method (Liu et al., 2011). The critical nodes
play a central role in controlling the whole network. Finally, based on
the network and its critical nodes, we identify driver gene groups. The
detail of DriverGroup is described in the following sections.

2.2.2 Procedure for identifying driver gene groups

Stage (1) Constructing the miRNA-TF-mRNA network. To identify
driver gene groups, we detect groups of miRNAs and coding genes
which jointly impact on the proliferation genes in a gene regulatory
network. Since we evaluate both miRNA cancer driver groups and
coding cancer driver groups, we construct the network which includes
both miRNAs and coding genes (i.e. TFs and mRNAs). It is called the
miRNA-TF-mRNA network in this article. In the first stage, we build
the miRNA-TF-mRNA network through the three following steps.

• Step 1a: Prepare the miRNA/TF/mRNA expression data. We obtain

the miRNA/TF/mRNA expression data of matched samples from

the BRCA dataset (The Cancer Genome Atlas Research et al.,

2013). For coding genes, we select genes which are in the PPI net-

work (Vinayagam et al., 2011) or in the proliferation gene list. We

select the PPI network as it contains a large amount of cancer driver

genes and has been used to identify driver genes by Vinayagam

et al. (2016). The proliferation genes are retrieved from the bio-

logical process of cell population proliferation (GO: 0008283). We

then use the TF list to detect which genes are TFs in the selected

genes. As a result, we have 5273 mRNAs and 850 TFs. For

miRNAs, we select all 1719 miRNAs from the BRCA dataset.

Finally, we extract the expression data of these 1719 miRNAs, 850

TFs and 5273 mRNAs for 747 tumours and 76 normal samples.
• Step 1b: Build the miRNA-TF-mRNA network. We firstly build a

miRNA-TF-mRNA network based on the miRNA/TF/mRNA ex-

pression data of tumour samples. A node of the network is a

miRNA, a TF, or a mRNA. The node weight is the absolute differ-

ence of average expression of that node between tumour and normal

states. The node weight indicates the cost to change the state of a

node from normal to tumour. The bigger the weight of a node is,

the higher the cost required to change between the states. An edge

between two nodes is added if the absolute Pearson correlation coef-

ficient between them (calculated based on expression data) is larger

than or equal to a threshold, which is the average of the absolute

pairwise Pearson correlation coefficients of all node pairs. The edge

weight is the absolute value of the correlation coefficient between

the two nodes. Edge directions are determined according to the

motif shown in Figure 2. Particularly, miRNAs can regulate TFs/

mRNAs, TFs can regulate miRNAs/mRNAs and TFs/mRNAs can

regulate other TFs/mRNAs, respectively.
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• Step 1c: Refine the gene network. We use the PPIs to refine the

expression network. If a TF–TF/mRNA or mRNA–mRNA inter-

action is in the expression network but not in the PPI network,

we remove it from the expression network. We continue to refine

the obtained network by using the existing databases.

Particularly, TF–miRNA interactions are refined with TransmiR,

and miRNA–TF/mRNA interactions are refined with

miRTarBase, TarBase, miRWalk and TargetScan. Since

miRTarBase and TarBase include experimentally validated

miRNA–target interaction information, they help to retain true

miRNA–target interactions, but they may have false negatives.

Thus, we also use miRWalk and TargetScan, which include pre-

dicted miRNA–target interaction information, to obtain

potential interactions which may not be included in miRTarBase

and TarBase. Because the obtained network is based on both the

expression data of a particular cancer type and the existing data-

bases, it is more reliable and specific to that cancer type. The final

network includes 7842 nodes (1719 miRNAs, 850 TFs and 5273

mRNAs) and 171 459 edges (23 037 miRNA–TF, 105 019

miRNA–mRNA, 30 096 TF–miRNA, 1235 TF–TF, 815 TF-

mRNA and 11 257 mRNA–mRNA) (see Section 3 of the

Supplementary Material for the numbers of edges which are

dropped in different edge types during the refinement).

Stage (2) Discovering critical nodes in the network. According to the
Network Control method (Liu et al., 2011), any network can be con-
trolled fully by a minimum set of nodes of the network, called a
Minimum Driver Node Set (MDNS). The detail of the Network
Control method is discussed in Section 2.2.3. Applying this Network
Control idea, we discover a MDNS of the miRNA–TF–mRNA net-
work built in Stage (1) above. Based on the discovered MDNS, we
then detect critical nodes of the network. A critical node is a node
whose absence increases the size of the MDNS. In other words, when
a critical node is removed from the network, we need a bigger MDNS
to fully control the network. Thus, critical nodes play the central role
in the network, and we consider them as members of potential driver
gene groups. This stage is illustrated in Part (2) in Figure 1.

Stage (3) Identifying driver gene groups. In the last stage, we identify
driver groups with the steps below.

• Step 3a: Estimate the influence of groups of critical nodes on the

proliferation genes. This step includes the following two substeps.

1. Form k-way combinations of the selected critical nodes. As we

aim to detect nodes which have high influence on the

Fig. 1 An illustration of DriverGroup. (1) Build the gene regulatory network by combining the gene network constructed from the gene expression data with the protein-pro-

tein interactions and other existing databases, including miRTarBase 6.1, TarBase 7.0, miRWalk 2.0, TargetScan 7.0 and TransmiR 2.0, (2) Discover critical nodes by evaluat-

ing the increase of the size of Minimum Driver Node Set (MDNS) (i.e. the minimal set of nodes which can control the whole network) when a node is removed and (3) identify

driver gene groups by detecting groups of critical nodes which have influence on the proliferation genes.

Fig. 2 Motif of the edge directions of the miRNA–TF–mRNA regulatory network. In the

miRNA–TF–mRNA regulatory network, miRNAs can regulate TFs/mRNAs, TFs can

regulate miRNAs/mRNAs, TFs/mRNAs can regulate other TFs/mRNAs, respectively.
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proliferation genes in the network, we focus on nodes with

higher out degrees. Out degree of a node is the number of edges

going out from that node. We firstly rank critical nodes of the

miRNA–TF–mRNA network in descending order of node out

degree. We select top n nodes from the ranked list then define k-

way combinations of these top n nodes (k 2 f1; . . . ; ng).
2. Evaluate influence of the k-way combinations on the prolif-

eration genes. Influence is indicated by the number of prolif-

eration nodes. Adopting the idea of Influence Maximization

(IM) (Gong et al., 2016; Yang et al., 2016b) for detecting k-

seed sets having the maximum impact in a network, we pro-

pose a novel algorithm to assess the impact of a group of

critical nodes on the proliferation genes. The detail of the

proposed algorithm is discussed in Section 2.2.4. Before

using the proposed algorithm to evaluate the influence of

the k-way combinations, we firstly normalize the node

weights and the edge weights of the network so that the

weight of a node and the total weight of edges going into a

node are in the range from 0 to 1 to make possible to com-

pare the weights in the algorithm. The normalized weight of

a node is equal to the original node weight divided by the

largest node weight. For edge weights, we firstly find each

node’s total incoming edge weight, then find the largest

among all these total weights. We normalize an edge weight

by dividing it by the largest total weight found. We apply

the proposed algorithm to evaluate the influence of each of

the k-way combinations of critical nodes. The output of this

step is the number of proliferation nodes for each k-way

combination (k 2 f1; . . . ;ng).
• Step 3b: Identify driver gene groups. In this step, we identify the

maximal k-way combinations and regard the identified maximal

combinations are the driver gene groups. A k-way combination g

(k 2 f1; . . . ;ng) is maximal if the (k þ 1)-way combination

obtained by adding to g a critical node has the same or lower in-

fluence than g. More details are in Section 2.2.4.

2.2.3 Controllability of complex networks

According to the Network Control method (Liu et al., 2011), any
directed network can be controlled by a subset of nodes in the net-
work, known as driver nodes of the network. The method to identify
driver nodes is described as follows.

Suppose that we have a directed network with N nodes
x1; . . . ; xN. The matrix AN�N which captures the interaction
strength between nodes can be represented as:

A ¼

a11 a12 � � � a1N

a21 a22 � � � a2N

..

. ..
. . .

. ..
.

aN1 aN2 � � � aNN

0
BBB@

1
CCCA; (1)

where aij indicates the interaction strength of node j on node i
ði; j 2 f1; . . . ;NgÞ, and aij is 0 if there is not an edge from j to i.

Let the matrix BN�M represent the interaction of an external con-
troller on M nodes ðM � NÞ in the network:

B ¼

b1 0 � � � 0
0 b2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � bM

..

. ..
. . .

. ..
.

0 0 � � � 0

0
BBBBBBBB@

1
CCCCCCCCA
; (2)

where bi is the strength of the interaction between the external con-
troller and node i ði 2 f1; . . . ;MgÞ in the network.

Let CN�NM be the controllability matrix:

C ¼ ðB;AB;A2B; . . . ;AN�1BÞ: (3)

According to Kalman’s controllability condition (Kalman,
1963), the network represented by matrix A is controllable through
the M nodes in matrix B if the controllability matrix C satisfies the
condition:

rankðCÞ ¼ N: (4)

The M nodes are called driver nodes of the network. Intuitively,
the rank of the controllability matrix C being N implies that all N
nodes of the network can be controlled.

Given the network, we may discover various sets of nodes which
satisfy the condition 4, i.e. a network can have multiple sets of driver
nodes. In this article, we focus on the driver node set with the small-
est number of driver nodes, called the Minimum Driver Node Set
(MDNS). In Stage (2) of DriverGroup, we use the condition 4 to de-
tect the MDNS of the miRNA–TF–mRNA network. We then iden-
tify critical nodes of the network by removing one node at a time
from the network, and if the MDNS of the network with the node
removed is bigger than the MDNS of the original network, the
removed node is a critical node.

2.2.4 Influence of groups of nodes

Influence maximization (IM) finds a k-seed set that has the max-
imum influence in a network (Gong et al., 2016; Yang et al.,
2016b). IM is usually used to identify influential users in online so-
cial networks (Kempe et al., 2003) as described below.

Given a network G with N nodes and a budget k, IM is to find
a set S containing k nodes of G (called a k-seed set) which maxi-
mizes the influence spread over G. The influence spread is the
number of nodes influenced by a k-seed set and it is denoted as
rðSÞ. That is:

S ¼ argmax
jSj¼k

ðrðSÞÞ: (5)

Inspired by IM, we propose the following described method to
calculate the influence spread of a k-way combination of critical
nodes on the proliferation genes in a miRNA–TF–mRNA network,
and then find the maximal combinations as driver groups. In our
problem, we do not fix the budget k and we evaluate the influence
of k-way combinations on the proliferation genes instead of over the
whole network.

In general, diffusion models are used to resolve the IM problem
(Gong et al., 2016). The diffusion models identify the influence
spread of a k-seed set over a network by considering that nodes in
the k-seed set are active and proposing strategies to activate other
nodes in the network. The larger the number of active nodes a k-
seed set creates, the more influence it has in the network. These
models employ the rules below:

• A node can be active or inactive.
• During the diffusion process, inactive nodes can be activated but

active nodes cannot be inactivated.
• The process terminates if no more nodes can be activated.

Independent cascade (IC) and linear threshold (LT) are two popular
diffusion models (Kempe et al., 2003; Ko et al., 2018). With IC, a node
is activated based on the active neighbouring nodes independently (i.e.
considering the effect of each edge on the node separately). On the other
hand, with LT, each node has a threshold (i.e. node weight) and it is
activated if the sum of the weights of the edges pointing from its active
neighbour nodes to this node is larger than its threshold.

To evaluate the collaboration of nodes in a network, we propose
a novel algorithm to evaluate the influence of a k-seed set (i.e. k-way
combination of critical nodes in our problem) on a target set (i.e. the
proliferation genes) based on LT. Instead of identifying the influence
spread of a k-seed set over the whole network as for solving the IM
problem, we compute the influence of a k-way combination of crit-
ical nodes on a particular set of nodes in the network (i.e. all the
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proliferation genes in the constructed network). The detailed algo-
rithm is illustrated in Algorithm 1 in Section 1 of the Supplementary
Material.

After applying Algorithm 1 to get the influence of k-way combi-
nations of the top n critical nodes selected in Step 3a of Stage (3) on
the proliferation genes, we rank the k-way combinations in descend-
ing order of their influence. We then use the other proposed algo-
rithm (Algorithm 2) to retain only the maximal combinations. The
detail of Algorithm 2 is shown in Section 2 of the Supplementary
Material.

2.2.5 Algorithms

We have developed two algorithms: Algorithm 1 for evaluating the
influence of a k-seed set on a target set and Algorithm 2 for refining
k-way combinations. The details of these two algorithms are in
Section 1 and Section 2 of the Supplementary Material, respectively.

2.2.6 Implementation

The R source code of the implementation and scripts to reproduce
the experiments are available at https://github.com/pvvhoang/
DriverGroup.

3 Results

Due to the lack of the ground truth for predicted driver gene groups,
we have used several strategies to evaluate DriverGroup. We assess
the ability of DriverGroup in discovering regulatory effects of gene
groups in a network in Section 3.1. We evaluate the performance of
DriverGroup in discovering driver gene groups in Section 3.2. We
analyse biological implications of the predicted driver groups by
using them in prognosis analysis (Section 3.3) and analysing their
target genes (Section 3.4). We also use DriverGroup to study syn-
thetic lethality (Section 3.5) and miRNA driver groups of EMT
(Section 3.6).

3.1 Drivergroup is effective in detecting group-based

regulatory effects
Before evaluating the performance of DriverGroup in detecting can-
cer driver groups, we firstly assess its performance in detecting the
regulation of gene groups in a network, a key step (Step 3a) of
DriverGroup. We use the DREAM4 data obtained from the
DREAM4 In Silico Network Challenge (Marbach et al., 2010;
Schaffter et al., 2011). The dataset includes five subsets and each
subset contains the data of 100 genes, including wild-type data,
knockout data (considered as expression data), dual knockout index
data (i.e. indexes of 20 gene pairs which are knocked out simultan-
eously), dual knockout data (i.e. expression data corresponding to
dual knockout index data) and network data (The detailed experi-
ment setting is described in Section 4 of the Supplementary
Material). Given each of the five sub datasets, we can identify the
list of genes affected by the 20 knocked out gene pairs in the net-
work and they are considered as the gold standard of the
experiment.

For each of the five sub datasets, we are looking at whether each
method can find the targets of each knocked out pairs. We compare
DriverGroup with jointIDA (Nandy et al., 2017) and the random
method. jointIDA is also used to estimate the joint effects of a group
of variables on other variables. However, it estimates the joint
effects of variables on a target by knocking down all variables at the
same time. In the random method, we randomly pick target genes
for each the knocked out gene pairs 100 times. We validate the
results of each method with the gold standard above. Figure 3 shows
the precisions achieved by the three methods.

In Figure 3, we see that DriverGroup outperforms jointIDA in
four out of the five cases and achieves similar precision as jointIDA
in the case of network 5. Both DriverGroup and jointIDA outper-
form the random method in all cases.

To have a detailed evaluation, we compare the results of the 3
methods (i.e. jointIDA, DriverGroup, and the random method) and

the combination of jointIDA and DriverGroup (i.e.
jointIDA_DriverGroup) for all the 20 gene pairs of the 5 networks.
For each network, we validate the predicted target genes of the
knocked-out gene pairs against the gold standard. We then compute
the accumulated number of validated target genes of all the 20
knocked-out gene pairs. The result is shown in Figure 4. We can see
that DriverGroup outperforms the random method and jointIDA in
the first four networks and it is comparable to jointIDA in the fifth
network. Furthermore, the combination of jointIDA and
DriverGroup outperforms the other three methods in all the cases.

In addition, the overlap of the gold standard and the target genes
predicted by jointIDA and DriverGroup is shown in Figure 5. In the
figure, the target genes identified by jointIDA and DriverGroup of
all 20 gene pairs of each network are validated against the gold
standard. In all the five networks, although there are some target
genes uncovered by both jointIDA and DriverGroup, there are a
large amount of validated target genes discovered only by
DriverGroup. Since the results of the two methods are complemen-
tary, it would be beneficial if they could be used together in predict-
ing targets of groups of genes.

3.2 Identifying driver groups
We apply DriverGroup to the BRCA dataset to identify driver
groups (i.e. groups of coding RNAs/miRNAs which have an impact
on the proliferation genes). We also categorize the identified groups
into additional groups and enhanced groups. Additional groups
regulate target genes which are in the union of the target genes of
individuals in the groups. Enhanced groups regulate genes in and
outside the union of the target genes of individuals in the groups.
We identify 82 coding cancer driver groups and 36 miRNA cancer
driver groups. We sort these groups based on their influence on the
proliferation genes (i.e. The larger number of proliferation genes a
group impacts on, the higher it is in the ranking list). The top 10
driver groups discovered by our method are presented in Table 1 for
coding genes and Table 2 for miRNAs. We see that most of the iden-
tified groups are enhanced groups, indicating that members in the
identified groups work collaborately to increase the effects on the
proliferation genes.

The driver groups predicted by DriverGroup are promising as
some members of the predicted groups are confirmed to be related
to breast cancer. Among the genes in the top 10 coding cancer driver
groups predicted by DriverGroup, GATA1, TCF3, JUN and MYB
are in the Cancer Gene Census (CGC) from the COSMIC database
(Forbes et al., 2015). In addition, other genes, including FOS,
MBD3, E2F6 and SPI1, are also previously proved to be related to
breast cancer. Specifically, FOS is critical to the growth of MCF-7
breast cancer cell (Lu et al., 2005) and its family plays an important
role in the biological function of breast tumours (Langer et al.,
2006). There is a relationship between MBD3 and human breast

Fig. 3 Comparison of precision for the target genes predicted by the random

method, jointIDA and DriverGroup in five networks. The target genes predicted by

each method are validated against the gold standard. Each bar indicates the

Precision of each method.
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cancer cells (Shimbo et al., 2016). E2F6 regulates BRCA1 negatively
in human cancer cells (Oberley et al., 2003) and SPI1 can be used
for prognosis in breast cancer (Wang et al., 2007).

In addition, to see the reason why the driver groups predicted by
DriverGroup may cause cancer, we evaluate the genomic aberra-
tions of genes in these driver groups. Interestingly, most of genes in
these driver groups are mutated in breast cancer patients. For in-
stance, genes MYB, SPI1, E2F6 and GATA1 are mutated in 12, 3, 2
and 2 patients in the BRCA data, respectively. Furthermore, both
gene E2F6 and gene SPI1 in the first predicted driver group are
mutated in patient TCGA-AN-A046, both gene GATA1 and gene
SPI1 in the second, fourth and sixth predicted driver groups are
mutated in patient TCGA-A8-A09Z. These findings indicate that

the predicted driver groups may play a significant role in developing
the disease in breast cancer patients.

Among the miRNAs in the top 10 miRNA cancer driver groups
predicted by DriverGroup, there are 3 miRNAs (hsa-miR-22-5p,
hsa-miR-342-5p and hsa-miR-34a-5p) involved in tumourigenesis of
breast cancer, which are confirmed by OncomiR (Wong et al.,
2018), a database for studying pan-cancer miRNA dysregulation.
Out of these three miRNAs, hsa-miR-342-5p is proved to be a regu-
lator of the development of breast cancer cells in another work
(Lindholm et al., 2019) as well. Another three miRNAs, hsa-miR-
130a-5p, hsa-miR-146a-5p and hsa-miR-223-5p, are also confirmed
to be related to breast cancer. Specifically, hsa-miR-130a-5p targets
FOSL and upregulates ZO-1 to suppress breast cancer cell migration
(Chen et al., 2018), hsa-miR-146a-5p has an over expression in
breast cancer cells (Sandhu et al., 2014), and hsa-miR-223-5p is a
coordinator of breast cancer (Pinatel et al., 2014).

Fig. 4 Comparison of performance of the random method, jointIDA, DriverGroup, the combination of jointIDA and DriverGroup (i.e. jointIDA_DriverGroup). There are five

networks in total and each chart shows the results for a network. In each chart, the x-axis indicates the number of knocked-out gene pairs. The y-axis is the accumulated num-

ber of validated genes predicted by the random method, jointIDA, DriverGroup, the combination of jointIDA and DriverGroup. The red line is the gold standard and it shows

the true numbers of genes affected by gene pairs. In the first four cases, DriverGroup outperforms the random method and jointIDA, and it is comparable to jointIDA in the

last case. Furthermore, the combination of jointIDA and DriverGroup outperforms the other three methods in all the cases.

Fig. 5 Overlap between jointIDA, DriverGroup and the gold standard. The diagram

shows the overlap of the gold standard and the target genes predicted by jointIDA

and DriverGroup in the five networks. In all the five networks, DriverGroup can de-

tect large amounts of target genes which are not discovered by jointIDA.

Table 1 Coding BRCA driver groups predicted by DriverGroup

Group Predicted driver groups Size of group Type

1 FOS, MBD3, JUN, E2F6, MYB,

SPI1

6 Enhanced

2 GATA1, FOS, MBD3, JUN, MYB,

SPI1

6 Enhanced

3 TCF3, FOS, MBD3, JUN, MYB,

SPI1

6 Enhanced

4 GATA1, FOS, MBD3, JUN, SPI1 5 Enhanced

5 GATA1, TCF3, FOS, MBD3, JUN,

MYB

6 Enhanced

6 GATA1, FOS, MBD3, SPI1 4 Enhanced

7 FOS, MBD3, JUN, SPI1 4 Enhanced

8 TCF3, FOS, MBD3, JUN, E2F6,

MYB

6 Enhanced

9 GATA1, MBD3, JUN, MYB 4 Enhanced

10 MBD3, JUN, MYB, SPI1 4 Enhanced

The top 10 coding driver groups are enhanced groups whose members

work in concert to increase the influence on the proliferation genes.
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3.3 Predicted driver groups are useful in predicting

survival
As the predicted driver groups likely cause carcinogenesis, they could
be promising biomarkers for tumour classification. To explore this
concept, we use the driver gene groups predicted by DriverGroup to
stratify breast cancer patients. We obtain the BRCA gene expression
data from Zhang et al. (2019), which includes clinical data, for sur-
vival analysis. We use the first predicted coding driver groups in
Table 1, including FOS, MBD3, JUN, E2F6, MYB and SPI1, and the
Similarity Network Fusion (SNF) method (Xu et al., 2017; Wang
et al., 2014) to cluster cancer patients (see Section 5 of the
Supplementary Material for the results with the second and the third
driver groups). SNF takes expression of these genes (i.e. 6 genes in
this case) as input and outputs subtypes of cancer patients. We then
evaluate the survival outcomes of patients in the classified subtypes.
The results show that the survivals of patients in different subtypes
are significantly different (P-value ¼ 0.0152) as in Figure 6. In add-
ition, the clustering display indicates the similarity of samples in each
subtype and the silhouette plot shows a high quality clustering with a
large average silhouette width (i.e. 0.77).

3.4 Members of predicted driver groups regulating

common target genes
To see the functional association among the members of driver
groups predicted by DriverGroup, we check if they regulate com-
mon target genes. We use the TransmiR database of TF–miRNA
interactions to identify target genes of the members of predicted cod-
ing driver groups and use the miRTarBase, TarBase, miRWalk and
TargetScan databases of miRNA–TF/mRNA interactions to identify
target genes of predicted miRNA driver groups. We observe that for
the top 10 predicted driver groups in the both cases of coding and
non-coding, all participants in each group regulate some common
target genes, indicating the functional link of the members in driver
groups identified by our proposed method.

3.5 Detecting synthetic lethality with DriverGroup
Two genes have a synthetic lethal (SL) interaction if the perturbation
of both genes simultaneously is lethal but a perturbation that affects

either gene alone is viable (Lord et al., 2015; O’Neil et al., 2017). It
means that in cancer patients, the collaboration of two genes in a SL
interaction results in the loss of viability. To validate the ability of
DriverGroup in discovering SL interaction, we apply it to BRCA
data to detect only the driver gene groups of size 2. Since the existing
synthetic lethality database SynLethDB (Guo et al., 2016) only
includes SL coding genes, we apply DriverGroup to identify coding
driver groups only in this case. We validate the top 1000 predicted
SL gene pairs against SynLethDB, and 6 of them have been con-
firmed by SynLethDB, which are NFKB1-TP53, FOS-MAPK1,
CASP3-JUN, JUN-MAPK1, JUN-SMAD3 and E2F3-RB1. Based on
the hypergeometric test, the overlap between the predicted SL gene
pairs and the gold standard is significant, with a P-value of 0.00027.
Furthermore, most of these genes are reported to be related to breast
cancer, including NFKB1 (Kim et al., 2018), TP53 (Ungerleider
et al., 2018), FOS (Lu et al., 2005; Langer et al., 2006), JUN
(Langer et al., 2006), SMAD3 (Petersen et al., 2010), E2F3 (Lee
et al., 2015) and RB1 (Jones et al., 2016).

3.6 Detecting driver groups of EMT
Metastasis is a process where cancer cells migrate from the primary
tumour to distant locations in the body. It is the major cause of
death of cancer patients. EMT is one of the processes which create
these metastatic cells (Park et al., 2008). EMT is promoted by cod-
ing genes (Lee et al., 2018) and/or non-coding genes (Gregory et al.,
2008). In this section, we apply DriverGroup to the BRCA dataset
to discover driver groups for the EMT of breast cancer patients by
identifying miRNA groups which have maximum influence on the
EMT signatures (Tan et al., 2014). As DriverGroup detects miRNA

Table 2 miRNA BRCA driver groups predicted by DriverGroup

Group Predicted driver groups Size of group Type

1 hsa-miR-96-5p, hsa-miR-342-5p 2 Enhanced

2 hsa-miR-130a-5p, hsa-miR-34a-

5p, hsa-miR-22-5p, hsa-miR-

222-5p, hsa-miR-223-5p

5 Enhanced

3 hsa-miR-130a-5p, hsa-miR-22-5p,

hsa-miR-222-5p, hsa-miR-223-

5p, hsa-miR-6797-5p

5 Enhanced

4 hsa-miR-130a-5p, hsa-miR-34a-

5p, hsa-miR-22-5p

3 Enhanced

5 hsa-miR-130a-5p, hsa-miR-22-5p,

hsa-miR-146a-5p

3 Enhanced

6 hsa-miR-130a-5p, hsa-miR-22-5p,

hsa-miR-6797-5p

3 Enhanced

7 hsa-miR-34a-5p, hsa-miR-22-5p,

hsa-miR-222-5p

3 Enhanced

8 hsa-miR-34a-5p, hsa-miR-22-5p,

hsa-miR-223-5p

3 Enhanced

9 hsa-miR-34a-5p, hsa-miR-22-5p,

hsa-miR-6797-5p

3 Enhanced

10 hsa-miR-130a-5p, hsa-miR-34a-

5p, hsa-miR-222-5p, hsa-miR-

342-5p, hsa-miR-6797-5p

5 Enhanced

The top 10 miRNA driver groups are enhanced groups whose members

work in concert to increase the influence on the proliferation genes.

Fig. 6 Survival curves, silhouette plot and clustering display. Survival curves, silhou-

ette plot and clustering display of cancer subtypes identified by using the first pre-

dicted coding driver groups (including FOS, MBD3, JUN, E2F6, MYB and SPI1)

indicate that the survivals of patients are significantly different in the two subtypes

and the clustering is highly qualified with a large average silhouette width and the

similarity of samples in each subtype.
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groups which regulate EMT signatures, the detected miRNA groups
are expected to drive the EMT transition in breast cancer patients.
We identify 61 miRNA driver groups for EMT and we sort these
groups based on their influence on the EMT signatures (i.e. The
larger number of EMT signatures a group impacts on, the higher it
is in the ranking list). The list of top 10 miRNA driver groups for
EMT in breast cancer is shown in Table 3. Among these miRNAs,
hsa-miR-130a-5p and hsa-miR-223-5p are EMT miRNAs (Cursons
et al., 2018), indicating the potential of DriverGroup in detecting
driver groups for different biological processes such as EMT.

4 Conclusion

Since there is evidence showing that genes work in concert to regu-
late targets and progress cancer, several methods have been devel-
oped to identify these genes. However, current methods only
discover mutated modules. Only one mutated gene in a module is
sufficient to progress cancer. Thus, members in these mutated mod-
ules do not collaborate in driving cancer and these mutated modules
are not truly driver gene groups. In addition, current methods only
identify coding drivers while non-coding genes can also regulate tar-
gets to drive cancer. Therefore, novel methods are required to iden-
tify driver gene groups to elucidate their regulatory mechanism.

To overcome the limitations of existing methods, in this article,
we have developed a novel method, DriverGroup, to uncover driver
groups. We have evaluated the effectiveness of DriverGroup with
various experiments. The results have demonstrated that
DriverGroup can explore promising driver gene groups. Predicted
coding driver groups can be used to classify cancer patients into sub-
types and the survivals of patients in different subtypes are signifi-
cantly different. Furthermore, DriverGroup can also detect
synthetic lethal gene pairs and EMT driver groups. All these results
show that the findings of DriverGroup can provide new insights
into molecular regulatory mechanisms of cancer initialization and
progression, and DriverGroup has the potential to contribute to the
development of effective cancer treatments.

As a future work, to improve DriverGroup, we will consider the
role of other ncRNAs, e.g. long non-coding RNAs, and their sponge
activities with miRNAs in developing cancer. We also plan to apply
DriverGroup to the study of multiple cancer types by using the pre-
dicted driver groups for subtype classification and survival analysis.
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