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Abstract

It is known that noncoding RNAs (ncRNAs) cover �98% of the transcriptome, but do not encode proteins. Among ncRNAs,
long noncoding RNAs (lncRNAs) are a large and diverse class of RNA molecules, and are thought to be a gold mine of poten-
tial oncogenes, anti-oncogenes and new biomarkers. Although only a minority of lncRNAs is functionally characterized, it is
clear that they are important regulators to modulate gene expression and involve in many biological functions. To reveal
the functions and regulatory mechanisms of lncRNAs, it is vital to understand how lncRNAs regulate their target genes for
implementing specific biological functions. In this article, we review the computational methods for inferring lncRNA–
mRNA interactions and the third-party databases of storing lncRNA–mRNA regulatory relationships. We have found that
the existing methods are based on statistical correlations between the gene expression levels of lncRNAs and mRNAs, and
may not reveal gene regulatory relationships which are causal relationships. Moreover, these methods do not consider the
modularity of lncRNA–mRNA regulatory networks, and thus, the networks identified are not module-specific. To address
the above two issues, we propose a novel method, MSLCRN, to infer and analyze module-specific lncRNA–mRNA causal reg-
ulatory networks. We have applied it into glioblastoma multiforme, lung squamous cell carcinoma, ovarian cancer and
prostate cancer, respectively. The experimental results show that MSLCRN, as an expression-based method, could be a use-
ful complementary method to study lncRNA regulations.
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Introduction

Long noncoding RNAs (lncRNAs) are non-protein coding tran-
scripts with >200 nucleotides in length. Unlike small noncoding
RNAs (sncRNAs), lncRNAs generally exhibit low sequence con-
servation. However, owing to rapidly adaptive selection pres-
sures, the low conservation of lncRNAs (such as Air and Xist)
does not indicate absence of function [1]. Similar to microRNAs
(miRNAs), an important class of sncRNAs, evidence has shown
that lncRNAs play important roles in a wide range of biological
processes, even in cancers [2, 3]. Despite the importance of
lncRNAs, in many physiological and pathological processes, a
large number of lncRNAs remain to be functionally character-
ized. For this reason, the number of studies on lncRNA research
has been increased exponentially in the past decade (as shown
in Figure 1).

To achieve various biological functions, lncRNAs form gene
regulatory networks by interacting with other biological mole-
cules, such as transcription factors, miRNAs, messenger RNAs
(mRNAs) and RNA-binding proteins [4]. Among these biological
molecules interacting with lncRNAs, mRNAs are the most popu-
lar ones. By regulating the transcription and translation of
mRNAs, lncRNAs could get involved in several vital biological
processes, such as cell differentiation, cell proliferation and
cytoprotective programs [5]. Therefore, the identification of
lncRNA–mRNA regulatory networks would help to uncover
functions and regulatory mechanisms of lncRNAs.

A straightforward method for identifying lncRNA–mRNA
regulatory networks is sequence-based complementary base
pairing. To predict lncRNA targets, several sequence-based
methods, such as GUUGle [6], RNAup [7], RNAplex [8], IntaRNA
[9], RactIP [10], LncTar [11] and RIblast [12], have been devel-
oped. Owing to the long sequence and complex tertiary struc-
ture of each lncRNA, the computational costs of predicting
large-scale lncRNA–mRNA regulatory relationships are usually
high. Moreover, these sequence-based methods only consider
the sequence information of lncRNAs and target mRNAs, and
thus, the predicted lncRNA–mRNA regulatory networks are
static. However, previous studies [13–15] have shown that
lncRNAs exhibit condition-specific expression fashion and
dynamic networks of gene regulation. To identify dynamic or
condition-specific lncRNA–mRNA regulatory networks, it is nec-
essary to use expression data. Some expression-based methods
[16–19] for predicting co-expressed lncRNA–mRNA networks

have been proposed. However, as the predictions are based on
statistical associations found in gene expression levels only,
they may not represent the real ‘causal’ lncRNA–mRNA regula-
tory relationships. Furthermore, the existing expression-based
methods do not consider the modularity of lncRNA–mRNA reg-
ulatory networks, an important feature of gene regulatory net-
works [20].

In this article, we first review the computational methods
for inferring lncRNA–mRNA interactions and the public data-
bases for storing lncRNA–mRNA regulatory relationships.
Second, we propose a novel method to infer Module-Specific
LncRNA–mRNA Causal Regulatory Network (thus the proposed
method is called MSLCRN). In the first step, by considering
modularity of networks, MSLCRN uses Weighted Gene Co-
expression Network Analysis (WGCNA) [21] to identify lncRNA–
mRNA co-expression modules. In each module, the lncRNAs
and mRNAs are regarded as module-specific genes. In the sec-
ond step, MSLCRN uses a causal inference method named inter-
vention calculus when the directed acyclic graph (DAG) is
absent (IDA) [22, 23] to estimate the causal effects of possible
lncRNA–mRNA causal pairs in each module. To speed up the
estimation, the parallelized version of IDA [24] is used to calcu-
late the causal effects. For each module, the noncausal lncRNA–
mRNA pairs are eliminated, and the retained lncRNA–mRNA
causal pairs are further assembled to generate a module-
specific lncRNA–mRNA causal network. To obtain a global
lncRNA–mRNA causal regulatory network, we further integrate
the identified module-specific lncRNA–mRNA causal networks
in the third step.

To evaluate MSLCRN, we have applied it into four human
cancer data sets, including glioblastoma multiforme (GBM), lung
squamous cell carcinoma (LSCC), ovarian cancer (OvCa) and
prostate cancer (PrCa) from [25]. The validation, survival and
enrichment analysis results show that the proposed method
can help with revealing the functions and regulatory mecha-
nisms of lncRNAs. MSLCRN is released under the GPL-3.0
License, and is freely available through GitHub (https://github.
com/zhangjunpeng411/MSLCRN).

Computational methods for inferring
lncRNA–mRNA interactions

In this section, we review the computational approaches for
inferring lncRNA–mRNA interactions. In Table 1, we divide the
methods into two categories: (1) sequence-based method, and
(2) expression-based method. We will separately review these
methods as follows.

Sequence-based method

The common characteristic of the sequence-based methods is
that the identification of RNA–RNA interactions depends on
RNA binding energy between two RNA molecules. To evaluate
the strength of RNA binding energy, a number of energy models
[6–12, 26–32] are proposed to predict RNA–RNA interactions.

Gerlach and Giegerich [6] propose a utility program GUUGle
for locating potential helical regions under RNA complementary
base pairs rules. The method can be effectively used as a filter
for noncoding RNA (ncRNA) target prediction. However, the reli-
able prediction of RNA–RNA binding energies is also important
for the identification of RNA–RNA interactions. To study the
thermodynamics of RNA–RNA interactions, Mückstein et al. [7]
present an extension of the standard partition function method
called RNAup to RNA secondary structures. By comparing
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Figure 1. The number of lncRNA-related publications in the past decade. The

number of queried publications is obtained from PubMed library with keyword

‘lncRNA’.
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Table 1. Summary of computational methods or tools for inferring lncRNA–mRNA interactions

Methods/tools Categories of methods Brief descriptions Available

GUUGle [6] Sequence-based Target prediction by locating potential helical regions of RNA–
RNA pairs under RNA base pairing rules, which include G-U
bases

http://bibiserv2.cebitec.uni-bie
lefeld.de/guugle

RNAup [7] Sequence-based Target prediction by studying thermodynamics of RNA–RNA
pairs based on the sum of the energy of binding and
hybridization

http://rna.tbi.univie.ac.at/cgi-
bin/RNAWebSuite/RNAup.cgi

RNAcofold [26] Sequence-based Target prediction by computing the hybridization energy and
base pairing pattern of RNA–RNA pairs

http://rna.tbi.univie.ac.at/cgi-
bin/RNAWebSuite/
RNAcofold.cgi

Alkan et al. [27] Sequence-based Target prediction by minimizing the joint free energy of RNA–
RNA pairs under a number of energy models, including base
pair energy model, stacked pair energy model, loop energy
model

On request

RNAplex [8] Sequence-based Target prediction by finding possible hybridization sites of
RNA–RNA pairs

http://www.tbi.univie.ac.at/
�htafer/

IntaRNA [9] Sequence-based Target prediction by incorporating accessibility of target sites
as well as the existence of a user-definable seed

http://rna.informatik.uni-frei
burg.de/IntaRNA/Input.jsp

RactIP [10] Sequence-based Target prediction by integrating approximate information on
an ensemble of equilibrium joint structures into the objec-
tive function of integer programming

http://rtips.dna.bio.keio.ac.jp/
ractip/

PETcofold [28] Sequence-based Target prediction by taking covariance information in intra-
molecular and intermolecular base pairs into account

http://rth.dk/resources/
petcofold

RIsearch [29] Sequence-based Target prediction by implementing a simplified Turner energy
model for fast computation of hybridization

https://rth.dk/resources/
risearch/risearch1.php

RIsearch2 [30] Sequence-based An updated version of RIsearch, and predict targets using a sin-
gle integrated seed-and-extend framework based on suffix
arrays

https://rth.dk/resources/
risearch

LncTar [11] Sequence-based lncRNA target prediction by finding the minimum free energy
joint structure of RNA–RNA pairs based on base pairing

http://www.cuilab.cn/lnctar

lncRNATargets [31] Sequence-based lncRNA target prediction based on nucleic acid
thermodynamics

http://www.herbbol.org: 8001/
lrt/

Terai et al. [32] Sequence-based lncRNA target prediction by developing an integrated pipeline
on the K computer, which is one of the fastest super-com-
puters in the world

http://rtools.cbrc.jp/cgi-bin/
RNARNA/index.pl

RIblast [12] Sequence-based Target prediction based on the seed-and-extension approach http://github.com/fukuna
gatsu/RIblast

Liao et al. [16] Expression-based Identify lncRNA–mRNA interactions by using Pearson method,
and the identified lncRNA–mRNA interactions should be co-
expressed in the same direction in no less than 3 Mouse
microarray data sets.

On request

Guo et al. [17] Expression-based Identify lncRNA–mRNA interactions by using Pearson method
in OvCa malignant progression

On request

Du et al. [18] Expression-based Identify lncRNA–mRNA interactions by using Pearson method
and a power function in thyroid cancer

On request

Liu et al. [33] Expression-based Identify lncRNA–mRNA interactions by using Pearson method
in human colorectal carcinoma

On request

Huang et al. [34] Expression-based Identify lncRNA–mRNA interactions associated with pneumo-
nia by using Pearson method

On request

Li et al. [35] Expression-based Identify dynamic lncRNA–mRNA interactions associated with
venous congestion by using Pearson method

On request

Wu et al. [19] Expression-based Identify lncRNA–mRNA interactions by using a generalized lin-
ear model to regress mRNA expression on lncRNA expres-
sion in breast cancer

On request

Fu et al. [36] Expression-based Identify lncRNA–mRNA interactions by considering mRNA loci
within lncRNA and the Pearson correlation in cartilage

On request

Zhang et al. [37] Expression-based Identify lncRNA–mRNA interactions by considering mRNA loci
within lncRNA and the Pearson correlation in cartilage in
peripheral blood mononuclear cells

On request

Iwakiri et al. [38] Expression-based Identify tissue-specific lncRNA–mRNA interactions by integrat-
ing the tissue specificity of lncRNAs and mRNAs into
sequence-based prediction of human lncRNA–RNA
interactions

On request

Lv et al. [39] Expression-based Identify tissue-specific lncRNA–mRNA interactions by using
Pearson and sequence-based methods and in human intra-
hepatic cholangiocarcinoma

On request

Module-specific lncRNA-mRNA causal regulatory networks | 1405

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/20/4/1403/4833470 by U

niversity of South Australia user on 22 N
ovem

ber 2021

http://bibiserv2.cebitec.uni-bielefeld.de/guugle
http://bibiserv2.cebitec.uni-bielefeld.de/guugle
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAup.cgi
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAup.cgi
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAcofold.cgi
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAcofold.cgi
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAcofold.cgi
http://www.tbi.univie.ac.at/&hx0026;sim;htafer/
http://www.tbi.univie.ac.at/&hx0026;sim;htafer/
http://rna.informatik.uni-freiburg.de/IntaRNA/Input.jsp
http://rna.informatik.uni-freiburg.de/IntaRNA/Input.jsp
http://rtips.dna.bio.keio.ac.jp/ractip/
http://rtips.dna.bio.keio.ac.jp/ractip/
http://rth.dk/resources/petcofold
http://rth.dk/resources/petcofold
https://rth.dk/resources/risearch/risearch1.php
https://rth.dk/resources/risearch/risearch1.php
https://rth.dk/resources/risearch
https://rth.dk/resources/risearch
http://www.cuilab.cn/lnctar
http://www.herbbol.org: 8001/lrt/
http://www.herbbol.org: 8001/lrt/
http://rtools.cbrc.jp/cgi-bin/RNARNA/index.pl 
http://rtools.cbrc.jp/cgi-bin/RNARNA/index.pl 
http://github.com/fukunagatsu/RIblast
http://github.com/fukunagatsu/RIblast


predicted free energies of binding with RNA interference experi-
mental data, RNAup can produce biologically reasonable
results. For genome-wide predictions of ncRNA targets, RNAup
is not fast enough. Therefore, it is usually to be combined with
other faster RNA–RNA prediction methods.

To extend the standard dynamic programming algorithms
for computing RNA secondary structures, Bernhart et al. [26]
propose a program named RNAcofold to compute the hybridiza-
tion energy and base pairing pattern of the co-folding of two
RNA molecules. However, the method disregards some impor-
tant interaction structures, and is restricted to dimeric com-
plexes. Moreover, for the RNA–RNA interaction prediction,
predicting the joint secondary structure of two interacting RNAs
is also important. To solve it, Alkan et al. [27] develop several
algorithms to minimize the joint free energy between the two
RNAs under a number of energy models. Assuming that con-
served RNA–RNA interactions imply conserved function,
Seemann et al. [28] also implement a comparative method called
PETcofold to predict the joint secondary structure of two inter-
acting RNAs. As PETcofold considers sequence conservation, an
increasing amount of structural covariance can further improve
its performance.

RNAup [7] and RNAcofold [26] are too slow for genome-wide
search in finding target sites of ncRNAs. To accelerate the speed
of RNA–RNA interaction predictions, RNAplex [8] is presented to
quickly find possible hybridization sites between two interact-
ing RNAs. To focus on the target search on short highly stable
interactions, RNAplex introduces a per nucleotide penalty.
Meanwhile, another general and fast approach IntaRNA [9] is
proposed to efficiently predict bacterial RNA–RNA interactions.
Compared with other existing target prediction methods,
IntaRNA considers both the accessibility of target sites and the
existence of a user-defined seed. Therefore, it shows a higher
accuracy than competing methods. Kato et al. [10] also present a
fast and accurate prediction method RactIP for comprehensive
type of RNA–RNA interactions. In terms of predicting joint sec-
ondary structures of two interacting RNAs, RactIP run incompa-
rably faster than competitive programs.

To further achieve a speed improvement of predicting
RNA–RNA interactions, Wenzel et al. [29] present RIsearch for
fast computation of hybridization between two interacting
RNAs. They show that the energy model of RIsearch is an
accurate approximation of the full energy model for near-
complementary RNA–RNA duplexes. Furthermore, RIsearch is
faster than RNAplex [8] in RNA–RNA interaction search.
Recently, RIsearch2 [30], an updated version of RIsearch [29], is
proposed to localize potential near-complementary RNA–RNA
interactions between two RNA sequences. The comparison
results show that RIsearch2 is much faster than the previous
methods, such as GUUGle [6], RNAplex [8], IntaRNA [9] and
RIsearch [29].

Although the above RNA–RNA interaction prediction meth-
ods can be extended to predict lncRNA–mRNA interactions,
none of them are exclusively used for identifying the RNA tar-
gets of lncRNAs in a large scale. To efficiently identify lncRNA–
mRNA interactions, Li et al. [11] propose a tool named LncTar.
LncTar explores lncRNA–mRNA interactions by finding the min-
imum free energy joint structure of two interacting RNAs based
on base pairing. As LncTar runs fast and does not have a limit
to RNA size, it can be used for large-scale identification of the
RNA targets for all RNAs. Another web-based platform
lncRNATargets [31] is also provided for lncRNA target predic-
tion. Because there is no limit to RNA size, lncRNATargets can
also be used to identify the RNA targets of all RNAs. In a whole

human transcriptome, Terai et al. [32] develop an integrated
pipeline to predict lncRNA–mRNA interactions for the first time.
In the pipeline, IntaRNA [9] is used to calculate interaction
energy, and RactIP [10] is used to predict joint secondary struc-
ture. Recently, to further shorten the running time of predicting
lncRNA–mRNA interactions, an ultrafast RNA–RNA interaction
prediction method RIblast [12] based on the seed-and-extension
method is presented. The comparison results show that RIblast
runs faster than RNAplex [8], IntaRNA [9], Terai et al. pipeline
[32], and thus can be applied to a large scale of lncRNA target
identification.

Expression-based method

At the gene expression level, the co-expressed lncRNA–mRNA
pairs are regarded as lncRNA–mRNA interactions for the
expression-based methods. Among the existing expression-
based methods [16–19, 33–39], Pearson correlation method is a
key step of most methods to identify co-expressed lncRNA–
mRNA pairs.

Liao et al. [16] construct a lncRNA–mRNA co-expression net-
work from re-annotated mouse microarray data sets. By using
Pearson method, they only keep the lncRNA–mRNA pairs with
P< 0.01 and Pearson correlation ranked in the top or bottom
0.05 percentile. The study is the first large-scale prediction of
lncRNA functions from a lncRNA–mRNA co-expression network.
To identify immune-associated lncRNA biomarkers in OvCa, Guo
et al. [17] make a comprehensive analysis of lncRNA–mRNA co-
expression patterns. To identify lncRNA–mRNA co-expression
pairs, they calculate Pearson correlation between differentially
expressed lncRNAs and mRNAs. They only reserve the lncRNA–
mRNA co-expression pairs with Pearson correlation> 0.5 and the
corresponding False Discovery Rate (FDR)< 0.01. Liu et al. [33] and
Huang et al. [34] also use Pearson method to study lncRNA–mRNA
co-expression networks in human colorectal carcinoma and
pneumonia, respectively. The inferred lncRNA–mRNA co-
expression networks will help to study lncRNA functions.
Recently, Du et al. [18] propose a two-step method to conduct a
comprehensive analysis of lncRNA–mRNA co-expression patterns
in thyroid cancer. First, they use Pearson method to calculate
Pearson correlation, and the cutoff of Pearson correlation is 0.5
and the corresponding FDR cutoff is 0.01. Second, the Pearson cor-
relations are transformed into an adjacency matrix.

Owing to dynamic characteristic of gene regulatory net-
works, Wu et al. [19] identify two distinct lncRNA–mRNA co-
expression networks in tumor and normal breast tissue. They
use a generalized linear model to regress mRNA expression on
lncRNA expression in tumor and normal breast tissue, and only
focus on dynamic breast lncRNA–mRNA co-expression pairs
that differ in tumor and normal breast tissue. Meanwhile, to
study the potential role of lncRNAs in venous congestion, Li
et al. [35] also construct a dynamic lncRNA–mRNA co-
expression network. By using Pearson method, they separately
calculate Pearson correlations of each lncRNA–mRNA pair in
venous congestion and normal samples. The lncRNA–mRNA
pairs with Pearson correlation>0.99 or<�0.99 and P-value<0.01
are selected as lncRNA–mRNA co-expression pairs. They con-
struct two types of lncRNA–mRNA co-expression networks:
‘lost’ network where lncRNA–mRNA co-expression pairs only
existed in normal samples, and ‘obtained’ network where
lncRNA–mRNA co-expression pairs only existed in venous con-
gestion samples. The ‘lost’ and ‘obtained’ networks are further
integrated to obtain a dynamic lncRNA–mRNA co-expression
network.
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The above methods simply use matched lncRNA and mRNA
expression data to identify lncRNA–mRNA co-expression pairs.
To identify ‘cis-regulated target genes’ of lncRNAs, some methods
also consider mRNA loci information within lncRNA. For example,
Fu et al. [36] combine mRNA loci information and matched
lncRNA and mRNA expression data to predict lncRNA targets.
They identify the mRNAs as targets under two conditions: (i) the
mRNA loci are within a 300-kb window up- or downstream of
lncRNA, and (ii) lncRNA–mRNA co-expression pairs are signifi-
cantly positive correlated (Pearson correlation> 0.8 and the corre-
sponding P-value< 0.05). Zhang et al. [37] also use a similar
method to Fu et al. [36] for identifying lncRNA targets. The mRNAs
can be regarded as targets when (1) the mRNA loci are within a
10 window up- or downstream of lncRNA, and (2) lncRNA–mRNA
co-expression pairs are significantly positive correlated (Pearson
correlation> 0.98 and the corresponding P-value< 0.05).

Apart from mRNA loci information within lncRNA, some
emerging methods consider predictions from sequence-based
methods as putative lncRNA–mRNA interactions. For example,
Iwakiri et al. [38] integrate tissue-specific lncRNA and mRNA
expression data into predictions from a sequence-based
method in [32]. They discover that integrating tissue specificity
can improve prediction accuracy of lncRNA–mRNA interactions.
Lv et al. [39] also combine matched lncRNA and mRNA expres-
sion data with predictions from a sequence-based method
LncTar [11]. They first use Pearson method to identify co-
expressed lncRNA–mRNA co-expression pairs with Pearson
correlation>0.95 or<�0.95. Then, LncTar is used to further filter
the identified lncRNA–mRNA co-expression pairs.

Public databases for storing lncRNA–mRNA
regulatory relationships

In this section, we review the public databases of storing
lncRNA–mRNA regulatory relationships. Table 2 shows a sum-
mary of the third-party public databases, including experimen-
tally validated and computationally predicted databases.

NPInter [40] contains experimentally validated interactions
between ncRNAs, especially lncRNAs and miRNAs. The database
contains 915 067 interactions in 188 tissues or cell lines from 68
kinds of experimental technologies. There is a classification of
the functional interactions based on the functional process that
ncRNA is involved in. Moreover, NPInter allows users to search
interactions, related publications and other information.

LncRNADisease [41] not only collects experimentally sup-
ported lncRNA–disease associations and lncRNA interactions,
but also predicts novel lncRNA–disease associations. Recently,
the database curates 478 entries of experimentally validated
lncRNA interactions. LncRNADisease provides users several
ways to search lncRNA-related diseases and interactions.

To study differentially expressed genes after lncRNA knock-
down or overexpression, Jiang et al. [42] develop a database
called LncRNA2Target in human and mouse organisms. The
database has a collection of 396 experimentally validated
lncRNA–target interactions. In LncRNA2Target, if a gene is dif-
ferentially expressed after lncRNA knockdown or overexpres-
sion, it is regarded as a target of a lncRNA. For convenience,
LncRNA2Target allows users to search for the targets of single
lncRNA or for the lncRNAs that target a specific gene.
Meanwhile, Zhou et al. [43] also build a reference resource
LncReg for lncRNA-related regulatory networks. The database
has 1,081 experimentally validated lncRNA-related regulatory

records between 258 nonredundant lncRNAs and 571 nonredun-
dant genes.

IRNdb [44] is a database that focuses on collecting immuno-
logically relevant lncRNA–target, miRNA–target and PIWI-
interacting RNA–target interactions. The current version of
IRNdb documents 22 453 immunologically relevant lncRNA–tar-
get interactions by integrating three databases: LncRNADisease
[41], LncRNA2Target [42] and LncReg [43]. The aim is to help
researchers study the roles of ncRNAs in the immune system.
Recently, a new experimentally validated database named
lncRInter [45] was developed to collect reliable and high-quality
lncRNA–target interactions. The extracted lncRNA–target inter-
actions are all from published literature, and are supported by
certain biological experiments (e.g. luciferase reporter assay,
in vitro binding assay, RNA pull-down). In total, lncRInter con-
tains 1036 experimentally validated lncRNA–target interactions
in 15 organisms.

In addition to the experimentally validated databases pre-
sented above, there are several computationally predicted data-
bases for collecting lncRNA–mRNA interactions. For instance,
starBase [46] is a comprehensive database of systematically
identifying the RNA–RNA and protein–RNA interaction net-
works from 108 CLIP-Seq (PAR-CLIP, HITS-CLIP, iCLIP, CLASH)
data sets. The lncRNA–mRNA interactions can be extracted
from protein–RNA interaction networks. InCaNet [47] aims
to establish a comprehensive regulatory network between
lncRNAs and cancer genes. They identify lncRNA–cancer
gene interactions by computing gene co-expression between
lncRNAs and cancer genes. BmncRNAdb [48] is a comprehensive
database of silkworm lncRNAs and miRNAs. The database pro-
vides three online tools for users to predict both lncRNA–target
and miRNA–target interactions. lncRNAtor [49] collect expres-
sion data from 243 RNA-seq experiments including 5237
samples of various tissues and developmental stages. The
lncRNA–mRNA co-expression pairs are identified through co-
expression analysis of lncRNAs and mRNAs. lncRNome [50] is a
comprehensive knowledgebase of sequence, structure, biologi-
cal functions, genomic variations and epigenetic modifications
on >17 000 lncRNAs in human. For lncRNA–protein interactions,
the database incorporates PAR-CLIP experiments and a support
vector machine-based prediction method. Co-lncRNA [51] and
LncRNA2Function [52] predict co-expressed lncRNA–mRNA
interactions from RNA-Seq data, and further annotates the
potential functions of human lncRNAs using functional enrich-
ment analysis. lncRNAMap [53] is an integrated and compre-
hensive database to explore regulatory functions of human
lncRNAs. By integrating small RNAs supported by publicly avail-
able deep sequencing data, lncRNAMap construct lncRNA-
derived siRNA–target interactions.

In summary, for experimentally validated databases, users
can select individual database or combine several databases as
ground truth to validate the predicted lncRNA–mRNA interac-
tions. As for computationally predicted databases, they can be
used as initial structural of sequence-based or expression-based
methods to identify lncRNA–mRNA interactions.

Inferring and analyzing MSLCRN networks
Repurposed microarray data across human cancers

We collect the repurposed lncRNA and mRNA expression data
of GBM, LSCC, OvCa and PrCa from [25]. A lncRNA or mRNA is
eliminated if it does not have a corresponding gene symbol in a
data set. By calculating average expression values of replicate
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lncRNAs and mRNAs, we obtain unique expression value of
these replicates. Consequently, we get the matched expression
data of 9704 lncRNAs and 18 282 mRNAs in 451 GBM, 113 LSCC,
585 OvCa and 150 PrCa samples.

Pipeline of MSLCRN

As shown in Figure 2, MSLCRN contains the following three
steps to infer module-specific lncRNA–mRNA causal regulatory
networks.

i. Identification of lncRNA–mRNA co-expression modules.
Given the matched lncRNA and mRNA expression data, we
use WGCNA to generate gene co-expression modules. A
module containing at least two lncRNAs and two mRNAs
are regarded as a lncRNA–mRNA co-expression module,
and used as the input of the second step.

ii. Identification of module-specific lncRNA–mRNA causal reg-
ulatory networks. For each lncRNA–mRNA co-expression
module, with each lncRNA–mRNA pair, we apply parallel
IDA to estimate the causal effect of the lncRNA on the

Table 2. Public databases for storing lncRNA–mRNA regulatory relationships

Databases Types of databases Brief descriptions Organisms Available

NPInter [40] Validated A database of experimentally verified func-
tional interactions between ncRNAs
(including lncRNAs, miRNAs, etc) and bio-
molecules (proteins, RNAs and DNAs)

22 organisms http://www.bioinfo.org/
NPInter/

LncRNADisease [41] Validated A database of experimentally supported
lncRNA–disease association data and
lncRNA–target interactions in various lev-
els, including protein, RNA, miRNA and
DNA

Human http://www.cuilab.cn/
lncrnadisease

LncRNA2Target [42] Validated A database of lncRNA–target regulatory rela-
tionships experimentally validated by
lncRNA knockdown or overexpression

Human, mouse http://www.lncrna2target.org/

LncReg [43] Validated A database of experimentally validated
lncRNA–target interactions from public
literature

7 organisms http://bioinformatics.ustc.edu.
cn/lncreg/

IRNdb [44] Validated A database of immunologically relevant
ncRNAs (miRNAs, lncRNAs and other
ncRNAs) and target genes

Human, mouse http://compbio.massey.ac.nz/
apps/irndb

lncRInter [45] Validated A database of experimentally validated
lncRNA–target interactions extracted from
peer-reviewed publications

15 organisms http://bioinfo.life.hust.edu.cn/
lncRInter/

starBase [46] Predicted A comprehensive database of systematically
identifying the RNA–RNA and protein–RNA
interaction networks from 108 CLIP-Seq
(PAR-CLIP, HITS-CLIP, iCLIP, CLASH) data
sets

Human http://starbase.sysu.edu.cn/

lnCaNet [47] Predicted A database of establishing a comprehensive
regulatory network source for lncRNA and
cancer genes

Human http://lncanet.bioinfo-min
zhao.org/

BmncRNAdb [48] Predicted A comprehensive database of the silkworm
lncRNAs and miRNAs, as well as the three
online tools for users to predict the target
genes of lncRNAs or miRNAs

Bombyx mori http://gene.cqu.edu.cn/
BmncRNAdb/index.php

lncRNAtor [49] Predicted A comprehensive resource of encompassing
annotation, sequence analysis, gene
expression, protein binding and phyloge-
netic conservation

6 organisms http://lncrnator.ewha.ac.kr/

lncRNome [50] Predicted A comprehensive knowledgebase on the
types, chromosomal locations, description
on the biological functions and disease
associations of lncRNAs

Human http://genome.igib.res.in/
lncRNome/

Co-LncRNA [51] Predicted A computationally predicted database to
identify GO annotations and KEGG path-
ways affected by co-expressed protein-cod-
ing genes of a single or multiple lncRNAs

Human http://www.bio-bigdata.com/
Co-LncRNA/

LncRNA2Function [52] Predicted A comprehensive resource of investigating
the functions of lncRNAs based on co-
expressed lncRNA–mRNA interactions

Human http://mlg.hit.edu.cn/
lncrna2function/

lncRNAMap [53] Predicted An integrated and comprehensive database
of regulatory functions of lncRNAs and act-
ing as ceRNAs

Human http://lncRNAMap.mbc.nctu.
edu.tw/
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mRNA. We use the absolute value of the causal effect
(AVCE) to evaluate the strength of the regulation of the
lncRNA on the mRNA, and a higher AVCE indicates a stron-
ger lncRNA regulation. The lncRNA–mRNA pairs with high
AVCEs in each module are considered as module-specific
lncRNA–mRNA causal regulatory relationships, and we call
each module with these relationships identified a module-
specific causal regulatory network.

iii. Identification of global lncRNA–mRNA causal regulatory
network. We integrate the module-specific lncRNA–mRNA

causal regulatory networks to form the global lncRNA–
mRNA causal regulatory network.

Identification of lncRNA–mRNA co-expression modules

In systems biology, WGCNA [21] is a popular method for finding
the correlation patterns among genes across samples, and can
be used to identify clusters or modules of highly co-expressed
genes. Therefore, we use WGCNA to first infer lncRNA–mRNA
co-expression modules.

Figure 2. The pipeline of MSLCRN. First, WGCNA is used to identify lncRNA–mRNA co-expression modules from matched lncRNA and mRNA expression data. Second,

we infer lncRNA–mRNA causal regulatory relationships in each module by using parallel IDA method. For each module, we assemble the identified lncRNA–mRNA reg-

ulatory relationships to obtain a module-specific lncRNA–mRNA causal regulatory network. Third, the module-specific lncRNA–mRNA causal regulatory networks are

integrated to form a global lncRNA–mRNA causal regulatory network.
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Specifically, the matched lncRNA and mRNA expression
data are used as the input of WGCNA. For each pair of genes
i and j, the gene co-expression similarity sij of the pair is defined
as:

sij ¼ jcorði; jÞj (1)

where jcor(i, j)j is the absolute value of the Pearson correlation
between genes i and j. The gene co-expression similarity matrix
is denoted by S¼ [sij].

To pick an appropriate soft-thresholding power for trans-
forming the similarity matrix S into an adjacency matrix A, we
use the scale-free topology criterion for soft-thresholding and
the minimum scale free topology fitting index R2 is set as 0.9.
Then, the topological overlap matrix (TOM) W¼ [wij] is gener-
ated based on the adjacency matrix A¼ [aij]. The TOM similarity
wij between genes i and j is defined:

wij ¼
P

uaiuauj þ aij

minf
P

uaiu;
P

uaujg þ 1� aij
(2)

where u denotes all genes of the matched lncRNA and mRNA
expression data. The TOM dissimilarity between genes i and j is
denoted by dij¼ 1 - wij. To identify gene co-expression modules,
the TOM dissimilarity matrix D¼ [dij] is clustered using optimal
hierarchical clustering method [54]. Here, the identified gene
co-expression modules are groups of lncRNAs and mRNAs with
high topological overlap. The lncRNAs and mRNAs of each
lncRNA–mRNA co-expression module are considered for possi-
ble lncRNA–mRNA causal relationships in the next step.

Identification of module-specific lncRNA–mRNA causal
regulatory networks

After the identification of lncRNA–mRNA co-expression mod-
ules, we use the parallel IDA method [24] to estimate causal
effects of possible lncRNA–mRNA causal pairs in each module.
The application of parallel IDA method to matched lncRNA
and mRNA expression data for estimating causal effects
includes two steps: (i) learning the causal structure from
expression data using the parallel-PC algorithm [24], and
(ii) estimating the causal effects of lncRNAs on mRNAs by
applying do-calculus [55].

In step (i), V¼ {L1, . . ., Lm, T1, . . ., Tn} is a set of random varia-
bles denoting m lncRNAs and n mRNAs. The causal structure is
in the form of a DAG, where a node denotes a lncRNA Li or
mRNA Tj and an edge between two nodes represents a causal
relationship between them. We use the parallel-PC algorithm, a
parallel version of the PC algorithm [56], to learn the causal
structures (the DAGs) from expression data. Starting with a fully
connected undirected graph, the parallel-PC algorithm deter-
mines if an edge is retained or removed in the graph by con-
ducting conditional independence tests in parallel. Then, to get
a DAG, the directions of edges in the obtained graph are ori-
ented. As different DAGs may represent the same conditional
independence, the parallel-PC algorithm uses a completed par-
tially directed acyclic graph (CPDAG) to uniquely describe an
equivalence class of DAGs. In this work, we use the R-package
ParallelPC [57] to implement the parallel-PC algorithm and set
the significant level of the conditional independence tests
a¼ 0.01.

In step (ii), we are only interested in estimating the causal
effect of the directed edge Li ! Tj, where vertex is Li a parent of
vertex Tj. As described above, a CPDAG may generate a class of
DAGs. For the causal effect of Li ! Tj in a CPDAG, we use do-
calculus [55] to estimate the causal effects of Li on Tj in a class of
DAGs. Then, we use the minimum absolute value of all possible
causal effects as a final causal effect of Li! Tj. As for the details
of how the parallel IDA method is applied to estimate causal
relationships from expression data, the readers can refer to [24].

The estimated causal effects can be positive or negative,
reflecting the up or down regulation by the lncRNAs on the
mRNAs. For the purpose of constructing the regulatory net-
works, we use the absolute values of the causal effects (AVCEs)
to evaluate the strengths of the regulation and thus to confirm
the regulatory relationships.

We set different AVCE cutoffs from 0.10 to 0.60 with a step of
0.05, to generate MSLCRN networks in GBM, LSCC, OvCa and
PrCa, respectively. For each cutoff, we merge the identified
MSLCRN networks to obtain global lncRNA–mRNA causal regu-
latory networks in the four human cancers, respectively. As
shown in Table 3, a higher cutoff selection causes a smaller
global lncRNA–mRNA causal regulatory network but better
goodness of fit. To make a trade-off between the size of the
global lncRNA–mRNA causal regulatory networks and goodness
of fit, we set a compromised AVCE cutoff with a value of 0.45. If
the AVCE of a lncRNA on a mRNA is 0.45 or above, we consider
there is a causal regulatory relationship between the lncRNA–
mRNA pair. Under the compromise cutoff, we have a moderate
size of the global lncRNA–mRNA causal regulatory networks in
GBM, LSCC, OvCa and PrCa. Meanwhile, the node degree distri-
butions of four global lncRNA–mRNA causal regulatory net-
works also follow power law distribution (the fitted power curve
is in the form of y¼ axb) well with R2> 0.8.

Validation, survival and enrichment analysis

Previous studies have demonstrated that about 20% of the
nodes in a biological network are essential and are regarded as
hub genes [58, 59]. Therefore, when analyzing a global lncRNA–
mRNA causal network, we select the 20% of lncRNAs with the
highest degrees in the network as hub lncRNAs. The degree of a
lncRNA node in the global network is the number of mRNAs
connected with it.

To validate the predicted module-specific lncRNA–mRNA
causal regulatory relationships, we obtain the experimentally
validated lncRNA–mRNA regulatory relationships from the
three widely used databases, NPInter v3.0 [40], LncRNADisease
v2017 [41] and LncRNA2Target v1.2 [42]. Furthermore, we retain
experimentally validated lncRNA–mRNA regulatory relation-
ships associated with the four human cancer data sets as
ground truth.

We perform survival analysis using the R-package survival
[60]. A multivariate Cox model is used to predict the risk score
of each tumor sample. Then, all tumor samples in each cancer
data set are equally divided into high- and low-risk groups
according to their risk scores. Moreover, we calculate the
Hazard Ratio between the high- and the low-risk groups and
perform the Log-rank test.

To further investigate the underlying biological processes
and pathways related to each of the MSLCRN networks, we use
the R-package clusterProfiler [61] to conduct functional enrich-
ment analysis on the networks, respectively. The Gene
Ontology (GO) [62] biological processes and Kyoto Encyclopedia
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of Genes and Genomes (KEGG) [63] pathways with adjusted
P-value<0.05 [adjusted by Benjamini-Hochberg (BH) method]
are regarded as functional categories for the MSLCRN networks.

We also collect a list of lncRNAs and mRNAs that are
associated with GBM, LSCC, OvCa and PrCa to study disease
enrichment of each of the MSLCRN networks. The list of disease-
associated lncRNAs is obtained from LncRNADisease v2017 [41],
Lnc2Cancer v2016 [64] and MNDR v2.0 [65]. The list of disease-
associated mRNAs is from DisGeNET v5.0 [66]. To evaluate
whether a MSLCRN network is significantly enriched in a specific
disease, we use a hyper-geometric distribution test as follows:

p ¼ 1� FðxjB;N;MÞ ¼ 1�
Xx�1

i¼0

N

i

 !
B� N

M� i

 !

B

M

 ! (3)

In the formula, B is the number of all genes in the expression
data set, N denotes the number of all genes associated with a
specific disease in the expression data set, M is the number of
genes in a MSLCRN network and x is the number of genes asso-
ciated with a specific disease in a MSLCRN network. A MSLCRN
network is significantly enriched in a specific disease if the
P-value< 0.05.

Network analysis, validation and comparison
on MSLCRN networks
lncRNAs exhibit dynamic positive gene regulation
across cancers

By following the first step of the MSLCRN method, we have
identified 23, 38, 45 and 32 lncRNA–mRNA co-expression mod-
ules in GBM, LSCC, OvCa and PrCa, respectively. In the second
step of the MSLCRN method, we eliminate the noncausal
lncRNA–mRNA pairs in lncRNA–mRNA co-expression modules.
As a result, we generate 23, 38, 45 and 32 module-specific
lncRNA–mRNA causal regulatory networks in GBM, LSCC, OvCa
and PrCa, respectively. After merging the module-specific
lncRNA–mRNA causal regulatory networks for each data set, we
obtain the four global lncRNA–mRNA regulatory networks in
GBM, LSCC, OvCa and PrCa, respectively.

To understand the overlap and difference of module-specific
genes, module-specific lncRNA–mRNA causal regulatory rela-
tionships and module-specific hub lncRNAs in the four human
cancers, we generate three set intersection plots using the
R-package UpSetR [67]. As shown in Figure 3, we find that the
majority of module-specific genes (�57.52%), module-specific
lncRNA–mRNA causal regulatory relationships (�99.02%) and
module-specific hub lncRNAs (�89.22%) tend to be cancer-
specific. Only a small portion of module-specific genes (396) and
module-specific lncRNA–mRNA causal regulatory relationships
(6) are shared by the four cancers. Especially, none of the
module-specific hub lncRNAs are common between the four
cancers. In addition, the causal effects are positive for 99.56%,
96.72%, 99.93% and 78.63% of the causal regulatory relationships
identified in GBM, LSCC, OvCa and PrCa, respectively. These
results indicate that lncRNAs are more likely to exhibit dynamic
positive gene regulation across cancers. The results are also
consistent with the proposition that the positive gene regula-
tion by lncRNAs would be desired in specific situations [68].

Differential network analysis uncovers cancer-specific
lncRNA–mRNA causal networks

In this section, we focus on studying cancer-specific lncRNA–
mRNA causal networks using differential network analysis.
Thus, the GBM-specific, LSCC-specific, OvCa-specific and PrCa-
specific lncRNA–mRNA causal networks are identified. As
shown in Figure 4A, the distributions of node degrees in these
four cancer-specific lncRNA–mRNA causal networks follow
power law distributions well, with R2¼ 0.9774, 0.9923, 0.9723
and 0.8310, respectively. Thus, these four cancer-specific
lncRNA–mRNA causal networks are scale free, indicating that
most mRNAs are regulated by a small number of lncRNAs.

Table 3. Degree distributions of global lncRNA–mRNA causal regula-
tory networks with different cutoffs in GBM, LSCC, OvCa and PrCa

Datasets Cutoffs Number of causal
regulations

y¼axb R2

GBM 0.10 11 847 y¼227.4x�0.6893 0.4161
0.15 10 924 y¼249.5x�0.7275 0.5460
0.20 9732 y¼274.5x�0.767 0.6475
0.25 8461 y¼295.8x�0.8074 0.6757
0.30 7176 y¼319.4x�0.8319 0.6807
0.35 6041 y¼336.3x�0.8703 0.7203
0.40 4997 y¼374.1x�0.9348 0.7999
0.45 4074 y5408.2x21.034 0.8694
0.50 3279 y¼419.4x�1.18 0.9244
0.55 2583 y¼389.6x�1.259 0.9463
0.60 1862 y¼366.6x�1.43 0.9792

LSCC 0.10 789 172 y¼314.3x�0.6071 0.4829
0.15 684 524 y¼347.5x�0.6323 0.5841
0.20 569 369 y¼390.5x�0.6525 0.6578
0.25 451 346 y¼485.5x�0.6928 0.7789
0.30 340 860 y¼634.1x�0.7554 0.8796
0.35 244 547 y¼814.7x�0.8379 0.9504
0.40 166 593 y¼972.4x�0.935 0.9848
0.45 108 024 y51031x21.018 0.9933
0.50 66 335 y¼942.5x�1.068 0.9963
0.55 37 632 y¼780.7x�1.089 0.9948
0.60 19 547 y¼656.5x�1.169 0.9972

OvCa 0.10 333 146 y¼327.2x�0.5928 0.5042
0.15 232 794 y¼419.2x�0.6262 0.6531
0.20 159 872 y¼639.8x�0.7216 0.8247
0.25 112 792 y¼881.6x�0.8356 0.9120
0.30 80 808 y¼1008x�0.9472 0.9551
0.35 57 099 y¼954.5x�1.014 0.9744
0.40 38 517 y¼819.8x�1.066 0.9748
0.45 24 439 y5657.5x21.066 0.9697
0.50 14 435 y¼540x�1.079 0.9551
0.55 7973 y¼436.8x�1.107 0.9319
0.60 4026 y¼328.5x�1.107 0.9460

PrCa 0.10 1 894 322 y¼308.9x�0.6245 0.2750
0.15 1 749 595 y¼358.6x�0.6787 0.3582
0.20 1 594 744 y¼401.3x�0.7169 0.4316
0.25 1 429 858 y¼427.1x�0.732 0.4919
0.30 1 260 968 y¼438.9x�0.7244 0.5616
0.35 1 097 654 y¼440.6x�0.702 0.6470
0.40 946 439 y¼448.5x�0.6816 0.7338
0.45 812 687 y5517.5x20.7005 0.8206
0.50 694 558 y¼667x�0.7588 0.8823
0.55 584 834 y¼883.3x�0.8469 0.9332
0.60 474 654 y¼1113x�0.9684 0.9503

Note. The AVCE cutoffs range from 0.10 to 0.60 with a step of 0.05.

The bold values are the degree distributions of global lncRNA-mRNA causal reg-

ulatory networks with a compromised AVCE cutoff (0.45) in four human cancers.
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Next, we use four lists of lncRNAs and mRNAs associated
with GBM, LSCC, OvCa and PrCa, to discover lncRNA–mRNA
causal networks that are associated with the four human can-
cers. We define that cancer-related lncRNA–mRNA causal regu-
latory relationships are those in which at least one regulatory
party is cancer-related lncRNA or mRNA. As a result, we
have extracted GBM-related, LSCC-related, OvCa-related and
PrCa-related lncRNA–mRNA causal networks from the four
cancer-specific lncRNA–mRNA causal networks (details in
Supplementary File S1). To understand the potential biological
processes and pathways of the four cancer-related lncRNA–
mRNA causal networks, we identify significant GO biological
processes and KEGG pathways using functional enrichment
analysis. In Figure 4B, several top GO biological processes and

KEGG pathways, such as cytokine activity [69], G-protein
coupled receptor binding [70], TNF signaling pathway [71], cAMP
signaling pathway [72], pathways in cancer, are closely associ-
ated with the occurrence and development of cancer. This
result suggests that the identified cancer-related lncRNA–
mRNA causal networks may be involved in the occurrence and
development of human cancer.

Conservative network analysis highlights a core
lncRNA–mRNA causal regulatory network across
human cancers

Although most of the lncRNA–mRNA causal regulatory relation-
ships are cancer-specific, there are still a number of common
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section plot. The red lines denote common genes and causal regulations across GBM, LSCC, OvCa and PrCa.
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causal regulatory relationships between the four global net-
works. To evaluate whether there is a common core of lncRNA–
mRNA causal regulatory relationships in the global regulatory
networks across human cancers, we concentrate on the con-
served lncRNA–mRNA causal regulatory relationships that
existed in at least three human cancers.

As shown in Figure 5A, the majority of the conserved
lncRNA–mRNA causal regulatory relationships form a closely

connected community. This finding indicates that the con-
served lncRNA–mRNA causal regulatory network may be a core
network across human cancers.

The survival analysis shows that the lncRNAs and mRNAs in
the core network can significantly distinguish the metastasis
risks between the high- and low-risk groups in GBM, OvCa and
PrCa data sets (Figure 5B). This result suggests that the core net-
work may act as a common network biomarker of GBM, OvCa
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GBM-specific 2816 y=481.2x-1.292 0.9774 

LSCC-specific 99507 y=1034x-1.014 0.9923 

OvCa-specific 19487 y=736.6x-1.156 0.9723 

PrCa-specific 808611 y=524.3x-0.7055 0.8310 

1 10 100 1100
1

10

100

1100

Degree of genes

N
u

m
b

er
 o

f 
ge

n
es

GBM-specific fitting curve
LSCC-specific fitting curve
OvCa-specific fitting curve
PrCa-specific fitting curve
GBM-specific degree distribution
LSCC-specific degree distribution
OvCa-specific degree distribution
PrCa-specific degree distribution

solute:cation symporter activity
symporter activity

gated channel activity
sodium ion transmembrane transporter activity

ion channel activity
substrate-specific channel activity

channel activity
passive transmembrane transporter activity

growth factor activity
cation channel activity

metal ion transmembrane transporter activity
collagen binding
heparin binding

sulfur compound binding
integrin binding

glycosaminoglycan binding
extracellular matrix binding

peptide receptor activity
G-protein coupled peptide receptor activity

chemokine binding
G-protein coupled receptor binding

growth factor binding
cytokine binding

serine-type endopeptidase activity
death receptor activity

tumor necrosis factor-activated receptor activity
cytokine receptor activity

protein heterodimerization activity
dipeptidase activity

glycoprotein binding
RAGE receptor binding

cytokine receptor binding
cytokine activity

GBM
(203)

LSCC
(1015)

OvCa
(479)

PrCa
(3019)

0.01

0.02

0.03

0.04

p.adjust

GeneRatio
0.02

0.04

0.06

0.08

Taste transduction

ECM-receptor interaction

cAMP signaling pathway

Calcium signaling pathway

Neuroactive ligand-receptor interaction

PI3K-Akt signaling pathway

Pathways in cancer
Regulation of actin cytoskeleton

Complement and coagulation cascades

AGE-RAGE signaling pathway in diabetic complications

Hematopoietic cell lineage

Th17 cell differentiation

Inflammatory bowel disease (IBD)

Malaria

Osteoclast differentiation

Influenza A

Tuberculosis

Intestinal immune network for IgA production

Chagas disease (American trypanosomiasis)

Leishmaniasis

TNF signaling pathway

Toll-like receptor signaling pathway

Rheumatoid arthritis

Cytokine-cytokine receptor interaction

GBM
(129)

LSCC
(500)

OvCa
(266)

PrCa
(1364)

GeneRatio

0.05

0.10

0.15

0.01

0.02

0.03

0.04
p.adjust

GO enrichment analysis KEGG enrichment analysis 

A

B

Figure 4. Differential network analysis of global lncRNA–mRNA causal networks across GBM, LSCC, OvCa and PrCa. (A) Degree distribution of cancer-specific lncRNA–mRNA

causal networks in GBM, LSCC, OvCa and PrCa. (B) Functional enrichment analysis of cancer-related lncRNA–mRNA causal networks in GBM, LSCC, OvCa and PrCa.

Module-specific lncRNA-mRNA causal regulatory networks | 1413

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/20/4/1403/4833470 by U

niversity of South Australia user on 22 N
ovem

ber 2021



and PrCa. In Figure 5B, we also find that the core network con-
tains several cancer genes (34, 26, 30 and 38 cancer genes asso-
ciated with GBM, LSCC, OvCa and PrCa, respectively).

By conducting GO and KEGG enrichment analysis, we find
that the core network is significantly enriched in 399 GO biologi-
cal processes and 3 KEGG pathways (details in Supplementary
File S2). Of the 399 GO biological processes, 2 GO terms, includ-
ing negative regulation of cell adhesion (GO: 0007162) and cyto-
kine production in immune response (GO: 0002367), are
involved in three cancer hallmarks: Tissue Invasion and
Metastasis, Tumor Promoting Inflammation and Evading
Immune Detection [73]. This observation implies that the core
network may control these cancer-related hallmarks.

Hub lncRNAs are discriminative and can distinguish
metastasis risks of human cancers

We divide the hub lncRNAs into two categories: (1) conserved hub
lncRNAs, which exist in at least three human cancers; and (2)
cancer-specific hub lncRNAs, which only exist in single human
cancer. As a result, we obtain 9 conserved hub lncRNAs and 828
cancer-specific hub lncRNAs (include 11 GBM-specific, 246 LSCC-
specific, 47 OvCa-specific and 524 PrCa-specific hub lncRNAs).

To evaluate whether the hub lncRNAs can distinguish meta-
stasis risks of human cancers, we use them to predict metasta-
sis risks for tumor samples in GBM, LSCC, OvCa and PrCa.
As shown in Figure 6A, the conserved hub lncRNAs can discrim-
inate the metastasis risks of tumor samples significantly
(Log-rank P-value< 0.05) in four human cancers. In Figure 6B,
excepting LSCC-specific hub lncRNAs owing to failing to fit a
Cox regression model, GBM-specific, OvCa-specific and PrCa-
specific hub lncRNAs can discriminate the metastasis risks of
tumor samples significantly in GBM, OvCa and PrCa, respec-
tively (Log-rank P-value< 0.05). These results suggest that the
hub lncRNAs are discriminative and can act as biomarkers to
distinguish between high- and low-risk tumor samples.

Experimentally validated lncRNA–mRNA regulations are
mostly bad hits for LncTar

Using a collection of experimentally validated lncRNA–mRNA
regulatory relationships (details in Supplementary File S3) as
the ground truth, the numbers of experimentally confirmed
lncRNA–mRNA causal regulations are 17, 14, 20 and 42 in GBM,
LSCC, OvCa and PrCa, respectively (details in Supplementary
File S4).

Figure 5. Conservative network analysis of global lncRNA–mRNA causal networks across GBM, LSCC, OvCa and PrCa. (A) The core lncRNA–mRNA causal network that

occurred in at least three human cancers. The red diamond nodes and white circle nodes denote lncRNAs and mRNAs, respectively. (B) Survival analysis of the core

lncRNA–mRNA causal network.
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We further apply a representative sequence-based method
called LncTar [11] to the experimentally validated lncRNA–mRNA
causal regulatory relationships discovered by MSLCRN. There are
two main reasons for choosing LncTar. First, LncTar does not
have a limit to input RNA size. Second, LncTar uses a quantitative
standard rather than expert knowledge to determine whether
lncRNAs interact with mRNAs. Similar to LncTar, we also set -0.1
as normalized binding free energy (ndG) cutoff to determine
whether lncRNA–mRNA pairs interact with each other. In other
words, the lncRNA–mRNA pairs with ndG��0.1 are regarded as

lncRNA–mRNA regulatory relationships. Among the experimen-
tally confirmed lncRNA–mRNA causal regulatory relationships that
are discovered by MSLCRN, the numbers of successfully predicted
lncRNA–mRNA regulations using LncTar are 0, 0, 1 and 1 in GBM,
LSCC, OvCa and PrCa, respectively (details in Supplementary
File S4). The result indicates that our experimentally confirmed
lncRNA–mRNA causal regulations are mostly bad hits for LncTar.
Meanwhile, this result also suggests that expression-based and
sequence-based methods may be complementary with each other
in predicting lncRNA–mRNA regulations.

A

B

Figure 6. Survival analysis of hub lncRNAs. (A) Conserved hub lncRNAs in GBM, LSCC, OvCa and PrCa datasets. (B) Survival analysis of cancer-specific hub lncRNAs.
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MSLCRN networks are biologically meaningful

In this section, we conduct GO and KEGG enrichment analysis
to check whether the MSLCRN networks are associated with
some biological processes and pathways significantly.
Enrichment analysis uncovers that 15 of the 23 (�65.22%)
MSLCRN networks in GBM, 29 of the 38 (�76.32%) MSLCRN net-
works in LSCC, 30 of the 45 (�66.67%) MSLCRN networks in
OvCa and 20 of the 32 (�62.50%) MSLCRN networks in PrCa are
significantly enriched in at least one GO biological process or
KEGG pathway, respectively (details in Supplementary File S5).
This result implies that most of the MSLCRN networks in each
cancer are functional networks.

We further investigate whether the MSLCRN networks are
significantly enriched in GBM, LSCC, OvCa and PrCa diseases,
respectively. We discover that 5 of the 23 MSLCRN networks,
7 of the 38 MSLCRN networks, 6 of the 45 MSLCRN networks and
6 of the 32 MSLCRN networks are significantly enriched in GBM,
LSCC, OvCa and PrCa diseases, respectively (details in
Supplementary File S5). This result indicates that several
MSLCRN networks are closely associated with GBM, LSCC, OvCa
and PrCa diseases.

Altogether, functional and disease enrichment analysis results
show that MSLCRN networks are biologically meaningful.

Comparison with other PC-based network
inference methods

Based on a parallel version of the PC algorithm [56], the parallel
IDA method in the second step of MSLCRN learns the causal
structure from expression data. Owing to the popularity of the
PC algorithm in causal structure learning, some other network
inference methods, including PCA-CMI [74], PCA-PMI [75] and
CMI2NI [76], have also successfully applied it for network infer-
ence. Different from the three methods using conditional or
partial mutual information to infer lncRNA–mRNA regulations,
our method estimates causal effects to identify lncRNA–mRNA
regulations. For comparisons, we also use the PCA-CMI, PCA-
PMI and CMI2NI methods, to infer module-specific lncRNA–
mRNA regulatory relationships. Similar to our method (which
uses the parallel IDA method), the strength cutoff of lncRNA–
mRNA regulatory relationships in PCA-CMI, PCA-PMI and
CMI2NI methods is also set to 0.45.

We evaluate the performance of each method in terms of
finding experimentally validated lncRNA–mRNA regulatory
relationships, functional MSLCRN networks and disease-
associated MSLCRN networks. As shown in Table 4, in terms of
the three criteria, MSLCRN performs the best in GBM, LSCC,
OvCa and PrCa data sets. This result suggests that MSLCRN is a
useful method to infer module-specific lncRNA–mRNA regula-
tory network in human cancers.

Conclusions and discussion

Notwithstanding lncRNAs do not encode proteins directly, they
engage in a wide range of biological processes including cancer
developments through their interactions with other biological
macromolecules, e.g. DNA, RNA and protein. Therefore, to
uncover the functions and regulatory mechanisms of lncRNAs,
it is necessary to investigate lncRNA–target regulatory network
across different types of biological conditions.

As a biological network, the lncRNA–target regulatory net-
work exhibits a high degree of modularity. Each functional
module is responsible for implementing specific biological

functions. Moreover, modularity is an important feature of
human cancer development and progression. Thus, from a net-
work community point of view, it is necessary to investigate
module-specific lncRNA–mRNA regulatory networks.

Until now, several statistical correlation or association
measures, e.g. Pearson, Mutual Information and Conditional
Mutual Information, have been used to infer gene regulatory
networks. However, these methods tend to identify indirect reg-
ulatory relationships between genes. The identified gene regu-
latory networks cannot reflect real ‘causal’ regulatory
relationships. To better understand lncRNA regulatory mecha-
nism, it is vital to investigate how lncRNAs causally influence
the expression levels of their target mRNAs.

In this work, the computational methods for inferring
lncRNA–mRNA interactions and the publicly available data-
bases of lncRNA–mRNA regulatory relationships are first
reviewed. Then, to address the above two issues, we propose a
novel computational method, MSLCRN, to study module-
specific lncRNA–mRNA causal regulatory networks across GBM,
LSCC, OvCa and PrCa diseases. In contrast to other approaches
(expression-based and sequence-based methods), MSLCRN has
two unique features. First, MSLCRN considers the modularity of
lncRNA–mRNA regulatory networks. Instead of studying global
regulatory relationships between lncRNAs and mRNAs, we
focus on investigating the regulatory behavior of lncRNAs in the
modules of interest. Second, considering the restrictions with
conducting gene knockout experiments, MSLCRN uses the
causal inference method, IDA, to infer causal relationships
between lncRNAs and mRNAs based on expression data. The
promising results suggest that exploiting modularity of gene
regulatory network and causality-based method could provide
another effective approach to elucidating lncRNA functions and
regulatory mechanisms of human cancers.

Despite the advantages of MSLCRN, there is still room to
improve it. First, the WGCNA method only allows clustering
genes across all samples from the matched lncRNA and mRNA
expression data. In fact, a class of genes may exhibit similar
expression patterns across a subset of samples. An alternative
solution of this problem is to use a bi-clustering method to iden-
tify lncRNA–mRNA co-expression modules. Second, it is still
time-consuming to estimate causal effects from large expres-
sion data sets. When constructing the module-specific lncRNA–
mRNA causal regulatory networks, the running time of parallel
IDA is still high on estimating the causal effects of lncRNAs on
mRNAs. In future, more efficient parallel IDA method is needed
to explore lncRNA–mRNA causal regulatory relationships in
large-scale expression data. Third, previous research [38]
has shown that the prediction accuracy of lncRNA–mRNA inter-
actions can be improved by integrating both sequence data and

Table 4. Comparison results in terms of experimentally validated
lncRNA–mRNA regulatory relationships, functional MSLCRN net-
works and disease-associated MSLCRN networks

Methods GBM (a, b, c) LSCC (a, b, c) OvCa (a, b, c) PrCa (a, b, c)

MSLCRN (17, 15, 5) (14, 29, 7) (20, 30, 6) (42, 20, 6)
PCA-CMI (2, 13, 0) (0, 11, 0) (0, 7, 1) (0, 20, 2)
PCA-PMI (2, 15, 1) (0, 11, 0) (0, 8, 2) (1, 18, 1)
CMI2NI (2, 15, 0) (0, 11, 0) (0, 7, 1) (0, 19, 1)

Note. a¼number of experimentally validated lncRNA–mRNA regulatory relation-

ships; b¼number of functional MSLCRN networks; c¼number of disease-asso-

ciated MSLCRN networks.
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expression data. To improve the accuracy of the predicted
lncRNA–mRNA regulatory relationships, it is necessary to
develop an ensemble method (fusing sequence-based and
expression-based methods) to infer lncRNA–mRNA regulatory
network. Finally, recent studies [77] show that lncRNAs can act
as competing endogenous RNAs (ceRNAs) or miRNA sponges to
attract miRNAs for bindings by competing with mRNAs.
Therefore, some predicted lncRNA–mRNA regulatory relation-
ships are lncRNA-related ceRNA–ceRNA interactions. To further
improve the prediction of lncRNA–mRNA regulatory relation-
ships, it is necessary to remove the crosstalk relationships
between lncRNAs and mRNAs.

Key Points

• Among ncRNAs, lncRNAs are a large and diverse class
of RNA molecules, and are thought to be a gold mine of
potential oncogenes, anti-oncogenes and new
biomarkers.

• lncRNAs exhibit dynamic positive gene regulation
across human cancers.

• Hub lncRNAs are discriminative and can distinguish
metastasis risks of human cancers.

• There is still a lack of ground truth for validating pre-
dicted lncRNA–mRNA regulatory relationships.

• There is still room to develop reliable methods for elu-
cidating lncRNA regulatory mechanisms.

Supplementary Data

Supplementary data are available online at https://aca
demic.oup.com/bib.
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