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Abstract

Motivation: MicroRNAs (miRNAs) are small non-coding RNAs with the length of �22 nucleotides.

miRNAs are involved in many biological processes including cancers. Recent studies show that

long non-coding RNAs (lncRNAs) are emerging as miRNA sponges, playing important roles in can-

cer physiology and development. Despite accumulating appreciation of the importance of

lncRNAs, the study of their complex functions is still in its preliminary stage. Based on the hypoth-

esis of competing endogenous RNAs (ceRNAs), several computational methods have been

proposed for investigating the competitive relationships between lncRNAs and miRNA target mes-

senger RNAs (mRNAs). However, when the mRNAs are released from the control of miRNAs, it

remains largely unknown as to how the sponge lncRNAs influence the expression levels of the en-

dogenous miRNA targets.

Results: We propose a novel method to construct lncRNA related miRNA sponge regulatory net-

works (LncmiRSRNs) by integrating matched lncRNA and mRNA expression profiles with clinical

information and putative miRNA-target interactions. Using the method, we have constructed the

LncmiRSRNs for four human cancers (glioblastoma multiforme, lung cancer, ovarian cancer and

prostate cancer). Based on the networks, we discover that after being released from miRNA con-

trol, the target mRNAs are normally up-regulated by the sponge lncRNAs, and only a fraction of

sponge lncRNA-mRNA regulatory relationships and hub lncRNAs are shared by the four cancers.

Moreover, most sponge lncRNA-mRNA regulatory relationships show a rewired mode between dif-

ferent cancers, and a minority of sponge lncRNA-mRNA regulatory relationships conserved

(appearing) in different cancers may act as a common pivot across cancers. Besides, differential

and conserved hub lncRNAs may act as potential cancer drivers to influence the cancerous state in

cancers. Functional enrichment and survival analysis indicate that the identified differential and

conserved LncmiRSRN network modules work as functional units in biological processes, and can

distinguish metastasis risks of cancers. Our analysis demonstrates the potential of integrating ex-

pression profiles, clinical information and miRNA-target interactions for investigating lncRNA regu-

latory mechanism.

Availability and implementation: LncmiRSRN is freely available (https://github.com/zhangjun

peng411/LncmiRSRN).
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1 Introduction

With the advance of next-generation sequencing technologies, non-

coding RNAs (ncRNAs) as functional RNA molecules have

challenged the traditional view of genome organization, with which

genetic information is only stored in protein-coding genes (Evans

et al., 2016). In recent years, long non-coding RNAs (lncRNAs),

with longer than 200 nucleotides in length (Derrien et al., 2012),

have attracted much attention from researchers in various fields as a

major class of important ncRNAs. Accumulating evidence has

revealed that lncRNAs are involved in a wide range of biological

processes, such as gene transcription, post-transcriptional regula-

tion, epigenetic regulation, and even human cancers (Cao, 2014;

Chen et al., 2017; Wu et al., 2016).

Recently, the hypothesis on competing endogenous RNA

(ceRNA) has been proposed (Salmena et al., 2011), and it is

regarded as the ‘Rosetta Stone’ of a hidden RNA language.

According to the hypothesis, a pool of different RNAs, including

lncRNAs, pseudogenes, circular RNAs (circRNAs) and messenger

RNAs (mRNAs) compete for the same pool of microRNAs

(miRNAs), thereby regulating miRNA activity (Tay et al., 2014).

miRNAs are small non-coding RNAs with the length of �22 nucleo-

tides, and they function in RNA silencing and post-transcriptional

regulation of gene expression. These ceRNAs are therefore also

called miRNA ‘sponges’ or ‘decoys’. They act as molecular sponges

to attract miRNAs for binding and competitively sequester them

from their natural targets, and thus releasing target genes from the

miRNAs’ control. As a representative of the several types of

ceRNAs, lncRNAs, when acting as miRNA sponges, are associated

with various human diseases, such as glioblastoma multiforme

(Zhang et al., 2016a), lung cancer (Sun et al., 2016), ovarian cancer

(Zhou et al., 2016) and prostate cancer (Zhang et al., 2017).

To study the system-level properties of lncRNAs as miRNA

sponges in human cancers, several computational analysis methods

(Conte et al., 2017; Du et al., 2016; Paci et al., 2014; Sui et al.,

2016; Sumazin et al., 2011; Wang et al., 2015; Zhang et al., 2016b)

have been presented to identify lncRNA related miRNA sponge

networks.

Sumazin et al. (2011) proposed a miRNA activity modulator

screening algorithm called Hermes to identify miRNA-mediated net-

work of coding and non-coding RNA interactions, by analyzing

matched miRNA and gene expression profiles in glioblastoma. The

method utilizes mutual information and conditional mutual infor-

mation to evaluate the statistical significance of each (RNA,

miRNA, RNA) triplet. The constructed miRNA-mediated network

of RNA-RNA interactions provides clues to the dysregulation of key

mechanisms of pathogenesis, as well as to the regulation of normal

cell physiology.

By estimating the so-called sensitivity correlation (the difference

between Pearson and partial correlation coefficients) for each

(lncRNA, miRNA, RNA) triplet.), Paci et al. (2014) and Conte et al.

(2017) investigated the ability of lncRNAs to act as miRNA sponges

by protecting mRNAs from miRNA repression. By dividing the

breast tissues into tumor and normal breast samples, they built two

types of miRNA-mediated interaction (MMI) networks: tumor and

normal MMI networks, respectively. There is a marked rewiring in

the lncRNA related miRNA sponge interactions between tumor and

normal breast tissues, indicating an underlying role by the miRNA

sponges (i.e. lncRNAs) as potential oncogenes or antioncogenes in

cancer.

In addition, based on integrative analysis, Wang et al. (2015),

Du et al. (2016) and Sui et al. (2016) investigated lncRNA related

miRNA sponge networks in human cancer. The findings provide

insights for better understanding the critical role of lncRNA-related

sponge regulation in cancer. To understand the global regulation

landscape and the characteristics of lncRNA related miRNA sponge

crosstalk in cancers, Zhang et al. (2016b) integrated multidimen-

sional molecule profiles of >5000 samples to systematically charac-

terize lncRNA related miRNA sponge network across 12 major

cancers. This study sheds light on the understanding of the molecu-

lar mechanism of tumorigenesis.

Although the above methods can be applied to investigate

lncRNA related miRNA sponge networks, most of them rely on

predicted miRNA-target interactions to generate candidate lncRNA-

mRNA pairs. It is well known that different miRNA-target predic-

tion programs use different techniques and metrics, which may

cause inconsistent prediction results (Ekimler and Sahin, 2014).

Moreover, these miRNA-target prediction algorithms produce many

false positives and the number of biologically relevant miRNA target

genes is largely overestimated (Pinzón et al., 2017), affecting the ac-

curacy of the findings.

Additionally, miRNA sponges compete with mRNAs to attract

miRNAs for binding and reducing the amount of miRNA tran-

scripts. These miRNA sponges competitively sequester miRNAs

from the target mRNAs, therefore releasing mRNAs from miRNAs’

control. When mRNAs are released from miRNAs’ control, an open

question is how the expression levels of the released mRNAs are

activated. One possible explanation is that the expression levels of

the released mRNAs are typically activated by themselves, and can

in principle be translated. In fact, the explanation is an implicit cor-

ollary of the ceRNA hypothesis. However, if the released mRNAs

are still in an inactivated state, how are their expression levels acti-

vated? Previous studies (Faghihi et al., 2008, 2010) have shown that

lncRNAs could increase mRNA stability and thus regulate mRNA

expression. Therefore, a possible interpretation is that the expres-

sion levels of these released mRNAs are activated by their competi-

tive partners, e.g. sponge lncRNAs. In this paper, we hypothesize

that lncRNAs as potential regulators activate the expression levels

of the mRNAs released from miRNAs’ control. The aim of this

paper is thus to investigate the regulatory relationships between the

lncRNAs and the released mRNAs. This aim also differentiates our

method from the existing methods, which are only aimed at identify-

ing lncRNA related sponge networks.

To investigate how sponge lncRNAs influence the expression

levels of the released mRNAs, it is necessary to uncover the regula-

tory mechanism of sponge lncRNAs. Existing methods only study

crosstalk (indirect) or competitive relationships between sponge

lncRNAs and mRNAs based on statistical correlations or associa-

tions whereas the regulatory relationships between sponge lncRNAs

and mRNAs are indeed causal.

To address the above questions and limitations, in this work,

we propose a causality-based computational method to identify

lncRNA related miRNA Sponge Regulatory Network

(LncmiRSRN). Firstly, to avoid inconsistent prediction results be-

tween different miRNA-target prediction algorithms, we integrate

several well-known experimentally validated miRNA-target inter-

action databases as ground-truth to generate candidate sponge

lncRNA-mRNA pairs. Furthermore, we assume that the expression

levels of the released mRNAs are activated by their competitive part-

ner lncRNAs in the sponge network. To find out if regulatory rela-

tionships exist between candidate sponge lncRNA and mRNA pairs,

we use a causal inference method called intervention calculus when

the DAG is absent (IDA) (Maathuis et al., 2009, 2010), to estimate
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the causal effects of sponge lncRNAs on the mRNAs. To improve

computation efficiency, we use the parallelized version of IDA called

IDA_parallel (Le et al., 2016) to estimate the causal effects that a

sponge lncRNA has on an endogenous miRNA target.

To validate the proposed LncmiRSRN method, we apply it to

gene expression profiles and clinical information of four different

cancer types: glioblastoma multiforme (GBM), lung squamous cell

carcinoma (LSCC), ovarian cancer (OvCa) and prostate cancer

(PrCa). We identify lncRNA related miRNA sponge regulatory net-

works of the four cancers and conduct functional analysis on them.

The results show that the proposed method can help to elucidate

sponge lncRNA related regulatory mechanisms in cancers.

2 Materials and methods

2.1 Matched lncRNA and mRNA expression profiles of

human cancers
The genome-wide matched lncRNA and mRNA expression profiles

of human cancers are obtained from (Du et al., 2013). By re-

annotating the probes uniquely mapped to lncRNAs, Du et al.

repurposed the publically available array-based data to extract

lncRNA expression data. The lncRNAs and mRNAs without gene

symbols in the repurposed microarray data are removed, and the

unique expression value of replicate lncRNAs and mRNAs is

obtained by taking the average of expression values of the replicates.

As a result, we have the expression profiles of 9704 lncRNAs and

18 282 mRNAs in 451 GBM samples, 113 LSCC samples, 585

OvCa samples and 150 PrCa samples. The clinical information of

the 451 GBM samples, 113 LSCC samples, 585 OvCa samples is

from The Cancer Genome Atlas (TCGA) project (Weinstein et al.,

2013), and the clinical information of the 150 PrCa samples is

obtained from the Memorial Sloan-Kettering Cancer Center

(MSKCC) prostate oncogenome project (Taylor et al., 2010).

2.2 Putative miRNA-target interactions
To collect putative miRNA-target interactions (including miRNA-

mRNA and miRNA-lncRNA interactions), we integrate several

well-known experimentally validated miRNA-target interaction

databases. According to the catalog of experimental evidences in

miRTarBase v7.0 (Chou et al., 2018) database, we also divide the

experimental evidences of putative miRNA-target interactions into

two types: strong and weak. For miRNA-mRNA interactions, we

obtain the interactions with strong experimental evidences by inte-

grating miRTarBase v7.0 (Chou et al., 2018) and TarBase v7.0

(Vlachos et al., 2015). Since the number of miRNA-lncRNA interac-

tions with strong experimental evidences is very few, we combine

the interactions with both strong and weak experimental evidences

from NPInter v3.0 (Hao et al., 2016) and LncBase v2.0

(Paraskevopoulou et al., 2016). In total, we have collected 9318 and

17 3468 unique putative miRNA-mRNA and miRNA-lncRNA

interactions, respectively.

2.3 Overview of LncmiRSRN
In this section, we will briefly describe the LncmiRSRN method for

constructing a lncRNA related miRNA sponge regulatory network.

As shown in Figure 1, the method includes the following steps:

1. Inferring lncRNA related miRNA sponge interactions. Given pu-

tative miRNA-target interactions, a list of candidate lncRNA-

mRNA pairs which have significant sharing of miRNAs are

identified. Each candidate lncRNA-mRNA pair with significant

positive correlation is considered as a lncRNA related miRNA

sponge interaction.

2. Estimating the causal effects of sponge lncRNAs on mRNAs.

For the lncRNAs and mRNAs of the above identified sponge

lncRNA-miRNA interaction pairs, we firstly extract matched

sponge lncRNA and mRNA expression data. Then we apply

parallel IDA to the matched lncRNA and mRNA expression

data to calculate the causal effects of the sponge lncRNAs on the

mRNAs.

3. Constructing lncRNA related miRNA sponge regulatory net-

work. By using corPvalueFisher function of the R-package

WGCNA (Langfelder and Horvath, 2008), we calculate the

Fisher’s asymptotic P-values based on the causal effects of

sponge lncRNAs on mRNAs to evaluate the strengths of sponge

lncRNA-mRNA interactions. A lower P-value indicates a stron-

ger sponge lncRNA-mRNA interaction. The sponge lncRNA-

mRNA interactions with adjusted P-value < 0.05 (adjusted by

BH method) are regarded as sponge lncRNA-mRNA regulatory

relationships. By assembling these regulatory relationships, we

form the lncRNA related miRNA sponge regulatory network.

2.4 Identifying lncRNA related miRNA sponge

interactions
We mainly follow the two commonly used principles described

below to identify lncRNA related miRNA sponge interactions.

Fig. 1. The workflow of LncmiRSRN. Firstly the putative miRNA-target interac-

tions are used to generate candidate lncRNA-mRNA pairs. By using matched

lncRNA and mRNA expression data, we select the candidate lncRNA related

miRNA sponge interactions based on the correlations of the expression levels

of the lncRNA-mRNA pairs. Then we identify sponge lncRNA-mRNA regula-

tory relationships with parallel IDA method. By merging these sponge

lncRNA-mRNA regulatory relationships, we build the lncRNA related miRNA

sponge regulatory network
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Firstly, each candidate lncRNA-mRNA pair should have a sig-

nificant sharing of miRNAs at sequence level. In this work, we re-

quire that each candidate lncRNA-mRNA pair share at least three

miRNAs, and pass the significance test on the sharing with adjusted

P-value < 0.01 (adjusted by BH method) using a hyper-geometric

distribution test.

Secondly, the expression levels of each candidate lncRNA-

mRNA pair are positively correlated. To identify lncRNA related

miRNA sponge interactions, we compute the Pearson correlation

coefficients of each candidate lncRNA-mRNA pair. All the candi-

date lncRNA-mRNA pairs with positive correlation coefficients and

adjusted P-value < 0.01 (adjusted by BH method) are regarded as

lncRNA related miRNA sponge interactions.

2.5 Constructing lncRNA related miRNA sponge

regulatory networks
For the lncRNAs and mRNAs identified to possibly have lncRNA

related miRNA sponge interactions, we extract their matched ex-

pression data. Then we identify sponge lncRNA-mRNA regulatory

relationships based on the matched sponge lncRNA and mRNA ex-

pression data.

In this work, we apply IDA (Maathuis et al., 2009, 2010) to the

matched sponge lncRNA and mRNA expression data to identify the

regulatory relationships in two steps: (i) considering the sponge

lncRNAs and mRNAs as variables and learn the causal structure

(links) among these variables from expression data and (ii) estimate

the causal effects of sponge lncRNAs on mRNAs.

In step (i), we learn the causal structure from expression data

using the PC algorithm (Spirtes et al., 2000), a well-known algo-

rithm for causal structure learning based on conditional independ-

ence tests. To improve efficiency, we use the parallel

implementation of PC in the R-package, ParallelPC (Le et al.,

2016), when setting the significant level of the conditional independ-

ence tests, a¼ 0.01. In this paper we assume that the regulatory rela-

tionships of the variables (sponge lncRNAs or mRNAs) can be

represented using a directed acyclic graph (DAG), where a directed

link A!B indicates that A is a regulator of B. DAGs have been com-

monly used to model gene regulatory relationships (Friedman, 2004;

Friedman et al., 2000). Since different DAGs may correspond to the

same conditional independence in a dataset. For example, A!B!C,

A B C and A B!C all show that A and C are conditional inde-

pendent given B. The PC algorithm in this case outputs a CPDAG

(completed partial DAG) of which some edges may be unidirection-

al. For this example, PC will output A-B-C to represents the equiva-

lence class of DAGs, A!B!C, A B C and A B!C.

Additionally, to deal with high-dimensional expression data, an effi-

cient conditional independent test, partial correlation test (Kalisch

and Bühlmann, 2007) is used by the PC algorithm.

Given N variables or nodes, to determine if there is an edge be-

tween each pair of nodes based on conditional independence (CI)

tests, in the worst case, the number of CI tests is N(N � 1)2N � 2,

which is intractable for large N. To tackle the challenge, the PC al-

gorithm starts with a fully connected graph, it then removes an edge

if a CI test returns true for the edge. As PC conducts CI tests in a

level by level manner (starting with order zero CI tests) and each CI

test is only conditioned on the neighbours of the two nodes being

tested, when the underlying true causal DAG is sparse and it is pos-

sible to detect CI at lower level, the number of neighbours of a node

will drop quickly when the level of CI tests goes up. So in practice,

the number of CI tests conducted by PC is much smaller than that in

the worst case. To further improve efficiency, in this paper, as

mentioned earlier, we use the parallel implementation of PC in the

R-package, ParallelPC (Le et al., 2016).

In step (ii), based on the learnt causal structure and the gene ex-

pression data, for each sponge lncRNA, we estimate its causal effect

on all mRNAs by following the IDA method. Details of IDA are out

of the scope of this paper, and we refer readers to (Le et al., 2016;

Maathuis et al., 2009, 2010) for more information.

The estimated causal effects can be positive or negative. We

evaluate the strengths of identified sponge lncRNA-mRNA regula-

tory relationship using the Fisher’s asymptotic P-values. A sponge

lncRNA-mRNA interaction with adjusted P-value < 0.05 (adjusted

by BH method) is regarded as a sponge lncRNA-mRNA regulatory

relationship. By assembling all the regulatory relationships, we ob-

tain the lncRNA related miRNA sponge regulatory network

(LncmiRSRN).

2.6 Topological properties of the LncmiRSRNs
The R-package igraph (Csardi and Nepusz, 2006) is used to analyze

the topological properties of the LncmiRSRNs of the four cancers.

For each node in a LncmiRSRN, its degree is defined as the number

of edges connected with it. If the node degree in the LncmiRSRN

obeys a power law model, the network is regarded as scale free,

which is one of the most important metrics of true biological net-

works (Barabási and Oltvai, 2004). Previous studies have reported

that hub genes with higher degrees tend to be essential, and nearly

20% of the nodes in a biological network are regarded as essential

nodes (Hahn and Kern, 2005; Song and Singh, 2013). Therefore, in

this work, we select the top 20% of lncRNAs with the highest

degrees in the LncmiRSRN as the hub lncRNAs.

To systematically analyze the LncmiRSRNs in human cancers,

we divide hub lncRNAs and sponge lncRNA-mRNA regulatory rela-

tionships into two categories: (i) conserved hubs and conserved

sponge lncRNA-mRNA regulatory relationships, which exist in at

least two cancer LncmiRSRNs; (ii) differential hubs and differential

sponge lncRNA-mRNA regulatory relationships, which only exist in

one cancer LncmiRSRN. Moreover, using the following formula, we

calculate the similarity (Sim) between two LncmiRSRNs in terms of

two cases: hub lncRNAs and sponge lncRNA-mRNA regulatory

relationships.

Simij ¼
overlapðNeti;NetjÞ

minðNeti;NetjÞ
(1)

where Neti and Netj denote LncmiRSRNs in cancer i and j, respect-

ively. overlap(Neti, Netj) is the number of common hub lncRNAs or

common sponge lncRNA-mRNA regulatory relationships between

the LncmiRSRNs in cancer i and j. min(Neti, Netj) represents the

minimum number of hub lncRNAs or sponge lncRNA-mRNA regu-

latory relationships between the LncmiRSRNs in cancer i and j.

2.7 Survival and enrichment analysis for LncmiRSRN

network modules
Before survival and enrichment analysis of each of the

LncmiRSRNs, we firstly generate LncmiRSRN modules. In this

work, we use the Markov Clustering Algorithm (MCL) (Enright

et al., 2002) implemented in the R-package ProNet (Wu and Xia,

2015) to identify LncmiRSRN modules. For each module, the num-

bers of sponge lncRNAs and mRNAs are at least two, respectively.

Next, we perform survival analysis of the identified modules

using the R-packages survival (Therneau and Lumley, 2017) and

survcomp (Schröder et al., 2011). A multivariate Cox model is fitted

with the sponge lncRNAs and mRNAs of the identified modules,
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and the fitted Cox model is used to predict the risk score of a sam-

ple. All the samples are divided into the high risk and the low risk

groups equally according to their risk scores. We calculate Hazard

Ratio (HR) between the high and the low risk groups, and the Log-

rank test as well as the Kaplan Meier curve is also generated.

To further understand the underlying biological processes and

pathways associated with the modules, the R-package

clusterProfiler (Yu et al., 2012) is used to conduct functional enrich-

ment analysis. The Gene Ontology (GO) (Ashburner et al., 2000)

biological processes and Kyoto Encyclopedia of Genes and Genomes

(KEGG) (Kanehisa and Goto, 2000) pathways with adjusted P-value

< 0.05 (adjusted by BH method) are considered as functional cate-

gories for the modules. In addition, we collect a list of lncRNAs and

mRNAs associated with all four human cancers (GBM, LSCC,

OvCa and PrCa) to investigate enriched cancer genes in each mod-

ule. The list of lncRNAs related to the four human cancers is

obtained from LncRNADisease v2015 (Chen et al., 2013),

Lnc2Cancer v2016 (Ning et al., 2016) and MNDR v2013 (Wang

et al., 2013). The list of mRNAs associated with the four human

cancers is from DisGeNET v4.0 (Pi~nero et al., 2017), which is a

comprehensive database integrating information on human disease-

associated genes from several public databases and literatures.

3 Results

3.1 The LncmiRSRNs in human cancers
By following the steps of the LncmiRSRN method, we have con-

structed the sponge lncRNA-mRNA regulatory networks in four

types of human cancers: GBM, LSCC, OvCa and PrCa (see

Supplementary Material S2 for details), respectively. The numbers

of sponge lncRNA-mRNA regulatory relationships in the four

LncmiRSRNs are considerably different. However, the node degree

distributions of the LncmiRSRNs in GBM, LSCC, OvCa and PrCa

all fit power law distribution well with R2 > 0.95 (see Fig. 2A). This

result indicates that the four LncmiRSRNs are scale free, similar to

large-scale true biological networks.

To uncover the role of sponge lncRNAs on mRNAs, we explore

the causal effects which sponge lncRNAs have on mRNAs. As

shown in Figure 2B, the number of positive sponge lncRNA-mRNA

regulatory pairs is much larger than the negative sponge lncRNA-

mRNA regualtory pairs in the four human cancers, implying that

most sponge lncRNAs have positive effects on the expression levels

of mRNAs. Moreover, it may indicate that through lncRNA-based

miRNA sponging, mRNAs are normally up-regulated by sponge

lncRNAs in LncmiRSRN.

As shown in Figure 2C and D, only a minority of sponge

lncRNA-mRNA regulatory relationships (44, �0.67%) and hub

lncRNAs (14, �10.07%) are shared by the four cancer

LncmiRSRNs. This result suggests that a small portion of sponge

lncRNA-mRNA regulatory relationships and hub lncRNAs tend to

act as common miRNA sponge regulatory relationships and miRNA

sponges that are involved in the biological processes of GBM,

LSCC, OvCa and PrCa. On the other hand, a large number of

sponge lncRNA-mRNA regulatory relationships (5006, �75.81%)

and hub lncRNAs (69, �49.64%) are cancer-specific, indicating

that many sponge lncRNA-mRNA regulatory relationships and hub

lncRNAs selectively play a role in a specific human cancer.

In terms of sponge lncRNA-mRNA regulatory relationships and

hub lncRNAs, we also calculate the similarity scores [Equation (1)]

between each pair of the LncmiRSRNs in GBM, LSCC, OvCa and

PrCa. In terms of sponge lncRNA-mRNA regulatory relationships,

it is found that the similarity between the LncmiRSRN in LSCC and

the LncmiRSRN in OvCa has the highest values (Sim ¼ 0.5333). In

terms of hub lncRNAs, the similarity between the LncmiRSRN in

GBM and the LncmiRSRN in LSCC has the highest values (Sim ¼
0.8750). In particular, the findings in terms of hub lncRNAs suggest

that GBM and LSCC may share similar hub lncRNAs for gene regu-

lation. Furthermore, the similarity score in terms of sponge lncRNA-

mRNA regulatory relationships is positively correlated with the

similarity score in terms of hub lncRNAs (cor ¼ 0.9594, P-value ¼
0.002). This result implies that the order of similarity between pairs

of the LncmiRSRNs in GBM, LSCC, OvCa and PrCa using the two

terms are normally consistent.

3.2 Network analysis reveals rewired and pivotal

LncmiRSRNs across human cancers
Although the four cancer LncmiRSRNs share several common fea-

tures, most sponge lncRNA-mRNA regulatory relationships in the

LncmiRSRNs show a rewired mode between human cancers, like ‘on/

off’ switches. From the above results, we observe that �75.81%

sponge lncRNA-mRNA regulatory relationships only exist in one in-

dividual cancer, and only �0.67% sponge lncRNA-mRNA regulatory

relationships are conserved in all four human cancers. The low conser-

vation may be explained as that sponge lncRNA-mRNA regulatory

relationships are more likely to be cancer-specific at expression level.

We merge differential and conserved sponge lncRNA-mRNA

regulatory relationships to construct differential and conserved

LncmiRSRNs (details in Supplementary Material S3). In Figure 3A,

the node degree distributions of differential and conserved

LncmiRSRNs fit power law distribution well with R2 ¼ 0.9542 and

0.9914, respectively. This result suggests that in the differential and

conserved LncmiRSRNs, most sponge lncRNAs have few interacting

Fig. 2. The four LncmiRSRNs identified for GBM, LSCC, OvCa and PrCa. (A)

Degree distributions of the four LncmiRSRNs. (B) Causal effect distributions

displaying that most sponge lncRNAs have positive effects on mRNAs. (C)

Overlap and difference of sponge lncRNA-mRNA regulatory relationships in

the four LncmiRSRNs and similarity matrix in terms of sponge lncRNA-

mRNA regulatory relationships. (D) Overlap and difference of hub lncRNAs in

the four LncmiRSRNs and similarity matrix in terms of hub lncRNAs
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mRNAs while a small portion of sponge lncRNAs have many inter-

acting mRNAs, and this characteristic is similar to that of most

types of true biological networks.

To evaluate whether there is a common pivot of sponge

lncRNA-mRNA regulatory relationships to maintain the architec-

ture of LncmiRSRNs across human cancers, we focus on investigat-

ing conserved sponge lncRNA-mRNA regulatory relationships in

four human cancers (see Fig. 3B). Based on existing gene-disease

associations (see Section 2.7), 5 lncRNAs and 35 mRNAs in the con-

served LncmiRSRN are closely associated with at least one of the

four cancers (see Table S1 in Supplementary Material S1 for details).

Specifically, 14 mRNAs (APC, ATM, AURKB, CDC42, DNMT3A,

FAS, MCL1, PTEN, RAF1, RPS6KB1, SIRT1, STAT3, SP1 and

TIMP3) are involved in all four human cancers. In GBM dataset, the

hazard ratio between the high and low risk groups based on the

lncRNAs and mRNAs in the conserved LncmiRSRN is 2.28, and the

Log-rank P-value is 0 (Fig. 3C). This result shows that the lncRNAs

and mRNAs in the conserved LncmiRSRN can act as prognostic

genes to discriminate the metastasis risks of GBM patients signifi-

cantly. Moreover, the performance of the lncRNAs and mRNAs in

the conserved LncmiRSRNs are also good in LSCC, OvCa and PrCa

datasets (Fig. 3C). The hazard ratio is 5.37 and the Log-rank P-value

is 3.00E-08 in LSCC dataset. As for OvCa dataset, the hazard ratio

is 2.43 and the Log-rank P-value is 5.55E-16. In the PrCa dataset,

hazard ratio is 22.83 and the Log-rank P-value is 5.18E-06. These

findings indicate that the conserved LncmiRSRN may act as a com-

mon pivot to maintain the architecture of LncmiRSRNs across

human cancers.

3.3 Differential and conserved hub lncRNAs are

potential cancer drivers
According to the topological analysis of the LncmiRSRNs, a main

characteristic of the four cancer LncmiRSRNs is that nodes in each

LncmiRSRN have very different levels of degrees. Since it is found

that hub nodes play important roles in biological networks, we iden-

tify hub lncRNAs that may act as potential cancer drivers in each

LncmiRSRN. To systematically evaluate which hub lncRNAs are

shared across different cancer-specific LncmiRSRNs, we divide hub

lncRNAs into two categories (see ‘Topological properties of the

LncmiRSRN’ section): differential and conserved hub lncRNAs. As a

result, we have identified 69 differential and 70 conserved hub

lncRNAs across cancers. Based on our collected gene-disease associ-

ation databases (see Section 2.7), two out of 69 differential hub

lncRNAs and nine out of 70 conserved hub lncRNAs are related to at

least one of the four cancers (see Fig. 4A). In addition, most of the

cancer-related hub lncRNAs (two out of the two, and six out of the

nine in cancer-related differential and conserved hub lncRNAs, re-

spectively) are related to at least two cancers. The result indicates that

these differential and conserved hub lncRNAs as potential cancer driv-

ers may influence the cancerous state in different human cancers.

To explore whether there is a common core of hub lncRNAs to in-

fluence the cancerous state in different human cancers, we concentrate

on conserved hub lncRNAs across human cancers. As shown in

Figure 4B, survival analysis reveals that these conserved hub lncRNAs

are significantly discriminative in dividing the metastasis risks of the

four human cancers (Hazard Ratio > 2, Log-rank P-value < 0.01).

Moreover, most conserved hub lncRNAs related regulatory relation-

ships (�69.47%) selectively tend to be cancer-specific (see Fig. 4C),

suggesting that conserved hub lncRNAs may be involved in the bio-

logical processes of different human cancers through regulating differ-

ent sets of targets. These findings imply that the conserved hub

lncRNAs may act as a common core of potential cancer drivers to in-

fluence the cancerous state in different human cancers.

3.4 Functional annotation of differential and conserved

LncmiRSRN network modules
Differential and conserved LncmiRSRNs display rewired and pivotal

mode across human cancers, respectively. In the process of rewired

Fig. 3. Differential and conserved LncmiRSRNs across human cancers. (A)

The node degree distributions of differential and conserved LncmiRSRNs. (B)

The pivotal sponge lncRNA-mRNA regulatory relationships existing in four

human cancers. The red diamond and circle nodes denote sponge lncRNAs

and mRNAs, respectively. (C) Survival analysis of conserved sponge lncRNA-

mRNA regulatory relationships in GBM, LSCC, PrCa and OvCa datasets

(Color version of this figure is available at Bioinformatics online.)

Fig. 4. Differential and conserved hub lncRNAs between cancers. (A) Cancer-

associated differential and conserved hub lncRNAs. (B) Multivariate survival

analysis of conserved hub lncRNAs for the four human cancers. The forest

plot shows hazard ratio (95% confidence interval), and the Log-rank P-values

are <0.001. (C) Distribution of regulatory relationships associated with con-

served hub lncRNAs across cancers
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and pivotal mode, network modules in differential and conserved

LncmiRSRNs may work as functional units underlying complex

human cancers. Thus, we are interested in identifying differential

and conserved LncmiRSRN network modules. Network modules in

differential and conserved LncmiRSRNs represent communities of

functionally associated genes involved in specific biological proc-

esses. Investigating differential and conserved LncmiRSRNs can re-

veal several differential and conserved network modules of

particular interest.

In total, the numbers of the identified differential and conserved

LncmiRSRN network modules are 55 and 29, respectively (details

in Supplementary Material S4). Functional enrichment analysis

reveals that 52 out of the 55 (�94.55%) differential modules and 28

out of the 29 (�96.55%) conserved modules are significantly

enriched in at least one GO biological process or KEGG pathway,

respectively (see Table S2 in Supplementary Material S1 for details).

This analysis suggests that most differential and conserved

LncmiRSRN network modules work as functional units in at least

one biological process. By mapping cancer-related genes to compo-

nents of the differential and conserved LncmiRSRN network mod-

ules, we further investigate cancer gene enrichment in each module.

As a result, all differential modules and conserved modules contain

genes associated with at least one cancer, respectively (see Table S3

in Supplementary Material S1 for details). The result shows that all

differential and conserved LncmiRSRN network modules may act as

cancer-related modules.

3.5 Differential and conserved LncmiRSRN network

modules can distinguish metastasis risks of human

cancers
As illustrated above, most differential and conserved LncmiRSRN

network modules work as functional units in at least one biological

process and may act as cancer-related modules. Thus, these modules

may be good module biomarkers. To demonstrate this assumption,

we use the genes of each differential and conserved LncmiRSRN net-

work module to predict the metastasis risks for GBM, LSCC, OvCa

and PrCa patients. In this work, the modules with Hazard Ratio no

<1.5 and Log-rank P-value < 0.05 are regarded as module

biomarkers.

We find that the numbers of module biomarkers for the 55 differ-

ential modules in GBM, LSCC, OvCa and PrCa datasets are 14, 28,

13 and 15, respectively. In addition, in the 29 identified conserved

modules, 3, 14, 2 and 10 conserved modules act as module bio-

markers of GBM, LSCC, OvCa and PrCa, respectively (see Tables S4–

S7 in Supplementary Material S1 for details). In total, the numbers of

differential and conserved module biomarkers unique to only one can-

cer are 33 and 20, respectively. These findings suggest that differential

and conserved LncmiRSRN network modules can act as module bio-

markers to distinguish metastasis risks of cancers.

4 Discussions and conclusions

Growing evidence has shown that lncRNAs are emerging as key reg-

ulators of many biological processes in physiological and patho-

logical states. Investigating the roles of lncRNAs acting as miRNA

sponges provides a novel way to predict lncRNA functions. Based

on ceRNA hypothesis, previous studies focus on studying indirect

competing relationships between sponge lncRNAs and mRNAs.

However, whether sponge lncRNAs can further regulate target

mRNAs is still not unearthed.

In this work, we present a novel method to reveal the regulatory

mechanism of sponge lncRNAs by considering the causal semantics

of sponge lncRNA-mRNA relationships. For improving the calculat-

ing efficiency, we use the parallelized version of IDA to estimate the

causal effects that a sponge lncRNA has on an mRNA.

We have applied our method to the four human cancer datasets:

GBM, LSCC, OvCa and PrCa. To obtain a reliable candidate

lncRNA-mRNA pairs, we collect several well-known experimentally

miRNA-target interaction databases as ground-truth. The enrich-

ment and survival analysis results show that the proposed method

can help to elucidate sponge lncRNA related casual regulatory

mechanisms of human cancers.

It is possible that lncRNAs are expressed at low levels, and it is

also possible that the existing techniques may not be able to accur-

ately measure lncRNA expression. However, since there have been

known regulatory relationships between lncRNAs and mRNAs,

such as those in the LncRNADisease database (Chen et al., 2013),

we hypothesize that lncRNAs may regulate these mRNAs after the

mRNAs being released by miRNAs. In other words, lncRNAs and

miRNAs co-regulate the mRNAs (possibly at different timeframe).

In our sponge model, the miRNAs (down) regulate the mRNAs to a

certain level and release them. lncRNAs will then regulate the

released mRNAs. This is different from the work looking at direct

lncRNA-mRNA regulation. We hope our method and findings

based on the above mentioned assumptions can provide high-

confidence candidates of lncRNA-mRNA interactions for follow-up

wet-lab experiments, thus contributing to the efforts on uncovering

the mechanism of lncRNA-mRNA regulation.

There is still room to extend or improve our method. Firstly,

LncmiRSRN is focused on lncRNA related miRNA sponge regula-

tory network in human cancer. To study all forms of aberrant

lncRNA regulation, it is necessary to infer lncRNA related miRNA

sponge regulatory network in human cancer and normal condition,

respectively. Moreover, LncmiRSRN is sensitive to the number of

samples, and has poor reproducibility in smaller subsets of the sam-

ples. It is noted that it is a common challenge of computational

methods including our method. We plan to tackle this problem by

using random sampling strategy, and separately identifying

LncmiRSRN network in each subset of the samples. To obtain a ro-

bust LncmiRSRN, we will remove the sponge lncRNA-mRNA regu-

latory relationships that only exist k (e.g. 1) times in n (e.g. 10)

different LncmiRSRNs. Additionally for each pair of putative

lncRNA-mRNA, LncmiRSRN applies two commonly used princi-

ples (significant sharing of miRNAs at sequence level and positively

correlated at expression level) to identify lncRNA related miRNA

sponge interactions. However, some other factors, such as miRNA

response elements (MREs) lying in RNA transcripts and miRNA

regulation at expression level, may be also associated with the iden-

tification of lncRNA related miRNA sponge interactions. Our

method is designed for the scenario in which miRNA expression

data is lacking, but when miRNA expression data is available, its

Step (1) can be replaced by an existing method which makes use of

miRNA expression data in the identification of lncRNA related

miRNA sponge networks. Finally, some of lncRNA related miRNA

sponge interactions may be caused by transcriptional co-regulation

(e.g. same promotors or transcription factors). This is a common

problem with existing computational methods, including ours, and

this problem may result in false positives. However, as the focus of

this paper is on lncRNAs’ effect on the expression of the mRNAs

after they are released from miRNA-mRNA interactions, we do not

consider other possible factors in our study. We hope that the
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proposed method is still useful in shortlisting statistically significant

interactions for follow-up wet lab experiments.

In summary, we propose a causality-based method to identify

lncRNA related miRNA sponge regulatory network by integrating

expression data, clinical information and miRNA-target interac-

tions. To our best knowledge, this is the first method to study how

the expression levels of the released mRNAs activate. Our method

not only complements the ceRNA hypothesis, but provides a new

avenue to study the functions and regulatory mechanism of

lncRNAs in human cancers.
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