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ABSTRACT Transfer learning aims to leverage valuable information in one domain to promote the learning
tasks in the other domain. Some recent studies indicated that the latent information, which has a close
relationship with the high-level concepts, are more suitable for cross-domain text classification than learning
raw features. To obtain more latent information existing in the latent feature space, some previous methods
constructed multiple latent feature spaces. However, those methods ignored that the latent information of
different latent spaces may lack the relevance for promoting the adaptability of transfer learning models,
even may lead to negative knowledge transfer when there exists a glaring discrepancy among the different
latent spaces. Additionally, since those methods learn the latent space distributions using a strategy of direct-
promotion, their computational complexity increases exponentially as the number of latent spaces increases.
To tackle this challenge, this paper proposes a Multiple Groups Transfer Learning (MGTL) method. MGTL
first constructs multiple different latent feature spaces and then integrates the adjacent ones that have a
similar latent feature dimension into one latent space group. Along this way, multiple latent space groups
can be obtained. To enhance the relevance among these latent space groups, MGTL makes the adjacent
groups contain one same latent space at least. Then, different groups will have more relevance than raw
latent spaces. Second, MGTL utilizes an indirect-promotion strategy to connect different latent space groups.
The computational complexity of MGTL increases linearly as the number of latent space groups increases
and is superior to those multiple latent space methods based on direct-promotion. In addition, an iterative
algorithm is proposed to solve the optimization problem. Finally, a set of systematic experiments demonstrate
that MGTL outperforms all the compared existing methods.

INDEX TERMS Transfer learning, non-negative matrix tri-factorization, multi-group, cross-domain
classification.

I. INTRODUCTION
Traditional classification algorithms can achieve satisfying

performance since they have a common assumption that both
training and test data come from the same distribution. How-
ever, this assumption cannot hold in many practical applica-
tions. To tackle the challenge, many transfer learning methods
have been proposed recently [3]-[7], [11]-[15], [23]-[26],
[28], [30]-[32], [36]. Transfer learning is designed to model
a better classifier using examples with tags in the source
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domain to predict the categories of test instances with fewer
or without tags in the target domain. Some previous studies
have shown that the latent information, which has a close
relationship with the high-level concepts, is more suitable
for cross-domain text classification than learning raw fea-
tures [7]. To obtain more latent information that exists in
the latent feature space, some previous methods such as
MBTL [33] and MLTL [35] constructed multiple latent fea-
ture spaces and then learn the corresponding distribution on
each latent space. We represent such methods as the mul-
tiple latent spaces transfer learning. The limitation of these
approaches is two-fold:
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FIGURE 1. The relevance comparison between the traditional multi-latent spaces methods and MGTL.

First, it can be empirically considered that the correla-
tion of different latent spaces is inversely proportional to
their differences. With the increase of the number of latent
spaces, the average dimensional difference among latent
spaces will increase, and the corresponding average relevance
among them will decrease accordingly. Although more latent
information can be obtained as the number of latent spaces
increase, this latent information of different latent spaces may
lack the relevance for promoting the adaptability of trans-
fer learning models, even may lead to negative knowledge
transfer when there exists a glaring discrepancy among the
different latent spaces. For example, although words like
“CPU”, “PCI”, and “RISC”, which are drawn from the
latent space about hardware, as well as “Twitter”, “What-
sApp” and ‘“Facebook”, which are drawn from the latent
space about application, are all related to computer, the rel-
evance between hardware and application is insufficient.
In Figure 1, we can find that although multiple shared bridges
can be built on these different latent spaces respectively, they
can not effectively promote each other to establish a more
adaptive structure for knowledge transfer across domains.

Second, to construct a more effective structure across
domains, those transfer learning methods based on multiple
latent spaces usually learn the latent space distributions by
using the strategy of direct-promotion [5]-[7], [33]-[35]. The
key idea of this strategy is that learning the distributions
on one latent feature space can directly promote the distri-
bution learning on the others. Therefore, the computational
complexity of those algorithms increases exponentially as
the number of latent spaces increases. In Figure 2, we can
find that learning of each distribution is dependent on the
learning of the others. With the increasing of latent spaces,
the computational complexity will be intolerable.

In this paper, we propose Multi-Group Transfer
Learning (MGTL) based on non-negative matrix
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tri-factorization (NMTF) techniques, which groups multiple
latent feature spaces and learns the corresponding distribu-
tions in the different latent space groups simultaneously. The
key idea of MGTL is as follows: First, to obtain more latent
information that can be used to learn the shared structure
across domains, MGTL constructs multiple different latent
feature spaces and then integrates the adjacent latent spaces
that have the similar latent feature dimension into one latent
space group. Along this way, multiple latent spaces groups
can be obtained. To enhance the relevance among these
latent space groups, MGTL makes the adjacent latent space
groups contain one same latent space at least. For example,
as shown in Figure 1, three different latent spaces, which can
be indicated to hardware, OS, and application, respectively,
are integrated into two groups of latent spaces overlapping
partially. These two latent space groups can be indicated to
embedded and software, respectively. Obviously, embedded
and software exhibit more relevance than the three raw
latent spaces do for establishing a more adaptive structure
for knowledge transfer across domains. Second, to decrease
the computational complexity of learning multiple latent
space groups, MGTL utilizes an indirect-promotion strategy
to connect different latent space groups [35]. Specifically,
it exploits the label information in the source domains and the
latent shared information on one latent space group to learn
the corresponding distributions. Then, a shared classification
model can be obtained to promote learning distributions on
the other latent space groups. In other words, learning the
distributions and modeling the classifier can promote each
other directly. Therefore, learning distributions on different
latent space groups can facilitate each other indirectly by
the classification model that is shared on different latent
space groups. For example, as Figure 2 shows, four latent
spaces are integrated into three latent space groups, and the
corresponding number of connections (the direct promotion
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FIGURE 2. The computational complexity comparison between the direct-promotion and indirect-promotion strategy.

is represented as the connection line among different spaces
or groups) is reduced from 8§ to 3. Obviously, MGTL has a
linear increase in the computational complexity as the number
of latent space groups increases, which is superior to the
traditional transfer learning methods based on multiple latent
spaces.

The main contributions of this paper are three-fold:

1) Motivated by a significant observation that different
latent spaces may not promote each other effectively
to build a shared bridge, we propose a novel method
MGTL which can construct multiple relevant groups
for knowledge transfer.

2) To solve the optimization of MGTL, we present a
non-negative matrix tri-factorization based iterative
algorithm and utilize an indirect-promotion strategy to
decrease the computational complexity.

3) In addition, we conducted extensive experiments,
which demonstrates that the proposed MGTL is supe-
rior to the state-of-the-art transfer learning methods.

The remainder of this paper is organized as follows:

Section 2 briefly review the related studies. Section 3 presents
some preliminary knowledge. Section 4 presents the pro-
posed MGTL model. Section 5 shows the experiments and
discusses the experimental results. Finally, Section 6 con-
cludes the paper.

Il. RELATED WORK

According to the homogeneity of feature spaces, transfer
learning approaches can be categorized into the homogeneous
ones and the heterogeneous ones. Both of these two kinds of
transfer learning methods are widely used in real-world appli-
cations, such as image classification [12], [30]-[32], compu-
tational biology [11], [13], [14], [28], and text classification
[71, [15], [23]-[26], [36]. For the heterogeneous approaches,
which can construct a shared bridge on different feature
spaces, the key idea is to map different feature spaces to a
same latent one. Reference [37] developed a semi-supervised
approach to match the examples and preserve the semantic
consistency between heterogeneous domains. Reference [38]
proposed a novel HTL approach (Deep-MCA) based on a
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structure with adversarial kernel training to obtain an end-to-
end solution. Reference [39] proposed a new TDML frame-
work for heterogeneous tasks, which learns the metric in the
target domain by extracting the knowledge fragments from
the source domain. Reference [40] developed a novel frame-
work (HHTL) and two architectures to transfer knowledge
across heterogeneous domains via the feature transformation
cross domains. For the homogeneous approaches, which can
construct a shared bridge on the same feature spaces, the key
idea is to learn a consistent distribution on these feature
spaces. In this paper, we focus on the homogeneous transfer
learning tasks.

According to the literature survey [1], our method is more
closely related to the feature representation-based methods,
which can be further divided into feature selection-based
ones and feature mapping based-ones. Then, we will first
review these approaches in brief. Dai et al. [3] developed a
co-clustering based approach to identify feature clusters of
different domains, by spreading class information from one
domain to another. Jiang and Zhai [21] proposed a two-step
framework to transfer knowledge across domains. The first
step is to generalize features, and the second one is to select
the specific features in the target domains for domain adapta-
tion. Uguroglu and Carbonell [22] proposed a new approach
to distinguish variant and invariant original features among
datasets for knowledge transfer and transformed a distribu-
tion problem to a convex optimization one. Blitzer et al. [2]
proposed a feature correspondence based method by using
unlabeled data and pivots raw features from different domains
for knowledge transfer. Zhuang et al. [4] proposed a method
for cross-domain learning using the association between fea-
ture clustering and example clustering. Reference [17] pro-
posed a domain adaptation method TCL, which leverages
both the common original features to construct a shared
bridge, and uses the specific ones to discriminate domains.
Additionally, Pan et al. [34] proposed QTL to integrates all
kinds of high-level concepts for fitting different distributions.

Our work belongs to the feature representation-based
approaches in which some methods utilize a multiple latent
spaces strategy. The key idea of these methods is to obtain
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more latent information by constructing and learning mul-
tiple latent spaces [33], [35]. From the view of multi-
ple latent spaces, Hu et al. [33] developed a multi-bridge
approach (MBTL) to build multiple shared bridges to transfer
knowledge. Pan ef al. [35] presented an expanded version of
MBTL, which constructs one common space and two specific
spaces as one latent space layer. Then, along this line, multi-
ple layers are built and used to learn the corresponding distri-
butions simultaneously. However, these multi-latent transfer
learning approaches ignored that the latent information of dif-
ferent latent spaces may lack the relevance that can promote
the adaptability of the transfer learning model and even may
lead to negative knowledge transfer when there exists a glar-
ing discrepancy among the different latent spaces. Moreover,
since these methods learn the latent space distributions using
a strategy of direct-promotion, the computational complexity
of these algorithms increases exponentially as the number of
latent spaces increases. To tackle these problems, we propose
the Multi-Group Transfer Learning (MGTL) method.

lll. PRELIMINARY KNOWLEDGE

In this section, we first list the mathematical notations used in
this paper, then briefly introduce the high-level concepts and
non-negative matrix tri-factorization (NMTF) model.

A. NOTATIONS

We use an uppercase letter (such as X and Y) to represent
a matrix, and denote the element at the i-th row and j-
th column of matrix X as X[;j;. The sets of real numbers
and non-negative real numbers are denoted by R and R,
respectively. Let D = (D, - -+, Dy, Dgt1, -+, Dsyt) be a
set of domains, including s source domains and ¢ target ones.
Xr = [X§, ..., X}, ] indicate the feature-instance matrix of
domain D,, (1 < r < s+1). Labels of the instances in source
domain D, are given as Y, (1 < r < s). The frequently-used
notations in MGTL are summarized in Table 1.

TABLE 1. Notations and descriptions.

Notations Descriptions

D, Domain r

g Index of a latent space group, 1 < g < NOG
Gy Latent space group g

NOG Number of latent space groups

e Index of a latent space 1 < e < NOL
le Latent space e

NOL Number of latent spaces

NOO Number of overlapped latent spaces
NPG Number of latent spaces per group

T Transposition of matrix

k Dimension of latent feature space

B. HIGH-LEVEL CONCEPTS AND NMTF

Since MGTL utilizes the high-level concepts, which have
a close relationship with the latent information, to con-
struct the shared structure across domains, we will introduce
the high-level concepts at first. Specifically, the high-level
concepts consider two sides of a concept, namely concept
extension and intension. The association between original
features and the high-level concepts is represented as the
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Concept Extension (CE), and the association between these
high-level concepts and the example classes is represented
as the Concept Intension (CI) [6], [7]. We list two kinds of
high-level concepts used in this paper in Table 2.

TABLE 2. High-level concepts learned in the latent feature spaces.

Notation Description
An high-level concept which has the same CE
and the same CI in different domains.
An high-level concept which has the different CE

and the same CI in different domains.

Identical concepts

Synonymous concepts

In addition, as mentioned above, we utilize NMTF, which
is widely used for text classification [3]-[7], [13], [14],
to implement the proposed MGTL. The key formula of
NMTF is as follows:

Xinxn =

sk Hixe Vil (1

where X € R™" U € R™* H € R*¢and V e R" € repre-
sent the feature-instance, feature-concept, concept-class, and
instance-class matrices, respectively. Here, m, n, k, and c rep-
resent the numbers of original features, instances, high-level
concepts, and instance classes, respectively. Additionally,
U € R™K and H € R¥*€ also represent concept CE and
CIL respectively, and V € R" ¢ can be used as a classifier.
Actually, the multiplication of these matrices forms a map-
ping from one dimension to another.

Additionally, NMTF is an optimization problem as
follows:

min || X — UHVT|?
U,H,V>0

m c
s.t. Z Uij =1, ZV[,'J] =1 2)
i=1 j=1

To deal with a transfer learning problem, NMTF is developed
to adapt to different domains. The above formula can be
rewritten as follows:

s+t

min § I1X, — UHV|?
U.H,V,>0 ]
r=

m c
s.t. Z Uriji =1, ZVr[i’j] =1 3)
i—1 =1

where s and ¢ represent the number of source and target
domains, respectively, and r represents the index of a domain.

IV. MULTI-GROUP TRANSFER LEARNING

In this section, we present our MGTL method for
cross-domain classification. Meanwhile, we formulate
MGTL as an optimization problem and propose an iterative
algorithm to solve it.

A. PROBLEM DEFINITION
Since MGTL groups multiple latent feature spaces, the high-
level concepts should be learned in the corresponding
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latent space groups, respectively. Then, the concept exten-

sion U and the concept intension H can be represented
G(NOG)

G(1) G(©)
as Upxk = [UkaG(,), e Ul e oo UkaG(NOG)] and
G(1) .Gl . . g GINOG) 1
Hkxc = [I_IkG(I)>< HkG(g)xc’ cee HkG(NOG) ] (kG( ) +

L FkC@O R OWOG) — k), respectively, where U (gZG(g)

and HkGG(g represent the CE and the CI in latent space
group G(g), respectively. In addition, since MGTL learns two
kinds of shared high-level concepts including the identical
concept and the synonymous concept together, we divide

U°®  and H kG((‘:,) into two parts. That is, U kG(@ =

1G(g) U26®) 1G(g) ZG(g)
[U G(g), . G(g)] where U lG(g) and Um kG(g) repre-

sent the CEs or2 identical concepts and synonymous con-
cepts, respectively. Accordingly, H kGig can be represented

1G(g)
G(s)
G(g) _ k% xe 1G(g) 2G(g)
as Higip, = y26© | where H KGO ,and H N
kZG(g)X c

represent the Cls of identical concepts and synonymous
concepts, respectively. For all above equations, we have
kG(g) + kG(g) kG®

Therefore, in the latent feature space group G(g), Eq. (1)
can be rewritten as:

_ 176 G(g) T
Xmxn = Umx(kG(g))H(kG(g))ch"XC
1G(g)
1G(g) 2G(g) K xe | T
- [U G(g)’ kG(g) 2|G(g) nxc (4)
iy H )
k2 Xc

Then, the objective function can be formulated as follows:

NOG s+t

L= > X~

g=1 r=1

UFOHZOV 2 )

G G(g) G G(g)
R ygl® ¢ gk gO®) ¢ RTOXC and

where X, €
VI e R

As described in previous sections, we divide the CE and
CI into two parts on latent space group G(g), respectively.
Therefore, Eq. (5) can be rewritten as follows:

NOG s+1 H!G®
[UIG(g) UZG(g)]I:HZG(g)j|V >

=22 1%~

g=1 r=l1

For Eq. (6), we add the constraint condition to CE, CI, and
V., simultaneously to quantify the relevance among high-level
concepts, raw features and instance classes. Then, the opti-
mization problem is deduced as follows:

min L
UrG(g),HG(g) v,
G(g) G(g)
1G(g) 2G(s) 16() _
s.t. Z Uijg =1 Z Uiji’ = L ZH
2G(s)
ZH[i,j] =1 Z Vrtijy = 1. )
j=1 j=1
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Here, the constraint conditions for CE, CI, and V, repre-
sent the high-level concepts distribution of original features,
the class distribution of high-level concepts, and the class
distribution of examples, respectively.

B. SOLUTION OF MGTL

We first elaborate on the objective function and deduce the
corresponding update formulas, then propose an iterative
algorithm. According to the attributes of the Frobenius norm
and the trace of matrices, the objective function can be for-
mulated as follows:

NOG s+t
L=>Yn (XrTX, —2.x,TA%® _ 3. x,TBO®

g=1 r=1
+AC®T A0@ | pG@T G 4 5. pG®T B,G@) 8)
A G(g)

where AC®) = U16@ H16@ VT and B7® = y} 9@ 26 YT

Then, the corresponding variables are updated as follows:

1G(g) lG(g)
U[t g U

(3 X, Vo H G0 ]
s+t 4 G(8) 16()T G(g) 16()T
[ A7V, HIGW 4By, HIGW )

)
2G(g) 2G(g)
Uriiji < Uni
X, V,H26@" ], (10)
A\ [AG(g)VrH2G(g)T+B,G(g)V,HzG(g)T][i,j]
1G(g) 1G(g)
H[i,j] H[u]
f T
[0 U9 XV,
T .G T G
[ 1G0T ATDy, L 160 BTOY, )
(11)
26(g) 26(g)
Hy ™ < Hp j
[Zs-‘r[ UrG(g) X Vr]
(5, (2007 A0y, 4 200" BG(g)V)]n/]

(12)
NOG NOG

Viigl < Vetigie 1Y Mnglip/LY_ Ml (13)
g=1 g=1

where Mng) = XrTUrG(g)HrG(g) and Mdge =

T T
V,H,G ® UrG ® UrG (g)HrG ® n each iteration, we calculate

all the variables according to the updating rules and use
Eq. (14) to normalize Ulo®, U,zG(g), HIG®) {26 and v,
as follows:

1G(g) Hlo®
1G(g) [i.]] 1G(g) [i.]]
Yy = i o Mia s e 1o
j=1 Yl i=1 ]
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2G(g) 2G(g)
2G(g) rli,jl 2G(g) [i.,/]
Ut S UY) Ry O — LY
rlij] (5@ > i) c 2G(g)’
> ¥ 2G(g) © HC
j=1 Uriij] 2=t Hiij
Viliji
Viligl < = — (14)
> i=1 Vrli)

Based on Egs. (9)-(14), an iterative algorithm is proposed
and described in Algorithm 1. We normalize the data matrices
such that X,71,, = 1,. The CE of the high-level concepts
are initialized with the matrices obtained by implemented
PLSA [9]. For instance, we set the numbers of the shared
concept in the latent space group G(g) as (le(g)—i-kG(g)). Then,

G(g) )
. . . k% 4k
we obtain feature information W € Rﬁx( ! 2 ) through

conducting PLSA on the data from the source to the target
domains. W is divided into two parts W = [Wy, Wh (W] €

G(g) G(g)
R and Wo € R, ? ). Finally, U'%® is initialized

as Wy and U,ZG(g)(l < r < s+t) is initialized as Wp,
respectively.

Algorithm 1 Multi-Group Transfer Learning

Input: {X,}’*,, {V,}_,, parameters le(g) , kZG ® and
the number of iterations maxliter.
Output: U16®, U1 < r < s+1), H'6®), H26(®),
and V,.(1+s < r < s+1).

1 Normalize the data matrices by

m
Xr[i,j] (—Xr[i,j]/ ZX,[i’j],(l <r <s+i1);

i=1

2 UIG®O and Ur2 GO are initialized according to

Section 4.2, and V,(O) is initialized by Logistic regression;
3 for k < 1 to maxiter do
4 | Update U?®® by Eq. (10);
5 for r < 110 s+t do
6 Update U16@®) f1Ge)k) p2G(e)k) by Egs. (9),
(11), and (12), respectively;

7 end

8 for r < s+1 to s+t do

9 ‘ Update V,(k) by Eq. (13);
10 end

1 Normalize these CE, CI and V,(k) by Eq. (14);
12 end

3 return U16® 299 H1G@ and H2G® .

-

C. COMPUTATIONAL COMPLEXITY OF THE

ITERATIVE ALGORITHM

For each round of iteration in Algorithm 1, the compu-
tational complexity of Eq. (9) that calculates U'C® is
O(Smnrc+3mck1G (g)—i-m(kl (g)+k2G (g))c+mle(g)). Since we
have ¢ <« (le(g)+kg (g>) and (le(g)—I-kg (g>) <L n,

the computational complexity of Eq. (9) can be rewrit-
s+t
ten as O()_ mnyc). Similarly, the computational com-

=1
plexity of rEqs. (10), (11), (12), and (13) are O(mn,c),
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s+t G(e) s+t G(2) s+t
oY mk;"*'ny), OCY. mky *'n,), and O(Y_ mn,k), respec-

r=1 r=1 r=1
tively. Then, the maximal computational intensity in each

s+t
round of iteration is O(Y_ mn, k). In summary, the compu-
=1
' s+t
tational complexity of Algorithm 1 is O(Y_ maxlter-mn, k).
r=1

V. EXPERIMENTAL EVALUATION

In this section, we use 20Newsgroups and Sentiment as
benchmark datasets to compare MGTL with other state-of-
the-art transfer learning methods.

A. DATA PREPARATION

20-Newsgroups' includes a large number of newsgroup
examples that are distributed across twenty different news-
groups [19], [20]. Some similar ones can be grouped into
one top-category, e.g., the top category rec includes four
subcategories such as autos, motorcycles, sport.baseball and
sport.hockey. The corresponding tasks are constructed as
follows:

First, two top categories rec and sci are chosen as pos-
itive and negative classes, respectively. Then we randomly
selected two subcategories from the above top categories
respectively as the source domain, and then generated the
target domain in a similar way. Thus, 144 (Pi xPi) traditional
transfer learning classification tasks are constructed in this
way. Second, we replace one subcategory of sci as another
subcategory which is selected from comp or talk to construct
a new target domain. Then, 384 (PiXP}‘XS) tasks are pro-
duced. Since a new top category that does not exist in the
source domain is used to generate the new target domain,
more specific information on different perspectives exists in
this new kind of task. To avoid negative transfer, we choose
334 new classification tasks according to their initial accura-
cies, which are higher than 50% set by Logistic regression.
In summary, we have 144 traditional transfer learning tasks
and 334 new ones on the 20-Newsgroups dataset.

Sentiment Data’ contains reviews from four fields books,
dvd, electronics, and kitchen. To verify the adaptability of
MGTL, we generate multi-source and high-dimension sen-
timent classification tasks. We first randomly choose two
fields, which includes 400 positive and 400 negative exam-
ples, as source domain and one rest field, which includes
200 positive and 200 negative examples, as the target domain.
To show that MGTL can be applied to the sentiment data
set with different examples, we select 800 examples in each
domain. Then, 24 sentiment tasks are generated.

B. EXPERIMENTAL SETTING

1) ALGORITHMS IN COMPARISON

(1) Traditional machine learning algorithm Logistic Regres-
sion (LR) [8]. We use the data in the source domain to train

1 http://people.csail.mit.edu/jrennie/20Newsgroups/
2http://Www.cs.jhu.edu/mdredze/datasets/sentiment/
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TABLE 3. Parameter settings of latent space groups.

Latent Feature Space Groups (G,) G G(2) G(3) Ga)
Latent Feature Spaces (I..) L [ Jls [ Is [l [l [Is Jle [Ir [ Iz [Is [ 1y
Dimension of Latent Feature Space (k) 6 [ 718 8 [ 9 [1 0 [ [n]12]13]14
TABLE 4. Performances (%) on 20-Newsgroups (10 repeated experiments).
LR NMTF DTL TCL Tri-TL MBTL MGTL
Average Accuracy 65.57 70.86 82.23 89.92 94.65 97.7940.01 98.024-0.00
Performance of Fy -M?a.sure 63.45 64.47 80.94 89.67 94.37 97.76£0.01 98.01+0.00
Total 144 Tasks Precision 68.40 64.12 79.33 88.91 93.59 97.0940.01 97.351+0.00
NumNT - - 21 13 1 0 0
Average Accuracy 66.6 78.09 86.69 87.23 92.06 96.9640.01 97.4110.00
Performance of Fy -M?a-sure 65.4 74.03 83.78 86.91 91.79 96.9410.01 97.3910.00
Total 334 Tasks Precision 68.9 72.81 81.34 86.26 91.14 96.461+0.01 97.301+0.00
NumNT - - 31 32 13 3 0

the classifier and use the data in the target domain to test.
(2) Traditional transfer learning model Non-negative Matrix
Tri-Factorization (NMTF). We use NMTF in [17] as a base-
line transfer learning method. (3) Transfer learning methods,
including DTL [5], TCL [17], Tri-TL [6], and MBTL [33].

2) PARAMETER SETTINGS

Since it is extremely difficult to formalize the latent infor-
mation or quantify the relationships among different latent
feature spaces and the groups, MGTL can not automatically
tune the optimal number of latent spaces and the correspond-
ing groups. Therefore, we evaluate the MGTL on the dataset
by empirically searching the parameter space. The parameter
settings for latent space groups are shown in Table 3. We set
NOG = 4, NOL = 9, NOO = 1, NPG = 3, and maxlter =
200. Additionally, we implement LR using Matlab.> NMTF
is can be obtained from [17]. We set the parameters of the
above methods as their default ones.

3) EVALUATION METRICS
To check out the classification results comprehensively,
we use three widely used evaluation metrics:

a: ACCURACY
[{d : d € DAf(d) = y(d)}]
n

where y(d) is the true label of example d, f(d) is the label
predicted by the classification model and # is the number of
the examples.

Accuracy =

b: F{-MEASURE
Fi—Measure = (NF1+PF1)/2

where N F1(F1 on negative extractions) = (2-NP-NR)/(NP+
NR), PF(F1 on positive extractions) = (2-PP-PR)/(PP+
PR), NR(recall on negative extractions) d/(d+c),
NP(precision on negative extractions) = d/(d-+b), PR(recall
on positive extractions) = a/(a+b), PP(precision on positive

3 http://www.kyb.tuebingen.mpg.de/bs/people/pgehler/code/index.html

64126

extractions) = a/(a+c).

¢: PRECISION
Precision = a/(a+c)

In addition, we also use “Number of Negative Trans-
fer” (NumNT) as another evaluation metric for transfer
learning [34].

Predicted Predicted
Positive Pairs | Negative Pairs
Positive Pairs a b
Negative Pairs c d

C. EXPERIMENTAL RESULTS

We compare our MGTL with LR, NMTF, DTL, TCL,
Tri-TL and MBTL on the 20-Newsgroups and sentiment tasks
respectively.

1) COMPARISON ON 20-NEWSGROUPS

From the results in Table 4, we observe that MGTL obtains
the best average performance on 144 traditional transfer
learning tasks and 334 new tasks. In addition, we find that
all compared transfer methods result in a negative transfer.
Only MGTL can successfully avoid negative transfers on
all tasks. There are two reasons why MGTL can achieve
satisfactory performance. First, MGTL constructs multiple
different latent feature spaces, which contain more latent
information from different perspectives, to build a shared
bridge. Then, MGTL, which can utilize more latent informa-
tion, may avoid negative transfer when domain distributions
are dominated by some latent information that is easy to
be ignored. Second, since many latent feature space groups
are constructed by integrating the adjacent latent spaces that
have a similar latent feature dimension into one latent space
group, MGTL enhances the relevance among these latent
space groups by keeping the adjacent latent space groups con-
tain one same latent space at least. Consequently, the latent
information obtained in different latent spaces can be utilized
effectively. In addition, DTL, TCL, and Tri-TL are better than
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TABLE 5. Performances (%) on sentiment (10 repeated experiments).

LR NMTF DTL TCL Tri-TL MBTL MGTL
Average Performance Accuracy 74.23 58.75 72.0 58.26 58.27 75.8740.05 77.521+0.03
(400 . Fy -M?a'sure 74.14 58.52 71.94 | 58.16 57.26 75.754+0.04 | 77.431+0.03
in each dor;lain) Precision 74.54 60.38 7324 | 60.11 59.52 76.451+0.04 | 78.831£0.03
NumNT - - 9 12 12 3 0
Average Performance Accuracy 76.05 59.02 75.63 59.86 58.64 76.2540.04 78.041-0.03
(800 ex . Fy -M('aa.sure 75.98 58.92 75.54 | 59.61 57.78 76.181+0.04 78.0210.03
in each d C ) Precision 76.41 60.89 76.95 61.16 58.98 77.51+0.04 | 79.31+0.03
NumNT - - 7 12 12 5 0
TABLE 6. Average performances (%) comparison between MGTL and the variants (10 repeated experiments).
MGTL-G(;, | MGTL-G(5) | MGTL-G(3) | MGTL-G(;) | MGTL-NoOverlap | MGTL | MGTL-Direct
Performance Accuracies 97.4240.00 97.1440.01 97.2740.01 97.5240.00 97.8440.00 98.0240.00 98.071-0.00
of Total F'i-Measure 97.4240.00 97.1240.01 97.2740.01 97.514+0.00 97.8240.00 98.0140.00 98.061-0.00
144 Tasks on Precision 96.711£0.00 96.461+0.01 96.58+0.01 96.8310.00 97.11£0.00 97.351+0.00 97.4610.00
20-Newsgroups NumNT 1) 1 0 0 0 0 0
Performance Accuracies 96.8440.00 96.3540.01 96.794-0.00 96.7940.01 96.6240.01 97.41£0.00 97.51+0.00
of Total F';-Measure 96.8210.00 96.3240.01 96.7610.00 96.77+0.00 96.6210.01 97.39+0.00 97.50+0.00
334 Tasks on Precision 96.72+0.00 96.2140.01 96.6740.00 96.671+0.00 96.5110.01 97.3010.00 97.4110.00
20-Newsgroups NumNT 0 1 1 0 2 0 0
Performance Accuracies 76.8310.03 76.544-0.04 76.8240.03 76.7540.04 76.6440.04 77.5210.03 77.3940.03
(400 examples F';-Measure 76.811£0.03 76.5210.04 76.811£0.03 76.75+0.04 76.641+0.04 77.43£0.03 77.37£0.03
in each domain) Precision 78.011£0.03 77.731£0.04 78.031£0.03 77.95+0.04 77.821+0.04 78.83+0.03 78.79+0.03
on Sentiment NumNT 1 2 1 1 1 0 0
Performance Accuracies 77.5440.03 77.0240.04 77.2140.03 77.374+0.03 77.161+0.04 78.04-+0.03 77.924+0.03
(800 examples F'1 -Measure 77.531+0.03 77.0240.04 77.214+0.03 77.35+0.03 77.15+0.04 78.021+0.03 77.8940.03
in each domain) Precision 78.74+£0.03 78.32+0.04 78.52+0.03 78.64+0.03 78.411£0.04 79.31£0.03 79.22+0.03
on Sentiment NumNT 1 1 1 1 1 0 0

LR and NMTF, which means traditional learning methods
may fail in transfer learning tasks. On the other hand, MBTL
outperforms DTL, TCL, and Tri-TL, whose reason may be
that MBTL which builds multiple transfer bridges can obtain
more useful latent information to fit domain distribution.
Overall, MGTL achieves the best performance regardless of
running on the 144 traditional transfer learning tasks which
contain more common features or on the 334 new tasks which
contain more specific features.

2) COMPARISON ON SENTIMENT

To further verify the adaptability of MGTL, we construct
the multi-source and high-dimension classification tasks on
sentiment dataset with two source and one target domains.
In Table 5, we can find that MGTL obtains the best experi-
mental results once more and outperforms all the compared
methods. Notably, the performance of MGTL is very stable
on these challenging sentiment tasks with fewer examples.
As shown in Table 5, we can find that all the compared
algorithms occur negative transfer on these multi-source and
high-dimension classification tasks that are more challenging
than traditional sentiment tasks. The reason that all the com-
pared transfer methods that can deal with topic classification
tasks fail in the more challenging tasks is that these methods
cannot utilize the latent information effectively. Only MGTL
avoids negative transfer successfully and exhibits the best
performance.

In summary, these results not only prove the effective-
ness of MGTL on cross-domain text classification, but also
prove the adaptability of MGTL for the multi-source transfer
learning tasks.
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D. EFFECTIVENESS OF MGTL

To verify the effect of MGTL, we construct four sin-
gle group approaches, including MGTL-G(1), MGTL-G(y),
MGTL-G3), and MGTL-G(4). Actually, these methods are
trained in the four different latent space groups constructed
in MGTL, respectively. The parameter settings of these
approaches are shown in Table 3. In addition, we construct
two variants of MGTL including MGTL-Direct and MGTL-
NoOverlap. MGTL-Direct learns the high-level concepts
in different latent groups with direct-promotion strategy.
MGTL-NoOverlap regroups these latent spaces (including /1,
b, I3, lu, I5, I, 17, I3 and, ly) into three groups including
G(1.2,3), G4,5,6) and G(7,3,9) (each group contains three dif-
ferent latent spaces, e.g. group Gq1,2,3)) contains latent spaces
l1, [ and [3, and learns the high-level concepts in these latent
groups with indirect-promotion strategy. The experimental
results are shown in Table 6.

First, we find that MGTL and MGTL-Direct outperform
all the single latent space group approaches on all the tasks,
which means that the strategy of MGTL can improve the
performance of classification effectively. Second, we find
that MGTL outperforms MGTL-Direct on sentiment tasks,
and MGTL-Direct outperforms MGTL on 20-Newsgroups
tasks, which means that the indirect-promotion strategy
is more suitable for handling challenging tasks and the
direct-promotion strategy is suitable for dealing with tra-
ditional tasks. Third, considering the computational com-
plexity, which will be analyzed in the next subsection,
we adopt the indirect-promotion strategy for MGTL. Fourth,
MGTL and MGTL-Direct outperform MGTL-NoOverlap on
all the tasks. This is because the neighbouring two groups
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TABLE 7. Running time of MGTL and other compared methods (s).

LR NMTF DTL TCL Tri-TL MBTL MGTL-NoOverlap MGTL MGTL-Direct
Traditional 20-Newsgroups Task 11.4 14.1 21.1 24.3 452 75.6 118.6 124.5 225.9
New 20-Newsgroups Task 12.3 15.2 22.4 25.8 47.5 78.5 122.5 133.7 253.1
Sentiment Task with 400 examples 17.9 24.5 323 36.7 95.1 127.4 249.6 279.6 412.3
Sentiment Task with 800 examples 23.1 31.2 39.2 44.8 1174 153.1 310.2 356.4 533.8
TABLE 8. The parameter influence on performance (%) of algorithm MGTL.
Sampling D G(l) G(z) G(g) G(4) Problem ID
by [l [l [l [ [l [ sy [ by [ b | by | ks [ by [ T 2 3 4
1 5 9 10 10 7 11 11 9 13 13 14 16 98.71 97.81 98.01 98.31
2 7 8 7 7 11 12 12 13 14 14 15 14 98.26 97.76 98.06 98.21
3 4 5 9 9 9 10 10 11 11 11 13 16 98.21 97.41 97.63 98.43
4 6 7 6 6 8 8 8 12 13 13 11 12 98.66 97.96 98.21 98.52
5 7 6 8 8 10 9 9 10 10 10 12 13 98.61 97.91 98.11 98.17
6 8 9 7 7 8 12 12 9 12 12 15 15 98.36 97.45 97.74 98.21
7 5 5 10 10 7 11 11 11 13 13 14 16 98.46 97.36 97.86 98.26
8 8 7 6 6 11 8 8 13 12 12 13 15 98.41 97.45 97.95 98.45
9 4 6 9 9 10 9 9 12 14 14 12 14 98.51 97.31 98.16 98.17
Mean 98.46 97.60 97.97 98.30
Variance 0.027 0.058 0.034 0.015
Thispaper | 6 | 7 | 8 | 8 | 9 [ 10 | 10 | [ 12 [ 12 [ 13 [ 14 | 9851 | 9745 | 97.95 | 9831
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FIGURE 3. The Performance of MGTL and objective value vs. the number of iterations.

in Table 4 contain the same one latent space at least, then the
correlation among these groups obviously overtops the one
among G(123), G4,5,6) and G7,8,9). These results not only
prove our empirical hypothesis in section 1, but also prove
the validity of the grouping strategy in MGTL.

E. RUNNING TIME

We randomly choose four tasks from 20-Newsgroups and
sentiment respectively, and check the running time empir-
ically. From the experimental results in Table 7, we find
that MGTL-NoOverlap, MGTL and MGTL-Direct run longer
than the other transfer learning algorithms. This is because the
running time of the algorithm based on high-level concept
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is proportional to the number of high-level concepts, and
these MGTL methods construct more latent spaces and
learn more high-level concepts to obtain and utilize more
latent information. Nevertheless, the running time of MGTL
is within acceptable limits.* Since the interrelation com-
plexities among high-level concepts learned on different
groups using indirect-promotion strategy are less than the
ones using the direct-promotion strategy, MGTL-NoOverlap
and MGTL based on indirect-promotion strategy run faster
than MGTL-Direct based on direct-promotion strategy. Addi-
tionally, since the difference in computational complexity

4The configuration of computing platform: Intel Core i5-3470s CPU
2.9GHz, RAM 8.0GB.
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between the two strategies is exponential, the difference in
running time between methods using these two strategies will
be more significant as the number of groups increases.

F. PARAMETER SENSITIVITY

The parameter sensitivity of MGTL is investigated with
changing parameters Ii, b, I3, l, Is, ls, I7, I3, and lo,
which represent the numbers of high-level concepts in nine
latent spaces, respectively. We elaborate these parameters
in Table 3. We randomly choose nine combinations of these
parameters when [y € [4,8], [, € [5,9],13 € [6,10], 14 €
[7,11],1s € [8,12],ls € [9, 13], I7 € [10, 14], Ig € [11, 15],
and Iy € [12, 16], and then investigate the performance of
MGTL on 4 randomly chosen traditionally transfer learning
tasks, which can verify the stableness of MGTL when the
parameters vary in a widely range. From the results shown
in Table 8, we find that the average accuracy of the nine
parameter combinations for each selected task is almost the
same as the accuracy of using the default parameters, and the
variance is small. Therefore, MGTL is generally insensitive
to parameters selected from a predefined range.

G. ALGORITHM CONVERGENCE

We randomly choose six tasks on rec vs. sci to check the
convergence of MGTL. In Figure 3, the left and right y-axis
and the x-axis indicate the prediction accuracy, the objective
value, and the number of iterations, respectively. From the
results in Figure 3, we observe that as the number of iterations
increases, the objective value decreases and the accuracy
of MGTL increases conversely, and both of them converge
within 200 iterations.

VI. CONCLUSION

In this paper, to utilize more latent information effectively for
knowledge transfer, we proposed a novel approach MGTL.
Our method first constructs multiple latent feature spaces
and groups them. To enhance the relevance among these
latent space groups, MGTL makes the adjacent groups con-
tain one same latent space at least. Then, different groups
will have more relevance than raw latent spaces. Second,
MGTL learns the shared high-level concepts on different
groups utilizing an indirect-promotion strategy to establish a
bridge across domains. Then, the computational complexity
of MGTL increases linearly as the number of latent space
groups increases and is superior to the methods based on
direct-promotion. In addition, an effective algorithm is pro-
posed to derive the solution to the optimization problem.
Finally, we conduct comprehensive experiments to show that
MGTL outperforms all the comparison methods.

It should be noted that although MGTL has achieved excel-
lent results on text classification tasks cross domain, some
parameters of MGTL are set empirically. In the future, we will
optimize the proposed algorithm to try to adjust some param-
eters adaptively. Additionally, we intend to adapt MGTL for
other applications, such as query expansion, machine trans-
lation, recognizing textual entailment.
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APPENDIX
The partial differentials of £ are as follows:

oL s+t
m = Z2.(ArG(g)VrHIG(g)T+B’,G(g)VrHlG(g)T
r=1
—X,V,H'C®") 15)
8TEG(9 = 2.(A§(g)VrH2G(g)T+Bra(g)VrH2G(g)r
AU,
—XrVerG(g)T) (16)
oL s+t 1G9 4G 16(e)T G
SHIC® = Zz.(U (g AS @y, 4yl BE @y,
r=1
_ UlG(g)TXr Vr) (17)
9L s+t , .
_— 2Gi Gi 2G G
SHCD = Zg.(Ur ©" AG@Y, 206" gGe)y,
r=1
_ UEG(g)TXr V) s
oL NOG - ;
WV =2 Z(VrHrG(g) UrG(g) UrG(g)HrG(g)
f
g=1
T 177G G
— XU (g)Hr (®)) (19)

1G(g)
where U,G(g) = [U1G®, Ur26(g)] and HrG(g) — [ng(g) j|
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