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Abstract—Causal feature selection has attracted much attention in recent years, as the causal features selected imply the causal

mechanism related to the class attribute, leading to more reliable prediction models built using them. Currently there is a need of

developing multi-source feature selection methods, since in many applications data for studying the same problem has been collected

from various sources, such as multiple gene expression datasets obtained from different experiments for studying the causes of the

same disease. However, the state-of-the-art causal feature selection methods generally tackle a single dataset, and a direct application

of the methods to multiple datasets will result in unreliable results as the datasets may have different distributions. To address the

challenges, by utilizing the concept of causal invariance in causal inference, we first formulate the problem of causal feature selection

with multiple datasets as a search problem for an invariant set across the datasets, then give the upper and lower bounds of the

invariant set, and finally we propose a new Multi-source Causal Feature Selection algorithm, MCFS. Using synthetic and real world

datasets and 16 feature selection methods, the extensive experiments have validated the effectiveness of MCFS.

Index Terms—Causal feature selection, Markov blanket, multiple datasets, Bayesian network, causal invariance

Ç

1 INTRODUCTION

FEATURE selection is an effective approach to reducing
dimensionality by selecting features (variables) that are

most relevant to the class attribute for better prediction. In
recent years, causal feature selection [1], [11] is attracting
more attentions and has been increasingly used in building
prediction models, since the causal features selected can
imply the causal mechanisms around the class attribute.
Consequently, in contrast to traditional or non-causal fea-
ture selection, a prediction model built with causal features
can be explained in terms of the causal relevance of the fea-
tures with the class attribute. Moreover, causal features
enable more reliable predictions in non-static environment
where the distributions of testing and training data may be
different, and allow the prediction of the outcomes of
actions [11].

Many causal feature selection algorithms have been
developed [1], [9], [20], with the aim to identify the Markov
blanket (MB) of the class attributes or a subset of the MB. A
MB of a variable contains its parents (direct causes), chil-
dren (direct effects), and spouses (direct causes of children)
when the relations between variables are represented using
a Bayesian network [19].

However, all the methods are designed for causal feature
selection from a single data set, whereas multiple datasets
studying a same problem are ubiquitous nowadays. For
example, multiple gene expression datasets may have been
obtained from experiments conducted at different laborato-
ries for the discovery of genetic causes of the same disease,
such as lung cancer [10]. To develop strategies for effective
promotion of a product, data may have been collected from
various sources, such as A/B tests, customer surveys, and
records of previous promotional campaigns. It is desirable to
maximize the use of the richer information contained in the
multiple datasets to develop better solutions. The challenge is
that, however, existing causal feature selection methods are
not able to be applied to multiple datasets directly because

� Unreliable results will be obtained if we simply pool
the multiple datasets together and then apply an
existing causal feature selectionmethod to the pooled
data. Although the multiple datasets are targeted at
the same problem, they often have been produced
from different experiments or sources, thus do not
have identical distributions. For instance, to identify
the impact of genes on a disease, in an experiment,
the expression levels of some genes are manipulated
(intervened), and then the expression changes of the
marker genes of the disease are observed. As in differ-
ent experiments different genes may be intervened,
the distributions of the datasets obtained from these
experiments may not be identical. Then in the pooled
data, due to the different/inconsistent distributions,
the relationship between a feature and the target attri-
bute may not be detected any more (while it might be
observed in a single dataset).

� It will not work well either if we apply an existing
causal feature selection method to each dataset indi-
vidually and then take the commonly selected features,
because in this case we will lose useful information
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provided by the different datasets. For instance, sup-
pose that a gene is important for predicting a disease,
but it is manipulated in one training dataset while not
in another, the commonly selected features from
these datasets may not include the important gene for
predicting the disease.

To tackle these problems, in the paper, we propose a
multi-source causal feature selection approach by utilizing
the concept of causal invariance [18], [22] in causal inference.
The main idea behind causal invariance is that although in
the experiments from which these datasets were obtained,
different variables might have been intervened (resulting
in different probability distributions of the datasets), since
the datasets are for the same system, the underlying causal
mechanism of the system should keep invariant across the
experiments.

Based on the observations, we assume that there exists an
invariant set S� such that the conditional distribution of the
class attributeC,P ðCjS�) maintains the same across the data-
sets. As we will show in Section 4.2 (Theorem 6) that the set
of direct causes (parents) of C is such an invariant set. As the
ultimate goal of feature selection is to achieve good predic-
tions, we would like to find a set of features S� which not
only satisfy the invariant property across the datasets, but
also can maximize P ðCjS�). Our goal is to search for such a
feature set S�.

In recent years, causal invariance has been employed to
tackle domain adaptation problems [15], [23]. Particularly,
based on causal invariance, a newmethodwas proposed [15]
to select a set of features that makes the predictions adapt-
able to a different domain. Our work is closely related to the
existing work for cross-domain predictions since the causal
features learnt from multiple training datasets carries richer
andmore reliable causal knowledge, and thus give more sta-
ble predictions in domains with different external environ-
ment/interventions. However, our work is mainly driven by
the idea of better utilizing information in multiple sources to
select a set of causal features for stable predictions, and the
method is designed without assumed source (training) or
target (testing) domains as in the previous work for domain
adaptation.

The contribution of this paper can be summarized as
follow:

� We analyze the properties of causal invariance for
feature selection with multiple datasets, formulate
the problem of multi-source causal feature selection
as a search problem for an invariant set, and represent
the search criterion using mutual information. More-
over, we give the upper and lower bounds of the
invariant sets.

� Based on the theories established in the first contribu-
tion above, we propose a new Multi-source Causal
Feature Selection algorithm MCFS. The effectiveness
and efficiency of the MCFS algorithm are validated
by a series of experiments using synthetic and real
world data.

The rest of the paper is organized as follows. Section 2
reviews the related work, and Section 3 gives notations
and definitions. Section 4 analyzes causal feature selection
with multiple datasets, while Section 5 proposes our new

algorithm. Section 6 describes and discusses the experi-
ments and Section 7 concludes the paper.

2 RELATED WORK

In the big data era, high-dimensional datasets have beco-
me ubiquitous in various applications [33]. And thus, feature
selection is pressing more than ever, and thus many feature
selection methods have been proposed. The most existing
feature selection methods fall into three main categories,
filter, wrapper, and embedded methods [13]. Filter feature
selection methods are classifier independent, the other two
types of methods are not. Excellent reviews of classical fea-
ture selection (i.e., filter, embedded, wrapper) algorithms
can be found in [6], [12], [13] and the reference therein.

Causal feature selection has attracted much attention in
recent years, since by bringing causality into play, it natu-
rally provides causal interpretation about the relationships
between features and the class attribute, enabling a better
understanding of the mechanisms behind data [1], [11].
Additionly, the MB of the class attribute is a minimal set of
features which renders the class attribute statistically inde-
pendent from all the remaining features conditioned on the
MB [19]. Causal feature selection did not become practical
until Tsamardinos and Aliferis [26] proposed the IAMB
family of algorithms, such as IAMB [26], inter-IAMB [28],
IAMBnPC [28], and Fast-IAMB [30]. These algorithms atte-
mpt to find parents and children (PC) and spouses of a target
variable simultaneously.

However, the IAMB family of algorithms is not able to
distinguish parents and children from spouses of the target.
In addition, they require a large number of data samples at
least exponential to the size of the MB of the target, and thus
they would not scale to thousands of variables in most real-
world datasets with small numbers of data samples. To miti-
gate the problem, a divide-and conquer approach was pro-
posed. The ideas behind the approach are that instead of
discovering PC and spouses of a target variable simulta-
neously, it first finds the PC of the target, then discovers its
spouses. The representative algorithms include HITION-
MB [1], [2], MMMB [27], PCMB [20], and STMB [9]. How-
ever, existing causal feature selection algorithms only focus
on selecting features from a single (training) dataset. Thus,
there is a need for causal feature selection to specially select-
ing features frommultiple datasets.

Recently, Yu et al. [31] theoretically analyzed under what
conditions the correct MB of a target variable can be found
and under what conditions the causes of the target variable
are able to be identified via discovering its MB frommultiple
interventional datasets. And some methods have utilized
the idea of causal invariance [18] for learning causal struc-
tures from multiple interventional datasets. Peters et al. [22]
proposed the ICP algorithm to discover a target variable’s
direct causes from multiple interventional datasets by using
the causal invariance. Zhang et al. [34] proposed an enha-
nced constraint-based algorithm for learning causal str-
uctures from heterogeneous data. And Mooij et al. [16]
proposed a novel framework to unify causal structure learn-
ingwithmultiple interventional datasets.

However, the existing work uses the idea of causal invari-
ance to discover causal structures, instead of finding causal
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features for building prediction models. In addition, [16]
and [34] are both computational expensive or prohibitive
when datasets contain large number of variables, and they
need to specify a set of context variables (e.g., prior knowl-
edge of interventions) to help causal structure learning,
whichmay not be practical inmany real-world applications.

Magliacane et al. [15] proposed a novel method to address
domain adaptation problem, specifically transferable predic-
tions. The idea behind [15] is to employ causal invariance to
find a separating set to be used in the predictions in target
domains. The proposed algorithm first uses a standard fea-
ture selection method such as Random Forests to generate a
list of candidate feature sets, then identifies a set satisfying
the invariance as a separate set. Both our work and the
method in [15] utilize the idea of causal invariance and the
causal features obtained by our method can also be used for
predictions in different domains. However, they have the
following differences: (1) Themethod in [15] needs to specify
context variables while our work does not; (2) [15] assumes
that datasets in the source domains (or the multiple training
datasets) have the same distribution while our work deals
with training datasets with different distributions; (3) As we
will see later, our work can be scalable to thousands of varia-
bles, but as presented in [15], the method in practice only
dealt with several variables; and (4) As introduced in
Section 5, our method makes use of source domain data
only, and it starts with candidate features selected from indi-
vidual datasets by a causal feature selection method and
then uses the invariance to select those canmake stable pred-
ications; whereas the method in [15] utilizes data in both
source and target domains, and starts with the candidate fea-
ture sets selected by a normal (non-causal) feature selection
method and then uses causal inference method to filter out
features that would not transfer to the target domain.

In summary, there is a lack of effective feature selection
methods for selecting causal features from multiple data-
sets, thus, in this paper, we will focus on tackling causal fea-
ture selection with multiple datasets for stable predictions.

3 NOTATIONS AND DEFINITIONS

In this section, we discuss some key concepts involved in
tackling causal feature selection with multiple datasets. Spe-
cifically, Section 3.1 presents the concepts of Bayesian net-
works and Markov blankets w.r.t causal feature selection,
and Section 3.2 discusses the intervention theory in causal
inference, which is related to the idea of causal invariance.

LetD ¼ fD1; D2; . . . ; DKg beK training datasets. 8i 2 f1;
. . . ; Kg, Di is defined by fF;Cg, i.e., the datasets all contain
the same set of features F ¼ fF1; F2; . . . ; FNg and the class
attribute C. Let �i ð�i�F Þ be the features manipulated in

the ith experiment, and �¼f�1; . . . ;�Kg theK intervention
experiments producing D1; . . . ; DK , respectively. Note
that in this paper we assume that the class attribute is not
intervened in any of the experiments (more details in
Section 3.2) (In the following, we use the two terms, class
attribute and target variable, interchangeably). We use n to
denote set subtraction. For simplicity, we abuse the nota-
tion and write F nfFig as F nFi to indicate all features in
F excluding Fi. Fi and Fj (i 6¼j) are said to be conditio-
nally independent given S � FnfFi; Fjg if and only if
P ðFi; FjjSÞ ¼ P ðFijSÞP ðFjjSÞ. We use Fi??FjjS and
Fi 6??FjjS to represent that given S, Fi is conditionally inde-
pendent of and dependent on Fj, respectively.

For the convenience of presentation, we let FNþ1¼C and
F ¼ fF1; F2; . . . ; FN; FNþ1g, representing the set of all varia-
bles under consideration, including all the features and the
class attribute.

3.1 Bayesian Network and Markov Blanket

Let P be the joint probability distribution of D and repre-
sented by a directed acyclic graph (DAG) G over F . A
Bayesian network is defined as follows.

Definition 1 (Bayesian network) [19]. The triplet hF ; G; P i
is called a Bayesian network if hF ; G; P i satisfies the Markov
condition: every variable is independent of any subset of its
non-descendants conditioned on its parents in G.

In this paper, we consider causal Bayesian network (CBN), a
BN inwhich an edgeX ! Y indicates thatX is a direct cause
of Y [18]. For simple presentation, however, we use the term
BN instead of CBN.

For example, Fig. 1a shows a simple yet typical BN [18]. A
Bayesian network encodes the joint probability P over a set
of variablesF and decomposes P into a product of the condi-
tional probability distributions of the variables given their
parents in G. Let paðFiÞ represent the set of parents of Fi in
F . We have the following decomposition of P :

P ðFÞ ¼
YNþ1

i¼1
P ðFijpaðFiÞÞ: (1)

Definition 2 (Faithfulness) [19]. Given a Bayesian network
< F ; G; P > , G is faithful to P if and only if every condi-
tional independence present in P is entailed by G and the Mar-
kov condition. P is faithful if and only if there exists a DAG G
such that G is faithful to P .

Let chðFiÞ and spðFiÞ represent the sets of children and
spouses of Fi in F , then the Markov blanket of Fi in a BN is
defined as follows.

Definition 3 (Markov blanket) [19]. Under the faithfulness
assumption, the Markov blanket of Fi 2 F in a BN, noted as
MBðFiÞ, is unique andMBðFiÞ ¼ fpaðFiÞ [ chðFiÞ [ spðFiÞg.

3.2 Interventions in BNs

To represent the intervention on a variable in an intervention
experiment, Pearl [18] proposed the do operator doðX ¼ xÞ to
indicate that the value of variable X is set to a constant x by
the intervention. If we use a DAG to represent the causal
relations between variables in F , an intervention on a vari-
able can be indicated by deleting all the edges pointing to the

Fig. 1. Example of BN and interventions. (a) A simple BN representing
dependencies among five variables; (b) An example of an intervention
on variable “sprinkler”.
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variable [18]. For example, to represent the intervention
“turning the sprinkler On” (i.e., doðsprinkler ¼ onÞ) in the
network as shown in Fig. 1b, the link from F1 to F2 is deleted
and F2 is assigned the value “On”.

Property 1 [18]. P ðFjjpaðFjÞÞ ¼ P ðFjjdoðpaðFjÞ ¼ zÞÞ if Fj =2 �i

where z is a set of constant values of paðFjÞ.
Property 2 [18]. Assuming S � F n fFj; paðFjÞg, if Fj =2 �i,

P ðFjjdoðpaðFjÞ ¼ zÞÞ; SÞ ¼ P ðFjjdoðpaðFjÞ ¼ zÞÞ.
Property 1 ensures that P ðFjjpaðFjÞÞ coincides with the

effect (on Fj) of setting paðFjÞ to the chosen values. Prop-
erty 2 illustrates that once we control the direct causes of Fj

(i.e., paðFjÞ), no other interventions will affect the probabil-
ity of Fj. The DAG obtained after all the interventions of an
intervention experiment are represented by the edge dele-
tions is known as a post-manipulation DAG, and it is formal
definition is given in the following.

Definition 4 (Post-manipulation DAG) [18]. Let G ¼ ðF ;
EÞ be a DAG with variable set F and edge set E. After the
intervention on the set of variables �i (represented as doð�i ¼
gÞ), the post-manipulation DAG of G is Gi ¼ ðF ; EiÞ where
Ei ¼ fða; bÞjða; bÞ 2 E; b =2 �ig. The joint distribution of the
post-manipulation DAG Gi with respect to the set �i can be
written as

P ðF jdoð�i ¼ gÞÞ ¼
Y

Fj2Fn�i

P ðFjjpa0ðFjÞ; doðpa00ðFjÞ ¼ gÞ;

(2)
where pa0ðFjÞ � F n�i and pa00ðFjÞ � �i. By Properties 1
and 2, P ðFjjpa0ðFjÞ; doðpa00ðFjÞ ¼ gÞ is the same as the condi-
tional probability of Fj in Eq. (1) if Fj is not intervened, i.e.,
P ðFjjpaðFjÞÞ remain invariant to interventions not involving
Fj , while P ðdoðFj ¼ gÞjpaðFjÞÞ ¼ 1 if Fj is intervened.

For example, the post-manipulation DAG resulting from
the intervention on variable “sprinkler” as shown in Fig. 1b
is P ðF1; F2; F3; F4; F5jdoðF2=OnÞÞ ¼ P ðF1ÞP ðF3jF1ÞP ðF4jF3;
F2 ¼ OnÞP ðF5jF4Þ.

4 MULTI-SOURCE CAUSAL FEATURE SELECTION

As mentioned in the Introduction section, we formulate the
problem of multi-source causal feature selection as a search
problem for an invariant set across all the training datasets
D ¼ fD1; D2; . . . ; DKg. Assuming 8Di 2 D and 8Dj 2 D
ði 6¼ jÞ, an invariant set S acrossD is defined as follows.

Definition 5 (Invariant set). An invariant set S across D sat-
isfies PiðCjSÞ ¼ PjðCjSÞ, for 8Di;Dj 2 D.

As the goal of feature selection is to select a subset S � F to
maximize P ðCjSÞ, givenD, we would like to find a set of fea-
tures S� which is not only an invariant set across D, but also
can maximize P ðCjSÞ. Accordingly, the problem of causal
feature selection with D is defined that given any dataset
Di 2 D, then

S� ¼ argmaxS�FP
iðCjSÞ

s:t: P iðCjSÞ ¼ PjðCjSÞ ð8j; j 6¼ iÞ: (3)

To tackle Eq. (3), in the following, Section 4.1 proposes
the rationale of maximizing P ðCjSÞ for optimal prediction.

Section 4.2 discusses the lower and upper bounds of S in
Eq. (3) for search efficiency, and Section 4.3 analyzes the
properties of the upper bound of S inD.

4.1 Rationale of Maximizing P ðCjSÞ for Optimal
Prediction

For a subset S � F , why S is optimal for feature selection
when S maximizes P ðCjSÞ? We discuss the question using
mutual information and the Bayes error rate. For classifica-
tion, theminimumachievable classification error by any clas-
sifier is called the Bayes error rate [8]. The Bayes error rate is
used for justifying P ðCjSÞ for optimal prediction since it is
the tightest possible classifier-independent lower-bound by
depending on predictive features and the class attribute
alone.

Let IðFi; FjÞ denote the mutual information of Fi and Fj,
we can formulate S� ¼ argmaxS�FP ðCjSÞ as S� ¼ argmaxS�F

IðS;CÞ, that is, maximizing IðS;CÞ is equivalent to maxi-
mizing P ðCjSÞ [6]. Let Perr represent the Bayes error rate
andHðPerrÞ�1 be the inverse of the entropyHðPerrÞ, given C
and S � F , the upper bound of Perr is given as Eq. (4)
below [25]

HðPerrÞ�1 � Perr � 1=2HðCjSÞ: (4)

Eq. (4) illustrates that minimizing HðCjSÞ minimizes the
Bayes error rate. By the term IðC;SÞ ¼ HðCÞ �HðCjSÞ, max-
imizing IðC;SÞ is equivalent to minimizing Perr. Accord-
ingly, maximizing P ðCjSÞ is equivalent tominimizing Perr.

4.2 Bounds of S in Eq. (3)

In this section, using the concept of MBs in a BN, we will
first discuss what S is exactly in Eq. (3) when D only con-
tains a single training dataset that is sampled from the same
distribution as the test dataset (K ¼ 1), then explore the
bounds of S in Eq. (3) asK > 1.

Theorem 1 [19]. Suppose MBðCÞ is the MB of C in a BN,
8S � F n fMBðCÞ [ Cg; P ðCjMB;SÞ ¼ P ðCjMBÞ.
By Theorem 1, Theorem 2 is achieved and it states that

for 8S � F , IðC;MBðCÞÞ � IðC;SÞ with equality if and
only if S ¼ MBðCÞ. By Theorem 2, we can see that all infor-
mation that may influence the values of C is stored in the
values of features ofMBðCÞ.
Theorem 2. IðC;MBðCÞÞ is maximal.

By Theorem 2 and Eq. (4), Theorem 3 below is achieved.
Theorem 3 illustrates that MBðCÞ is the optimal solution to
Eq. (3) when K ¼ 1 and the training and testing dataset are
both generated from the same data distribution.

Theorem 3. MBðCÞ minimizes the Bayes error rate.

Given multiple training datasets D (K > 1), if the
manipulated variables in both D and the testing dataset are
not known, then what causal invariance properties will
present in D? With these properties, what are the lower and
upper bounds of S in Eq. (3)? Assuming that the class attri-
bute C is not intervened and faithfulness holds, we discuss
the first question above with Theorems 4 and 6, and the sec-
ond one with Theorem 7 below.
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Theorem 4. Suppose MBðCÞ is the MB of the class attribute C,
if for 8�i 2 � and 8�j 2 � ði 6¼ jÞ, chðCÞ~�i and chðCÞ
~�j, P

iðCjMBðCÞÞ ¼ PjðCjMBðCÞÞ holds.
According to Theorem 3, Theorem 4 states that if for all

variables in chðCÞ are not manipulated in any datasets in D,
MBðCÞ is the largest invariant set across all datasets in D.
Theorems 5 and 6 below illustrate that if C are not manipu-
lated in any datasets in D, paðCÞ is not only an invariant set
but also a minimal one across all datasets inD.

Theorem 5. For 8Di 2 D and 8Dj 2 D ði 6¼ jÞ, PiðCjpaiðCÞÞ ¼
PjðCjpajðCÞÞ.

Theorem 6. paðCÞ is the minimal and invariant set across D
with regard to C.

By Theorems 4, 5, and 6, without variable manipulation
information in D, the bounds of S in Eq. (3) is given in
Theorem 7.

Theorem 7. In Eq. (3), paðCÞ � S � MBðCÞ.
By Theorem 7, Eq. (3) is rewritten as Eq. (5) below:

S� ¼ argmaxS�MBðCÞPiðCjSÞ
s:t: P iðCjSÞ ¼ PjðCjSÞ ð8j; j 6¼ iÞ: (5)

4.3 Properties ofMBðCÞ in Multiple Datasets

How do we find MBðCÞ from D without any variable
manipulation information in each dataset? We discuss the
problem with Theorems 8, 9, and 10 below.

Definition 6 [9]. � is conservative, if 8Fj 2
S K

i¼1�i, 9�i 2 �
such that Fj =2 �i.

Definition 6 states that given the set of K interventional
experiments, if for any variable that is intervened, we can
always find an experiment inwhich the variable is notmanip-
ulated, then we say that the set of interventional experiments
is conservative.

Theorem 8. If � is conservative and MBiðCÞ represents MB
ðCÞ inDi, the union

S K
i¼1MBiðCÞ ¼ MBðCÞ holds.

Theorem 9. If � is not conservative, paðCÞ � S K
i¼1MBiðCÞ �

MBðCÞ.
Theorem 8 states that if � is conservative, the union of

MBðCÞ in each dataset of D exactly equals MBðCÞ; if not,
Theorem 9 shows that the union ofMBðCÞ is between paðCÞ
andMBðCÞ. By Theorems 8 and 9, we get Theorem 10 as fol-
lows, which illustrates that paðCÞ is the minimal invariant
set acrossDwhatever� is conservative or not.

Theorem 10. No matter � is conservative or not, paðCÞ �S K
i¼1MBiðCÞ.

Theorems 8, 9, and 10, on the one hand, further illustrate
the bounds shown in Theorem 7; on the other hand, these
theorems discuss the properties of MBðCÞ in D containing
multiple interventional datasets without variable manipula-
tion information. This also gives the basic ideas of finding
MBðCÞ from D by the algorithm presented in the next
section.

5 THE PROPOSED MCFS ALGORITHM

To solve Eq. (5), we propose theMulti-Source Causal Feature
Selection (MCFS) algorithm (Algorithm 1) which has three
phases. Phase 1 is carried out in Steps 2 to 5 for finding
MBðCÞ in D, Phase 2 is done in Steps 6 to 26 for discovering
candidate invariant sets from D, and Phase 3 lies in Step 27
for selecting S� from these candidate invariant sets.

Algorithm 1. The MCFS Algorithm

Input: D ¼ fD1; D2; . . . ; DKg, C: the class attribute, a: signifi-
cance level

Output: S�

1: MBðCÞ ¼ ;; r ¼ ;; SelFea ¼ ;;
2: for i=1 to K do
3: /*FindMBiðCÞ in datasetDi;
4: MBðCÞ ¼ MBðCÞ [MBiðCÞ;
5: end
6: for S � MBðCÞ do
7: avgMI ¼ 0;
8: for i=1 to K do
9: MIðiÞ ¼ ;, IiðC;SÞ=0;
10: for j=1 to jSj do
11: /* computingMIðiÞ onDi by Eq. (10)
12: MIðiÞ ¼ MIðiÞ [ IiðC;FjÞ ðFj 2 SÞ;
13: IiðC;SÞ ¼ IiðC;SÞ þ IiðC;FjÞ;
14: end
15: aveMI ¼ aveMI þ 1

jSj I
iðC;SÞ;

16: end
17: aveMI ¼ 1

K aveMI ;
18: for i=1 to K do
19: /* using t-test to calculate whether the mean ofMIðiÞ is

identical to aveMI

20: ri=get-p-value (MIðiÞ, aveMI);
21: r ¼ fr [ rig;
22: end
23: ifminðrÞ � a then
24: SelFea ¼ SelFea [ S;
25: end
26: end
27: output S� with the highest prediction accuracy from SelFea.

5.1 Phase 1 (Steps 2 to 5): DiscoveringMBðCÞ
from D

By the analysis in Section 4.3, Phase 1 employs the HITON-
MB algorithm, one of the best MB discovery algorithms [1]
(any other up-to-date MB algorithms can be used here) to
find MBiðCÞ in Di, then union the found MBs in each data-
set asMBðCÞ.

5.2 Phase 2 (Steps 6 to 26): Finding Candidate
Invariant Sets inMBðCÞ

Mutual Information for Computing P ðCjSÞ. In Eq. (5), it is diffi-
cult to calculate P ðCjSÞ especially for a large sized S [17].
Thus, Phase 2 uses mutual information as an alternative to
compute P ðCjSÞ as follows. Given dataset Dj 2 D; j 2 f1;
. . . ;Kg, let pðCjS;DjÞ denote the true class distribution of Dj

and qðCjS;DjÞ represent the predicted class distribution ofDj

given S. Then the conditional likelihood ofC given S is calcu-
lated by LðCjS;DjÞ ¼

QM
i¼1 qðcijsiÞwhereM is the number of

data instances inDj, c
i represents a value of C in the ith data
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instance, and si denotes a value set of S in the ith data
instance. The (scaled) conditional log-likelihood ofLðCjS;DjÞ
is computed by

‘ðT jS;DjÞ ¼ 1

M

XM
i¼1

log qðcijsiÞ: (6)

By [6], Eq. (6) can be rewritten as Eq. (7) where fi denotes a
value set of F in the ith data instance1.

� ‘ðT jS;DjÞ ¼ Ecs

�
log

pðcijsiÞ
qðcijsiÞ

�
þ Ecf

�
log

pðcijfiÞ
pðcijsiÞ

�

� Ecf

�
log pðcijfiÞ

�
:

(7)

Eq. (7) can be further rewritten as Eq. (8) where S ¼ F n S

lim
M!1

�‘ðCjS;DjÞ ¼ KLðpðCjSÞjjqðCjSÞÞ þ IðC;SjSÞ þHðCjF Þ:
(8)

Since in Eq. (8),KLðpðCjSÞjjqðCjSÞÞwill approach zerowith a
largeM, by IðC;F Þ ¼ IðC;SÞ þ IðC;SjSÞ and Eq. (11), Eq. (8)
can be rewritten as Eq. (9) below:

limN!1�‘ðCjS;DjÞ 	 HðCÞ � IðC;SÞ: (9)

For each dataset in D, since C is not intervened, we
assume the probability of C keeps same and thus HðCÞ will
be the same across different datasets. Then for a subset of
features S, if IðC;SÞ in Di and IðC;SÞ in Dj are identical, S
carries the equivalent information for predicting C.

Finding Candidate Invariant Sets. By the observations dis-
cussed above, for each subset S � MBðCÞ, Phase 2 tests
whether IiðC;SÞ in Di and IjðC;SÞ in Dj for 8i; j 2 1; . . . ; K
are identical to identify a candidate invariant S. For compu-
tational efficiency, we use the well-known approach in
Eq. (10) to approximately calculate IðC;SÞ [21]

IðC;SÞ ¼ 1

jSj
X

Fi2S
IðFi;CÞ; (10)

where jSj is the size of the set S. At Step 12, MIðiÞ is a set
which stores mutual information of each feature in S with C
in Di. For data with discrete values, we calculate symmetri-
cal uncertainty [32] instead of IðFi;CÞ, which is defined by

SUðFi; CÞ ¼ 2IðFi;CÞ
HðFiÞþHðCÞ. The advantage of SUðFi; CÞ over

IðFi;CÞ is that SUðFi; CÞ normalizes the value of IðFi;CÞ
between 0 and 1 to compensate for the bias of IðFi;CÞ toward

features with more values. For data with numeric values,
IðFi;CÞ ¼ 1

2 log ð1� r2Þ where r is the Pearson correlation

coefficient [7]. At Step 17, avgMI is the average value of

IðC;SÞ overK training datasets.
To determine whether a subset S is an invariant set, for

IiðC;SÞ inDi and IjðC;SÞ inDj for 8i; j 2 1; . . . ; K and i 6¼ j,
Steps 18 to 22 need to examine if each of them is identical. To
avoid pairwise comparisons, the idea behind Steps 18 to 22 is
that if 9S 2 F such that for 8i 2 1; . . . ; K, IiðC;SÞ is identical
to 1

K

PK
i¼1 I

iðC;SÞ, S is considered as an invariant set. Spe-

cially, Steps 18 to 22 calculate whether 8i 2 f1; . . . ; Kg, the
mean ofMIðiÞ is identical to avgMI using t-test, and keep the

corresponding p-value in the vector r. From Steps 23 to 25, if
theminimumvalue in r is bigger or equals to a, S is added to
SelFeawhich stores candidate invariant sets.

5.3 Phase 3 (Step 27): Finding the Best S� from the
Candidate Invariant Sets by Using Prediction

In this step, for each subset S in SelFea, first, MCFS trains a
classifier on each dataset in D independently, then gets K
classifiers. Second,MCFS uses theK classifiers for predicting
the class labels of data instances in the testing dataset indi-
vidually. Third, in the testing dataset, the class label of each
data instance has the K predicted class labels. When K ¼ 2,
i.e., D only includes two training datasets, if the two pre-
dicted labels are the same, for a data instance in the testing
dataset, then it is assigned the predicted class label. If not,
the class label of the data instance is randomly assigned.
When K > 2, MCFS uses the majority voting method. In
this case, the class label of each data instance in the testing
dataset is the most frequent one among theK predicted class
labels. Fourth, by comparing the predicted labels with the
groud-truth of labels in the testing dataset, the prediction
accuracy of S will be computed. Finally, MCFS outputs the
subset S� with the highest prediction accuracy.

5.4 Time Complexity

The time complexity of MCFS lies in Phase 1 and Phase 2.
Phase 1 employs HITON-MB for discovering MBs in each
dataset. Given a single dataset, HITON-MB first finds PCðCÞ
(parents and children of C). Then it discovers the spouses of
C, for which HITON-MB needs to find the parents and chil-
dren of each variable in PCðCÞ. In Phase 1, MCFS requires
OðjF jjPCðCÞj22jPCðCÞjÞ conditional independence tests (or
mutual information computations). In Phase 2, let [MBðCÞ
represent the union of MBs of C found from all datasets, the
time complexity ofMCFS isOð2j[MBðCÞjÞ. Therefore, the over-
all time complexity ofMCFS isOð2maxðj[MBðCÞj;jPCðCÞjÞÞ.

6 EXPERIMENTS

The goals of our experiments include: (1) evaluating the
performance of the proposedMCFS algorithm, in comparison
with existing MB discovery methods and other algorithms.
We extensively evaluated our method through a series
of experiments with synthetic and real world datasets
(Sections 6.1 and 6.2); (2) Validating the lower and upper
bounds of the invariant set proposed in Section 4.2 along with
Theorems 6 and 7 using synthetic data (Section 6.1).

As there are no algorithms specifically developed for
causal feature selection with multiple datasets for the experi-
ments, we employ three representative causal feature selec-
tion methods, HITON-MB [2], IAMB [28], and STMB [9], two
well-knownmutual information based feature selectionmeth-
ods, FCBF [32] andmRMR [21], and the ICP algorithm [22].

Except for ICP, which is designed for finding causes from
multiple datasets, the other five algorithms are designed for
feature selection from a single dataset, so we apply these five
algorithms to multiple datasets (for comparing with our pro-
posed algorithm) in three different ways:

� Use individual feature sets. We first use an algorithm to
select features from each training dataset, then use

1. Please refer to Section 3.1 in [6] for the details on how to get
Eqs. (6) and (7) in this paper.
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the set of selected features to train a classifier with
the dataset.

� Use the intersection. We first select features from each
training dataset, then train a classifier with the data-
set using the intersection of the feature sets obtained
from individual datasets.

� Use the union. We first select features from each train-
ing dataset, then train a classifier using the union of
the feature sets selected from individual datasets.

With all the three approaches, for a test sample, we
combine the prediction results by the trained classifiers via
majority voting. Together with ICP, the three experiment con-
figurations of applying the five rival algorithms give us 16 dif-
ferentmethods for comparison as summarized in Table 1.

To evaluate the performance of the feature selection meth-
ods listed in Table 1 for classification, we use three types of
classifiers, Naive Bayes (NB), K-Nearest Neighbor (KNN),
and Support Vector Machine (SVM). In all tables in this
section about experiment results, the best results are
highlighted in bold-face, and A 
 B denotes that A is the
average accuracy andB is the standard deviation.

6.1 Experiments on Synthetic Data

Given a benchmark Bayesian network, we are able to read the
MB of each variable in the network. Therefore, we can choose
the variables in the MB of a target variable to intervene on
their values as described in Section 3 to generate training and
testing datasets and make the training and testing datasets
not identically distributed. Then we apply our MCFS and the
other competingmethods listed in Table 1 to the trainingdata-
sets to select features and evaluate the performance of the
classifiers trained using the selected features by each method.
As mentioned earlier, the experiments in this section with the
synthetic data are for evaluating the performance of MCFS in
classification (presented in Sections 6.1.1 (1A) and 6.1.2 (2A)),
and for validating the bounds proposed in Theorems 6 and 7
(presented in Sections 6.1.1 (1B), 6.1.1 (1C), 6.1.2 (2B), and
6.1.2 (2C))).

We generate the training and testing datasets using a
benchmark Bayesian network, the 37-variable A Logical
Alarm Reduction Mechanism (ALARM) network [4],2 as
shown in Fig. 2. Two groups of datasets are generated by
choosing the variables “HR” and “VTUB” respectively (the
green nodes in Fig. 2) as the class attributes. The two varia-
bles have the largest sizes of MBs among all variables in the
network. When generating an intervention dataset from
the ALARM network, we randomly choose the variables in
theMB of “HR” (or “VTUB) to intervene on them.

By Table 2, with each of the two chosen class attributes, we
conduct two sets of experiments, E5 with 5 training datasets
and 1 testing dataset; and E10 with 10 training datasets and 1
testing dataset. In addition, for E5 and E10 respectively, we
conduct two experiments, one where each dataset contains
500 samples and another one where each dataset contains
2,000 samples. That is, for each of the two chosen class attrib-
utes, we conduct 4 experiments in total, E5-500, E5-2000, E10-
500 and E10-2000. Each experiment is carried out for 5 runs,
and for each experiment we compute and report the average
prediction accuracy (i.e., the ratio of the number of correct
predictions and total number of testing samples).

In the experiments, the significance level a for condi-
tional independence tests for HITON-MB, IAMB, STMB,
and MCFS is set to 0.01, while the threshold for FCBF is set
to 0.01. Since the MBs of “HR” and “VTUB” are known in
the network, the user-defined parameter k of mRMR is set
to the size of the MB of “HR” and “VTUB”, respectively.

6.1.1 Experiment Results on “HR”

“HR” has the largest MB among all variables in the network
and it has three distinct class labels (multiple classes). Its
MB includes one parents, four children, and three spouses.

TABLE 1
Summary of Compared Methods in Our Experiments

ID Method Output

1 ICP Parents (direct causes) of C discovered from multiple
training datasets

2 HITON-MB MB of C found from a training dataset
3 IAMB MB of C found from a training dataset
4 STMB MB of C found from a training dataset
5 mRMR Features selected by mRMR from a training dataset
6 FCBF Features selected by FCBF from a training dataset
7 [HITON-MB Union of the MB of C found from each training dataset

by HITON-MB
8 \HITON-MB Intersection of the MB of C found from each training

dataset by HITON-MB
9 [ IAMB Union of the MB of C found from each training dataset

by IAMB
10 \ IAMB Intersection of the MB of C found from each training

dataset by IAMB
11 [ STMB Union of the MB of C found from each training dataset

by STMB
12 \ STMB Intersection of the MB of C found from each training

dataset by STMB
13 [mRMR Union of the features selected by mRMR from each

training dataset
14 \mRMR Intersection of the features selected by mRMR from each

training dataset
15 [ FCBF Union of the features selected by FCBF from each

training dataset
16 \ FCBF Intersection of the features selected by FCBF from each

training dataset

Fig. 2. The ALARM Bayesian network.

TABLE 2
Synthetic Datasets Used in the Experiments

Experiments
Number of

training datasets
Number of

testing datasets
Number of samples

in a dataset

E5-500 5 1 500
E5-2000 5 1 2000
E10-500 10 1 500
E10-2000 10 1 2000

2. Refer to www.bnlearn.com/bnrepository for the details of the
network.
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(1A) Performance of MCFS versus its rivals. In this part, we
compare MCFS with the first six methods shown in Table 1
in terms of their prediction accuracy using the features
selected by them (Table 3), the number of features selected
from the trueMB of “HR”, and their running time (Table 6).

Table 3 shows that in all cases, MCFS is significantly better
than all its rivals, including ICP, HITON-MB, IAMB, STMB,
mRMR and FCBF, when the rivals only simply select features
from each dataset and train a classifier individually. Note that
for a feature selection algorithm, if it returns an empty set on a
multiple dataset, we consider that the algorithm fails on the
dataset and the corresponding prediction accuracy is 0.

In Experiment E5-500 (with 5 training datasets and 500
samples in each dataset), ICP returns a non-empty feature
set in three out of five runs (see Table 3). The only feature
selected by ICP in each of the three runs is “CCHL”, i.e., the
parent of “HR”. When the number of data samples of each
training dataset is set to 2,000, the only successful run of ICP
returns two features, the parent and one child of “HR”. In
Experiment E10-500 (with 10 training datasets and 500 sam-
ples each), ICP succeeds in two out of the five runs, and
returns the parent of “HR” in one run and the parent and
one child of “HR” in the other run. In Experiment E10-2000,
ICP fails in all five runs without returning any features. Our
observation shows that ICP does not necessarily guarantee
to find the parents of a given target frommultiple datasets.

From Table 3, the performance of HITON-MB, IAMB,
STMB, mRMR, and FCBF seems to be competitive overall,
but our algorithmMCFS still achieves higher prediction accu-
racy in all experiments. Using the KNN and SVM classifiers,
when the number of datasets is set to 5, mRMR and FCBF
achieve higher prediction accuracy than HITON-MB, IAMB,
and STMB. On computational efficiency, from Table 6, ICP
spends much more time than all the other algorithms. Com-
pared to HITON-MB, IAMB, STMB, mRMR, and FCBF,
MCFS has a reasonable running time and selects fewer fea-
tures than these five algorithms.

In summary, from Table 3, the proposed MCFS algorithm
is able to deal with the situation better than the other six
algorithms where the training and testing datasets are not
identically distributed.

(1B) Performance of MCFS, methods using intersections of fea-
ture sets, and the true parents of “HR”. In Section 4, Theorems 6

and 7 state that the set of all parents of the class attribute is
the minimal and invariance subset across multiple interven-
tional datasets when the class attribute is not manipulated.
From the ALARM network, we can read the parents of
“HR”. Thus, in this part, we compare the prediction accuracy
of the true parent of “HR”, the set of features selected by
MCFS, and the intersection of the sets selected by each other
five algorithms on each training dataset, i.e., methods \
HITON-MB, \ IAMB,\ STMB,\mRMR, and\ FCBF.

In Table 4, “TrueParent” denotes the ground-truth
parents of “HR” in the ALARM network, that is, “CCHL”.
We use the ground-truth parent of “HR” to train a classifier
on each training dataset, and use majority voting to combine
the prediction results on testing data attained.

From Table 4, we can see that MCFS achieves higher pre-
diction accuracy than the other five methods using the inter-
sections of selected feature sets (i.e., \HITON-MB, \ IAMB,
\ STMB, \mRMR, and \ FCBF), andMCFS achieves similar
prediction accuracy as that using the true parent as the fea-
ture. For \ HITON-MB, \ IAMB, \ STMB, \ mRMR, and \
FCBF, only the intersections of features selected by mRMR
and FCBF from each training dataset are not empty. When
the number of data samples is 2,000, we can see that the pre-
diction accuracy of the true parent of “HR” is much higher
than that of \mRMR and \ FCBF. When the number of data
samples is 500, the prediction accuracy of the true parent of
“HR” is higher than \mRMR and is very competitive with \
FCBF. When \ HITON-MB, \ IAMB, or \ STMB outputs a
non-empty feature set, the performance of \ HITON-MB, \
IAMB, and \ STMB is not inferior to HITON-MB, IAMB, and
STMB in Table 3.

By comparing Table 3 with Table 4, we can see that using
the intersections of features selected from multiple datasets
by mRMR and FCBF (i.e., \ mRMR and \ FCBF) gets higher
prediction accuracy than using features selected by mRMR
and FCBF. Moreover, in the experiments, we observe that the
parent of “HR” is included in the output of all of \ HITON-
MB, \ IAMB, \ STMB, \ mRMR, and \ FCBF. Especially,
when the output of \HITON-MB, \ IAMB, or \ STMB is not
empty, it only includes the parent of “HR”. In summary,
Table 4 illustrates that the different methods achieve similar
prediction performancewhen they all use the parent set, indi-
cating that the parent set is the invariant set.

TABLE 3
Prediction Accuracy of MCFS Against Its Rivals When “HR” Is the Target (In the Table, (X)* Denotes that an Algorithm

Succeeded by Returning a Non-Empty Feature Set for X Times Out of the Full 5 Runs)

Experiments HITON-MB IAMB STMB mRMR FCBF ICP MCFS

E5-500
NB 0.8486 
 0.0879 0.8420 
 0.0673 0.8324 
 0.1090 0.8164 
 0.0999 0.8668 
 0.0527 0.9133 
 0.011(3)* 0.9200 
 0.0265
KNN 0.6864 
 0.2708 0.7028 
 0.2422 0.6980 
 0.2924 0.8064 
 0.0512 0.7836 
 0.1340 0.9133 
 0.011(3)* 0.9276 
 0.0352
SVM 0.7804 
 0.0585 0.7628 
 0.0599 0.7780 
 0.0607 0.7716 
 0.0596 0.8048 
 0.0987 0.9093 
 0.0127(3)* 0.9112 
 0.0206

E5-2000
NB 0.8583 
 0.1022 0.8520 
 0.1032 0.8583 
 0.1008 0.8446 
 0.0888 0.8647 
 0.1041 0.7675 
 0(1)* 0.9172 
 0.0315
KNN 0.7134 
 0.1448 0.6879 
 0.1400 0.6960 
 0.1733 0.7771 
 0.0933 0.8106 
 0.1211 0.7675 
 0(1)* 0.9346 
 0.0414
SVM 0.7706 
 0.1091 0.7793 
 0.1070 0.7753 
 0.1089 0.8155 
 0.1183 0.8057 
 0.1350 0.7675 
 0(1)* 0.9322 
 0.0396

E10-500
NB 0.8916 
 0.0325 0.8864 
 0.0439 0.8732 
 0.0487 0.8684 
 0.0566 0.8796 
 0.0537 0.8880 
 0.0113(2)* 0.9168 
 0.0386
KNN 0.8520 
 0.1029 0.8332 
 0.1237 0.8288 
 0.1492 0.8460 
 0.0578 0.8744 
 0.0405 0.8880 
 0.0113(2)* 0.9244 
 0.0447
SVM 0.7553 
 0.1762 0.7477 
 0.1959 0.7519 
 0.1773 0.7746 
 0.1443 0.7562 
 0.1568 0.8922 
 0.0032(2)* 0.9498 
 0.0183

E10-2000
NB 0.8452 
 0.0682 0.8457 
 0.0672 0.8488 
 0.0651 0.8494 
 0.0592 0.8552 
 0.0595 0 
 0(0)* 0.9158 
 0.0349
KNN 0.8559 
 0.1078 0.8504 
 0.1215 0.8588 
 0.1036 0.8387 
 0.0511 0.8221 
 0.0783 0 
 0(0)* 0.9284 
 0.0380
SVM 0.7069 
 0.1616 0.7244 
 0.1811 0.7210 
 0.1801 0.8375 
 0.0700 0.8229 
 0.1262 0 
 0(0)* 0.9403 
 0.0342
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(1C) Performance of MCFS, methods using unions of feature
sets, and the true MB of “HR”. According to Theorem 8, when
the feature interverion conforms to the conservative rule, the
union of feature sets selected by eachMBdiscovery algorithm
from all training datasets equals to the true MB. Thus, to vali-
date Theorems 8, we compare the prediction accuracy of
using the true MB of “HR”, the features outputed by MCFS,
[HITON-MB,[ IAMB,[ STMB,[mRMR, and[ FCBF.

From Table 5, first, we can see that MCFS is significantly
better than the trueMB and the other fivemethods. This indi-
cates that with multiple interventional datasets, the true MB

of the class attribute may not be optimal for feature selection.
Second, referring to Table 4, using the true parent of “HR”
gets significantly better prediction accuracy than using the
true MB of “HR”. Thus, with multiple interventional data-
sets, when we do not know which features are intervened,
the parents of the class attribute may be a more reliable sub-
set for prediction. Third, [ HITON-MB, [ IAMB, and [
STMB achieves an accuracy very close to that of the true MB
of “HR”. This further validates Theorem 8, which demon-
strates that when the feature interventions is conservative,
the union of the MB of the class attribute discovered from

TABLE 4
Prediction Accuracy of MCFS Against the Intersections of Features Selected by Its Rivals When “HR” Is the Target (In the Table, (X)

* Denotes that an Algorithm Succeeded by Returning a Non-Empty Feature Set for X Times Out of the Full 5 Runs)

Experiments \HITON-MB \ IAMB \ STMB \mRMR \ FCBF TrueParent MCFS

E5-500
NB 0.9133 
 0.0100(3)* 0 
 0(0)* 0.9133 
 0.0100(3)* 0.8940 
 0.0313 0.9116 
 0.0132 0.9088 
 0.0100 0.9200 
 0.0265
KNN 0.9133 
 0.0100(3)* 0 
 0(0)* 0.9133 
 0.0100(3)* 0.8988 
 0.0198 0.9092 
 0.0110 0.9088 
 0.0100 0.9276 
 0.0352
SVM 0.9093 
 0.0127(3)* 0 
 0(0)* 0.9093 
 0.0127(3)* 0.9012 
 0.0134 0.9044 
 0.0144 0.9040 
 0.0123 0.9112 
 0.0206

E5-2000
NB 0.8498 
 0.1030 0.8513 
 0.0727(3)* 0.8498 
 0.1030 0.8430 
 0.0911 0.8498 
 0.1030 0.8955 
 0.0071 0.9172 
 0.0315
KNN 0.8514 
 0.0994 0.8513 
 0.0727(3)* 0.8461 
 0.1112 0.8191 
 0.0897 0.7825 
 0.1638 0.8955 
 0.0071 0.9346 
 0.0414
SVM 0.8665 
 0.0658 0.8513 
 0.0727(3)* 0.8665 
 0.0658 0.8413 
 0.1004 0.8437 
 0.1019 0.8955 
 0.0071 0.9322 
 0.0396

E10-500
NB 0.8884 
 0.0114 0.8850 
 0.0156(2)* 0.8864 
 0.0119 0.8704 
 0.0482 0.8940 
 0.0248 0.8864 
 0.0119 0.9168 
 0.0386
KNN 0.8864 
 0.0119 0.8813 
 0.0127(2)* 0.8864 
 0.0119 0.8564 
 0.0564 0.8936 
 0.0240 0.8864 
 0.0119 0.9244 
 0.0447
SVM 0.8669 
 0.0664 0.8962 
 0.0354(2)* 0.8658 
 0.0657 0.7947 
 0.1592 0.8337 
 0.1142 0.8864 
 0.0119 0.9498 
 0.0183

E10-2000
NB 0.9043 
 0.0059(3)* 0.8975 
 0(1)* 0.9015 
 0.0071(4)* 0.8478 
 0.0598 0.8587 
 0.0673 0.9008 
 0.0064 0.9158 
 0.0349
KNN 0.9042 
 0.0058(3)* 0.8975 
 0(1)* 0.9015 
 0.0071(4)* 0.8352 
 0.0719 0.8794 
 0.0488 0.9008 
 0.0064 0.9284 
 0.0380
SVM 0.9042 
 0.0058(3)* 0.8935 
 0(1)* 0.9013 
 0.0068(4)* 0.8521 
 0.0904 0.8536 
 0.1144 0.9008 
 0.0064 0.9403 
 0.0342

TABLE 5
Prediction Accuracy of MCFS Against Unions of Features Selected Its Rivals on “HR”

Experiments [HITON-MB [ IAMB [ STMB [mRMR [ FCBF TrueMB MCFS

E5-500
NB 0.8056 
 0.1251 0.8064 
 0.1257 0.8048 
 0.1245 0.7752 
 0.1073 0.8304 
 0.0920 0.8056 
 0.1251 0.9200 
 0.0265
KNN 0.7432 
 0.1231 0.7812 
 0.1371 0.7404 
 0.1174 0.6728 
 0.0740 0.7784 
 0.0775 0.7876 
 0.1391 0.9276 
 0.0352
SVM 0.7692 
 0.0407 0.7528 
 0.0530 0.7644 
 0.0492 0.7216 
 0.0052 0.7576 
 0.0557 0.8008 
 0.0772 0.9112 
 0.006

E5-2000
NB 0.8455 
 0.0978 0.8401 
 0.0960 0.8441 
 0.0960 0.8113 
 0.0859 0.8546 
 0.0999 0.8444 
 0.0975 0.9172 
 0.0315
KNN 0.7920 
 0.0929 0.7614 
 0.1096 0.7860 
 0.0863 0.7479 
 0.1273 0.8051 
 0.1154 0.7811 
 0.0986 0.9346 
 0.0414
SVM 0.7850 
 0.1444 0.7847 
 0.1333 0.7750 
 0.1381 0.7926 
 0.1052 0.8061 
 0.1381 0.7854 
 0.1445 0.9322 
 0.0396

E10-500
NB 0.8892 
 0.0425 0.8684 
 0.0483 0.8660 
 0.0479 0.8400 
 0.0803 0.8748 
 0.0466 0.8776 
 0.0468 0.9168 
 0.0386
KNN 0.8488 
 0.1009 0.8664 
 0.0924 0.8076 
 0.1000 0.7544 
 0.1054 0.7948 
 0.0867 0.8600 
 0.0801 0.9244 
 0.0447
SVM 0.7577 
 0.1686 0.7548 
 0.1728 0.7432 
 0.1755 0.7724 
 0.1302 0.7674 
 0.1523 0.8052 
 0.1301 0.9498 
 0.0183

E10-2000
NB 0.8276 
 0.0710 0.8317 
 0.0772 0.8348 
 0.0767 0.8273 
 0.0661 0.8293 
 0.0804 0.8311 
 0.0765 0.9158 
 0.0349
KNN 0.8593 
 0.0913 0.8592 
 0.0934 0.8430 
 0.0881 0.8106 
 0.0478 0.8348 
 0.0623 0.8581 
 0.0922 0.9284 
 0.0380
SVM 0.7045 
 0.1166 0.7130 
 0.1332 0.7293 
 0.0588 0.7851 
 0.0258 0.8409 
 0.0621 0.7165 
 0.0954 0.9403 
 0.0342

TABLE 6
Running Time (in Seconds) and Number of Selected Features on “HR”

Experiments HITON-MB IAMB STMB mRMR FCBF ICP MCFS

E5-500
Running time 1.34 
 0.9 0.72 
 0.3 1.8 
 0.4 0.24 
 0.05 0.06 
 0.01 6 
 0 4.2 
 0.4

Number of selected features 4.2 
 0.4 3 
 0 5 
 0 8 
 0 4.6 
 0.5 1 
 0(3)* 3 
 1

E5-2000
Running time 2.6 
 0.9 1.8 
 0.4 4 
 0.7 0.32 
 0.04 0.18 
 0.04 26 
 13 5.8 
 1.6

Number of selected features 4.8 
 1.3 4.2 
 0.4 5.4 
 1.5 8 
 0 3.2 
 0.4 2 
 0(1)* 3.6 
 2.4

E10-500
Running time 2.6 
 0.8 1 
 0 3.8 
 0.8 0.3 
 0 0.2 
 0 18 
 5 9 
 1.7

Number of selected features 4.6 
 0.9 3 
 0 5.4 
 1.5 8 
 0 4.6 
 0.5 1.5 
 0.7(2) 3 
 2

E10-2000
Running time 4.2 
 1 2.6 
 0.5 6.4 
 2.2 0.6 
 0 0.3 
 0 23.4 
 12 12.4 
 5

Number of selected features 4.6 
 1.1 4.2 
 0.8 5.2 
 1.5 8 
 0 3 
 0.7 0 
 0 2 
 1.4

2248 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 9, SEPTEMBER 2020

Authorized licensed use limited to: University of South Australia. Downloaded on November 22,2021 at 08:11:11 UTC from IEEE Xplore.  Restrictions apply. 



each interventional dataset equals to the true MB of the class
attribute. [ mRMR achieves the worst result as shown in
Table 5. The explanation is that it is hard to select the user-
defined parameter k for mRMR to select the features to
achieve desirable prediction accuracy.

6.1.2 Results on “VTUB”

“VTUB” has the second largest MB among all features in the
ALARM network and has four distinct class labels (multiple
classes). Its MB consists of two parents, two children and
two spouses.

(2A) Performance of MCFS versus its rivals. From Table 7,
we can see that MCFS is significantly better than the other
six algorithms. For ICP, it returns an empty set on all five
runs in all cases. Thus, this illustrates that the idea of ICP for
finding parents of a given target frommultiple datasets does
not always work well. Meanwhile, using NB and KNN,
FCBF achieves higher prediction accuracy than HITON-MB,
IAMB, STMB, and mRMR. Compared to Tables 3, Tables 7
illustrates that FCBF also achieves satisfactory results. On
computational efficiency, from Table 10, ICP is still the slow-
est one among the seven algorithms, although ICP uses the
lasso method as a preprocess step. FCBF is faster than the
other six algorithms. Compared to HITON-MB, IAMB,
STMB, mRMR, and FCBF, MCFS has a reasonable running

time and selects fewer features than these five algorithms. In
summary, Tables 7 and 10 shows that MCFS is better than
the other six algorithms to deal with multiple interventional
datasets.

(2B) Performance of MCFS, methods using intersections of fea-
ture sets, and the true parents of “VTUB”. Table 8 illustrates
that MCFS achieves highest prediction accuracy among the
other six methods. Meanwhile, the se of true parents of
“VTUB” achieves the same prediction accuracy as MCFS in
4 out of 8 cases, while in the other 4 cases, the prediction
accuracy of the true parents of “VTUB” is almost the same as
that of MCFS. However, it is a difficult problem to find the
parents of a given target in data. For example, ICP is custom-
ized to discover parents of a given target frommultiple inter-
ventional datasets, but Tables 3 and 7 illustrate that ICP
always fails.

Table 8 shows that only \ mRMR and \ FCBF output a
non-empty set over five runs. When the number of training
datasets is 10, we can see that the intersections of features
selected by FCBF achieve satisfactory prediction accuracy no
matter for using NB or KNN. Compared to Table 7, Table 8
demonstrates that \ mRMR and \ FCBF get higher predic-
tion accuracy than mRMR and FCBF. This further confirms
that the set of parents of the class attribute is reliable for pre-
diction withmultiple interventional datasets.

TABLE 7
Prediction Accuracy of MCFS Against Its Rivals on “VTUB” (In the Table, (X)* Denotes that an Algorithm

Succeeded by Returning a Non-Empty Feature Set for X Times Out of the Full 5 Runs)

Experiments HITON-MB IAMB STMB mRMR FCBF ICP MCFS

E5-500
NB 0.8440 
 0.0699 0.8164 
 0.1756 0.8088 
 0.1555 0.7484 
 0.1511 0.9200 
 0.0642 0 
 0(0)* 0.9824 
 0.0103
KNN 0.8556 
 0.1104 0.8432 
 0.1761 0.8636 
 0.1653 0.8388 
 0.0840 0.8824 
 0.0944 0 
 0(0)* 0.9812 
 0.0101
SVM 0.7872 
 0.1625 0.7272 
 0.2116 0.6280 
 0.3027 0.6016 
 0.3995 0.5856 
 0.4221 0 
 0(0)* 0.8232 
 0.2339

E5-2000
NB 0.9184 
 0.0424 0.9165 
 0.0425 0.9235 
 0.0480 0.5795 
 0.3972 0.9258 
 0.0406 0 
 0(0)* 0.9711 
 0.0018
KNN 0.8296 
 0.1698 0.8678 
 0.1012 0.8230 
 0.1281 0.7814 
 0.1733 0.8987 
 0.0922 0 
 0(0)* 0.9715 
 0.0024
SVM 0.5056 
 0.3124 0.5090 
 0.3773 0.5051 
 0.3116 0.5010 
 0.3635 0.5063 
 0.3822 0 
 0(0)* 0.7444 
 0.2963

E10-500
NB 0.9072 
 0.0426 0.8324 
 0.1711 0.8620 
 0.1175 0.8700 
 0.0578 0.9036 
 0.0588 0 
 0(0)* 0.9752 
 0.0033
KNN 0.8896 
 0.0633 0.8436 
 0.1686 0.9012 
 0.0816 0.7864 
 0.1527 0.8356 
 0.0899 0 
 0(0)* 0.9752 
 0.0033
SVM 0.4852 
 0.2578 0.4976 
 0.2435 0.4924 
 0.2422 0.4776 
 0.2533 0.4544 
 0.2350 0 
 0(0)* 0.7040 
 0.3437

E10-2000
NB 0.8702 
 0.1028 0.9067 
 0.0695 0.8733 
 0.0948 0.8851 
 0.0848 0.9105 
 0.0713 0 
 0(0)* 0.9685 
 0.0034
KNN 0.9043 
 0.0857 0.8775 
 0.1442 0.8906 
 0.0872 0.8765 
 0.0771 0.9449 
 0.0427 0 
 0(0)* 0.9685 
 0.0034
SVM 0.5308 
 0.1451 0.4720 
 0.2216 0.6302 
 0.2492 0.6966 
 0.0985 0.5399 
 0.2845 0 
 0(0)* 0.8338 
 0.1294

TABLE 8
Prediction Accuracy of MCFS Against Intersections of Features Selected Its Rivals on “VTUB” (In the Table, (X)*
Denotes that an Algorithm Succeeded by Returning a Non-Empty Feature Set for X Times Out of the Full 5 Runs)

Experiments \HITON-MB \ IAMB \ STMB \mRMR \ FCBF TureParent MCFS

E5-500
NB 0.9100 
 0.0122(3)* 0.904 
 0(1)* 0.9160 
 0.0025(3)* 0.9028 
 0.1241 0.9220 
 0.1312 0.9808 
 0.0103 0.9824 
 0.0103
KNN 0.8720 
 0.0537(3)* 0.6904 
 0(1)* 0.9160 
 0.0025(3)* 0.9020 
 0.1213 0.9216 
 0.1287 0.9808 
 0.0103 0.9812 
 0.0101
SVM 0.7853 
 0.2298(3)* 0.5200 
 0(1)* 0.7913 
 0.2350(3)* 0.6588 
 0.3693 0.6276 
 0.3787 0.5276 
 0.4606 0.8232 
 0.2339

E5-2000
NB 0.8324 
 0.2537 0.8101 
 0.2877(4)* 0.9295 
 0.0697 0.7467 
 0.3785 0.8907 
 0.0904 0.9711 
 0.0018 0.9711 
 0.0018
KNN 0.8697 
 0.1692 0.8611 
 0.1863(4)* 0.8940 
 0.1475 0.9093 
 0.0641 0.8451 
 0.1327 0.9711 
 0.0018 0.9715 
 0.0024
SVM 0.5376 
 0.3468 0.4756 
 0.3375(4)* 0.5142 
 0.3871 0.4988 
 0.3734 0.5123 
 0.3836 0.4797 
 0.4407 0.7444 
 0.2963

E10-500
NB 0.4740 
 0.6265(2)* 0 
 0(0)* 0.5620 
 0.5006(2)* 0.8608 
 0.1887 0.9452 
 0.0577 0.9724 
 0.0038 0.9752 
 0.0033
KNN 0.4740 
 0.6265(2)* 0 
 0(0)* 0.5620 
 0.5006(2)* 0.8704 
 0.1938 0.9612 
 0.0266 0.9752 
 0.0033 0.9752 
 0.0033
SVM 0.6120 
 0.4299(2)* 0 
 0(0)* 0.4773 
 0.3832(2)* 0.5292 
 0.2827 0.6248 
 0.2973 0.6960 
 0.3544 0.7040 
 0.3437

E10-2000
NB 0.8266 
 0.1809 0.6681 
 0.3688(4)* 0.9623 
 0.0163 0.9582 
 0.0188 0.9570 
 0.0214 0.9685 
 0.0034 0.9685 
 0.0034
KNN 0.8253 
 0.1824 0.6643 
 0.3652(4)* 0.9533 
 0.0210 0.8860 
 0.1185 0.9348 
 0.0771 0.9685 
 0.0034 0.9685 
 0.0034
SVM 0.4484 
 0.3063 0.4495 
 0.3665(4)* 0.4571 
 0.3127 0.4665 
 0.2521 0.4769 
 0.2613 0.4665 
 0.3152 0.8338 
 0.1294

YU ET AL.: MULTI-SOURCE CAUSAL FEATURE SELECTION 2249

Authorized licensed use limited to: University of South Australia. Downloaded on November 22,2021 at 08:11:11 UTC from IEEE Xplore.  Restrictions apply. 



(2C) Performance of MCFS, methods using unions of feature
sets, and the true MB of “VTUB”. Table 9 shows that the pre-
diction accuracy of MCFS is significantly better than that of
the true MB of “VTUB”. This further confirms that the true
MB of the class attribute in a multiple interventional dataset
may not be optimal for classification. Referring to Table 8,
the set of true parents of “VTUB” gets significantly higher
accuracy than the set of true MB of “VTUB”. Thus, with
multiple interventional datasets, the parents of the class
attribute may be more reliable than its MB for prediction.

Additionally, we can see that [ HITON-MB gets very
close accuracy with the true MB of “VTUB”, while [mRMR
still gets the worst prediction accuracy in Table 9.

6.1.3 Impact of the Parameter a

Table 11 reports the impact of the significance level a for con-
ditional independence tests for HITON-MB, IAMB, STMB,
and MCFS. From Table 11, we can see that a almost has no
impact on the performance of MCFS. Meanwhile, for
HITON-MB, IAMB, and STMB, in most cases, with a differ-
ent value of a, the prediction accuracy of HITON-MB, IAMB,
and STMB is able to keep stable, thus a does not have a sig-
nificant influence on these algorithms.

6.1.4 Time Complexity of the Rivals of MCFS

The time complexity of MCFS, FCBF, mRMR, HITON-MB,
IAMB, and STMB is measured in the number of conditional

TABLE 10
Running Time (in Seconds) and Number of Selected Features on “VTUB”

Experiments HITON-MB IAMB STMB mRMR FCBF ICP MCFS

E5-500 Running time 2 
 0 0.36 
 0.05 2 
 0 0.1 
 0 0.08 
 0.01 24 
 15 2.8 
 1.3
Number of selected features 4.2 
 0.8 2.4 
 0.5 5 
 1.4 6 
 0 5 
 0 0 
 0 4 
 0.7

E5-2000 Running time 3 
 0.7 1 
 0 3.4 
 0.5 0.2 
 0 0.1 
 0 89.4 
 38 3.6 
 0.5
Number of selected features 4.8 
 0.4 4 
 0 6.4 
 1.1 6 
 0 3.6 
 0.5 0 
 0 2.8 
 0.8

E10-500 Running time 2.6 
 0.5 1 
 0 3.2 
 0.4 0.2 
 0 0.2 
 0 53.4 
 17 5.8 
 1.9
Number of selected features 3.6 
 0.5 2.2 
 0.4 4.4 
 0.5 6 
 0 5.4 
 0.5 0 
 0 3 
 1

E10-2000 Running time 4.4 
 0.9 2 
 0 5.6 
 0.5 0.4 
 0 0.2 
 0 254 
 78 5.6 
 1.4
Number of selected features 4.4 
 0.8 4 
 0 5.4 
 1.5 6 
 0 3 
 0 0 
 0 3 
 0.7

TABLE 9
Prediction Accuracy of MCFS Against Unions of Features Selected Its Rivals on “VTUB”

Experiments [HITON-MB [ IAMB [ STMB [mRMR [ FCBF TureMB MCFS

E5-500
NB 0.8448 
 0.0771 0.8448 
 0.0771 0.8520 
 0.0771 0.6792 
 0.1959 0.7912 
 0.1444 0.8440 
 0.0875 0.9824 
 0.0103
KNN 0.8580 
 0.0979 0.8664 
 0.0891 0.8848 
 0.0741 0.7396 
 0.1747 0.8400 
 0.0730 0.8784 
 0.0875 0.9812 
 0.0101
SVM 0.4769 
 0.2613 0.6552 
 0.3235 0.5976 
 0.3987 0.6920 
 0.3325 0.7268 
 0.3395 0.5172 
 0.4218 0.8232 
 0.2339

E5-2000
NB 0.9064 
 0.0766 0.7445 
 0.3388 0.8901 
 0.0911 0.5377 
 0.3961 0.7718 
 0.2792 0.9064 
 0.0766 0.9711 
 0.0018
KNN 0.7941 
 0.1503 0.7320 
 0.1911 0.7190 
 0.2061 0.6689 
 0.2331 0.8836 
 0.0898 0.7941 
 0.1503 0.9715 
 0.0024
SVM 0.4591 
 0.3096 0.5190 
 0.3059 0.5469 
 0.2885 0.5180 
 0.3804 0.5048 
 0.3833 0.4592 
 0.3098 0.7444 
 0.2963

E10-500
NB 0.8480 
 0.0887 0.8360 
 0.1267 0.8896 
 0.0630 0.6896 
 0.1467 0.8204 
 0.0505 0.8864 
 0.0706 0.9752 
 0.0033
KNN 0.6976 
 0.2978 0.7612 
 0.1680 0.6424 
 0.3122 0.5864 
 0.1852 0.6148 
 0.2744 0.7308 
 0.2333 0.9752 
 0.0033
SVM 0.4180 
 0.2337 0.4808 
 0.2964 0.4444 
 0.1849 0.4220 
 0.2438 0.4120 
 0.2704 0.4492 
 0.2460 0.7040 
 0.3437

E10-2000
NB 0.8887 
 0.0908 0.8978 
 0.0750 0.7716 
 0.2381 0.7482 
 0.2996 0.9004 
 0.0944 0.8887 
 0.0908 0.9685 
 0.0034
KNN 0.8789 
 0.0865 0.8005 
 0.1093 0.6824 
 0.1380 0.6113 
 0.1946 0.9189 
 0.0535 0.8789 
 0.0865 0.9685 
 0.0034
SVM 0.6030 
 0.2126 0.5620 
 0.1780 0.5948 
 0.1824 0.5746 
 0.1258 0.6163 
 0.2132 0.6021 
 0.2115 0.8338 
 0.1294

TABLE 11
Impact of a on Prediction Accuracy of HITON-MB, IAMB, STMB, and MCFS
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independence tests (or mutual information computations)
executed. For IAMB, the average time complexity is OðjF jj
MBðCÞjÞ and the worst case time complexity is OðjF j2Þ with
jMBðCÞj ¼ jF j. STMB also finds PCðCÞ first, then discovers
spouses. Different from HITON-MB, STMB finds spouses
from F n PCðCÞ, instead of all parents and children of varia-
bles of PCðCÞ. Then the overall time complexity of STMB is
OðjPCðCÞjjF n PCðCÞj2jPCðCÞjÞ. However, STMB is not able to
deal with datasets with high-dimensionality and small num-
ber of samples. Since the user-defined parameter k of mRMR
is set to the size of MBðCÞ, mRMR and FCBF need OðjMB
ðCÞj2Þ pairwise mutual information computations, and thus
the time complexity of FCBF and mRMR is not exponential
with the size of MBðCÞ. However, it is hard to select a suit-
able value of k for mRMR and FCBF, and they are not specifi-
cally designed forMB discovery.

In summary, we can see that FCBF, and mRMR in general
are faster than HITON-MB, IAMB, and STMB. Comparing to
HITON-MB, IAMB, and STMB, MCFS has competitive effi-
ciency with synthetic data and when the sizes of the MBs of
variables “VTUB” and “HR” are small, (see Tables 6 and 10),
although MCFS has an additional step to find the invariant
sets.When the size of theMB ofC found by IAMB and STMB
is much larger than that by MCFS, IAMB and STMB are

much slower than MCFS, as shown in Table 17 in next Sec-
tion using real-world datasets.

6.2 Results on Real-World Data

In this section, we will study the performance of MCFS with
two real-world datasets. The details of these two datasets and
the corresponding experimental results are reported as follows.

6.2.1 Results on the Student Dataset

The Student dataset is a real-world dataset about educa-
tional attainment of teenagers and it was provided in [24].
The original Student dataset includes records of 4,739 pupils
from approximately 1,100 US high schools and 14 attributes
as shown in Table 12. Following themethod in [22], consider-
ing variable distance being the manipulated variable, the
original Student dataset is split into two intervention data-
sets (for which the distance variable is intervened): one
including 2,231 data instances of all pupils who live closer to
a 4-year college than themedian distance of 10miles, and the
other including 2,508 data instances of all pupils who live at
least 10 miles from the nearest 4-year college. Then the vari-
able education is selected as the target variable and we make
it into a binary target, that is, whether a pupil received a
Bachelor of Arts (BA) degree or not. With KNN and NB clas-
sifiers, we use MCFS and all the 16 methods listed in Table 1
to select features from the above described two intervention
datasets for predicting the value of the target education.

Specifically, we select 2,000 data instances from the two
intervention datasets to construct two training datasets (each
with 2,000 training instances). The 231 instances and 508
instances remained from the two intervention datasets
respectively are merged to form 739 data instances as the
testing dataset. Thenwe useMCFS and its rivals to select fea-
tures from the two training datasets. In each of the two train-
ing datasets, we train the NB, KNN, and SVM classifiers
using the selected features and make predictions on the test-
ing dataset. We repeat the experiment with each method ten
times and report the average prediction accuracy, number of
selected features, and running time in Tables 13, 14, and 15,
respectively.

With the results in Tables 13 and 14, to compare MCFS
with its rivals, we conduct t-tests at a 95 percent confidence
level under the null-hypothesis, which states that whether
the performance of MCFS and that of its rivals have no sig-
nificant difference in prediction accuracy.

TABLE 12
Variables in the Educational Attainment Data

Set and Their Meanings

Variable Meaning

education Years of education completed (target variable,
binarized to completed a BA or not in this paper)

gender Student gender, male or female
ethnicity Afam/Hispanic/Other
score Base year composite test score. (These are

achievement tests given to high school seniors
in the sample)

fcollege Father is a college graduate or not
mcollege Mother is a colllege graduate or not
home Family owns a house or not
urban School in urban area or not
unemp County unempolyment rate in 1980
wage State hourly wage in manufacturing in 1980
distance Distance to the nearest 4-year college
tuition Avg. state 4-year college tuition in $1000’s
income Family income >$25,000 per year or not
region Student in the western states or other states

TABLE 13
Prediction Accuracy on Student Dataset (“�” Indicates that MCFS Is Statistically Better than the Compared Method)

Algorithm
NB KNN SVM

a = 0.01 a = 0.05 a = 0.01 a = 0.05 a = 0.01 a = 0.05

MCFS 0.7669 
 0.0134 0.7698 
 0.0160 0.7646 
 0.0150 0.7671 
 0.0187 0.7683 
 0.0144 0.7707 
 0.0157
HITON-MB 0.7403 
 0:0177� 0.7432 
 0:0170� 0.7353 
 0:0146� 0.7315 
 0:0161� 0.7558 
 0:0166� 0.7571 
 0:0174�
[HITON-MB 0.7468 
 0:0133� 0.7479 
 0:0122� 0.7227 
 0:0310� 0.7288 
 0:0269� 0.7583 
 0.0138 0.7572 
 0:0146�
\HITON-MB 0.7463 
 0:0201� 0.7422 
 0:0216� 0.7440 
 0:1830� 0.7423 
 0:0213� 0.7511 
 0:0156� 0.7531 
 0:0166�
IAMB 0.7475 
 0:0147� 0.7498 
 0:0119� 0.7486 
 0:0128� 0.7440 
 0:0152� 0.7580 
 0.0156 0.7587 
 0:0151�
[ IAMB 0.7483 
 0:0121� 0.7482 
 0:0120� 0.7406 
 0:0154� 0.7369 
 0:0174� 0.7595 
 0.0145 0.7591 
 0:0145�
\ IAMB 0.7477 
 0:0204� 0.7468 
 0:0146� 0.7433 
 0:0183� 0.7457 
 0:0136� 0.7528 
 0:0149� 0.7510 
 0:0154�
STMB 0.7491 
 0:0168� 0.7461 
 0:0188� 0.7446 
 0:0151� 0.7269 
 0:0189� 0.7564 
 0:0153� 0.7593 
 0:0146�
[ STMB 0.7430 
 0:0126� 0.7683 
 0.0652 0.7437 
 0:0281� 0.7217 
 0:0170� 0.7562 
 0:0152� 0.7607 
 0.0172
\ STMB 0.7495 
 0:0210� 0.7509 
 0:0150� 0.7458 
 0:0211� 0.7494 
 0:0181� 0.7549 
 0:0173� 0.7557 
 0:0153�
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In Table 13, when a ¼ 0:01 (i.e., the value of parameter a
(significance level) is set for MCFS, IAMB, HITON-MB, and
STMB), both using NB and KNN, we observe that all null-
hypotheses are rejected, and thus MCFS is significantly bet-
ter than all 9 rivals of MCFS on prediction accuracy. For
SVM, using t-tests, except for IAMB, [ IAMB, and [HITON-
MB, we observe that MCFS is significantly better than the 6
remaining rivals. When a ¼ 0:05, using NB, KNN, and SVM,
expect for [ STMB, all null-hypotheses are also rejected, then
we can state that MCFS is significantly better than all rivals
of MCFS (expect for [ STMB) on prediction accuracy. For [
STMB, using SVM and NB, the two null-hypotheses are
accepted, then MCFS and [ STMB have no significant differ-
ence on prediction accuracy.

In Table 14, by conducting t-tests at a 95 percent confi-
dence level, on prediction accuracy, we observe that using
NB, MCFS is significantly better than ICP, [ mRMR, FCBF,
and \ FCBF, while MCFS is not significantly better than
mRMR, \ mRMR, and [ FCBF. When using KNN, MCFS is
significantly better than all its rivals. When using SVM,
except for mRMR, [ mRMR, MCFS is significantly better
than the remaining rivals. Thenwe can conclude that nomat-
ter for setting a = 0.01 or a = 0.05 for MCFS, at most cases,
MCFS is significantly better than its rivals on prediction accu-
racy. Moreover, from Tables 13 and 14, we can see that the
feature subset selected byMCFS achievesmore stable predic-
tion accuracy than those of its rivals onNB, KNN, and SVM.

For computational efficiency, compared to IAMB, STMB,
and HITON-MB, the running time of MCFS is reasonable,
and MCFS is almost 70 times faster than ICP. mRMR and
FCBF are the fastest algorithms. As about the correctly
selected features, MCFS and its rivals are all competitive.

Over the ten runs, the featuresmost frequently selected by
MCFS include score andmcollegewhile ICP selects fcollege. As
we have not the ground truth of the parents and the MB of
variable education in this real-world dataset, we use the Max-
Min Hill Climbing (MMHC) algorithm [29], a well-known
algorithm for learning a Bayesian network structure from
the original Student dataset. Fig. 3 gives the local Bayesian
network structure around the target education. Using the
parents and the MB of education in Fig. 3, over the ten runs,
the average accuracies of the trained NB, KNN, and SVM
classifiers are 0.7419, 0.7532, and 0.7574, respectively.

6.2.2 Gene Expression Datasets

In this section, we use three microarray gene expression
datasets, Harvard, Michigan, and Stanford, which come
from three laboratories studying lung cancer [3], [5]. They

have been obtained from different patient samples and from
different experimental environments. The three datasets
were preprocessed by removing duplicated genes and genes
with missing values in the datasets, resulting in three data-
sets each containing common 1,962 genes (features) and the
following listed numbers of instances respectively [14]:

� Harvard: 156 instances, including 139 tumor and 17
normal samples.

� Stanford: 46 instances, including 41 tumor and 5 nor-
mal samples.

� Michigan: 96 instances, including 86 tumor and 10
normal samples.

Since the three datasets are class-imbalanced, we use
AUC to evaluate MCFS and its rivals instead of prediction
accuracy. We conduct three experiments corresponding to
the three different settings of multiple datasets as shown in
Table 16. In each of the three experiments, the AUC of MCFS
is compared with the AUCs obtained by all the methods
listed in Table 1, except for \HITON-MB, \ IAMB, \ STMB,
\mRMR, and\ FCBF, as their outputs are empty.

Experiment 1. In this experiment, we have the Harvard and
Stanford datasets for training while using the Michigan
dataset for testing, and the results are reported in Figs. 4, 5,
and 6. From these three figures (using NB, KNN, and SVM
respectively), we can observe that except for ICP, the
remaining 10 rivals are significantly worse than MCFS on
the AUCmetric. Using KNN and SVM, the values of AUC
of both MCFS and ICP are up to 1 while the AUC of [
IAMB is only 0.5 (or 0.55) usingNB and SVM (or KNN).

TABLE 14
Prediction Accuracy on Student Dataset (“�” Indicates that
MCFS Is Statistically Better than the Compared Method)

Algorithm NB KNN SVM

MCFS 0.7669 
 0.0134 0.7646 
 0:0150� 0.7683 
 0.0144
ICP 0.7513 
 0:0173� 0.7440 
 0:0163� 0.7520 
 0:0171�
mRMR 0.7535 
 0.0153 0.6606 
 0:0281� 0.7614 
 0.0171
[mRMR 0.7444 
 0:0154� 0.7352 
 0:0257� 0.7604 
 0.0158
\mRMR 0.7610 
 0.0169 0.6742 
 0:0602� 0.7586 
 0.0198
FCBF 0.7450 
 0:0170� 0.7346 
 0:0368� 0.7507 
 0:0108�
[ FCBF 0.7556 
 0.0159 0.7465 
 0:0158� 0.7539 
 0:0163�
\ FCBF 0.7491 
 0:0187� 0.7396 
 0:0241� 0.7538 
 0:0130�

TABLE 15
Time and Number of Selected Features on Student Dataset

Fig. 3. A local causal structure around education learned from the
original educational attainment dataset.
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Experiment 2. In this experiment, the Michigan and Stan-
ford datasets are for training while the Harvard dataset is
for testing. From Figs. 7, 8, and 9, we can see that using NB,
MCFS is significantly better than its 10 rivals except for
mRMR. Using KNN, MCFS is significantly better than its 7
rivals, while for the AUC values of HITION-MB, IAMB, [
mRMR, andmRMR are close to that of MCFS, but they still
achieves lower AUC than MCFS. Using SVM, except for
IAMB, MCFS is significantly better than the other rivals.
Moreover, MCFS andHITON-MB achieve stable AUC val-
ues, while the other rivals get fluctuating AUCvalues.

Experiment 3. In this experiment, we have the Michigan
andHarvard datasets as the training datasets and the Stan-
ford dataset as the testing dataset. In Figs. 10, 11, and 12,
for NB and KNN, IAMB gets the worst result while for
SVM, STMB is the worst. Except for STMB, [ STMB, FCBF,
and [ FCBF, using NB, MCFS is the best in Fig. 10, while

using KNN, except for HITION-MB and [ HITON-MB,
MCFS is significantly better than the other rivals in Fig. 11.
Using SVM, except for HITION-MB, [HITON-MB, and [
mRMR, MCFS is significantly better than the remaining
rivals. The AUC of NB with features selected by STMB,
FCBF and [ FCBF is 1, but using KNN, the AUC of KNN
with features selected by STMB, FCBF and [ FCBF is only
up to 0.8, 0.7 and 0.7, respectively. And the similar unsta-
ble AUC values with features selected by HITION-MB
and [HITON-MB using NB and KNN. However, no mat-
ter for NB or KNN or SVM, the AUC when using features
selected byMCFS is always 1.

Table 17 shows the number of selected features and run-
ning time of MCFS and its rivals. We can see that ICP selects

TABLE 16
Summary of the Multiple Datasets in the Three Experiments

Experiment Training data Testing data

1 Harvard and Stanford Michigan
2 Michigan and Stanford Harvard
3 Michigan and Harvard Stanford

Fig. 4. AUC of NB using the features selected by MCFS and its rivals in
Experiment 1.

Fig. 5. AUC of KNN using the features selected by MCFS and its rivals in
Experiment 1.

Fig. 7. AUC of NB using the features selected by MCFS and its rivals in
Experiment 2.

Fig. 8. AUC of KNN using the features selected by MCFS and its rivals in
Experiment 2.

Fig. 6. AUC of SVM using the features selected by MCFS and its rivals in
Experiment 1.

Fig. 10. AUC of NB using the features selected by MCFS and its rivals in
Experiment 3.

Fig. 9. AUC of SVM using the features selected by MCFS and its rivals in
Experiment 2.
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the smallest number of features, while IAMB selects themost
number of features. For computational efficiency, IAMB and
STMB are the slowest since they select more features than
the other algorithms, while FCBF is the fastest algorithm.
Meanwhile, in Table 17, the running time and the number of
selected features ofMCFS also look reasonable.

Finally,we report the average results ofAUCand the devi-
ations in the three experiments in Table 18, where we can see
that MCFS is significantly better than the other methods. In
summary, Figs. 4, 5, 6, 7, 8, 9, 10, 11, and 12, and Table 18
show that MCFS gets significantly higher AUC and always
achievesmuchmore stable performance than its rivals.

7 CONCLUSION

W have analyzed causal interventions and invariance in fea-
ture selection with multiple datsets, and have proposed a
new algorithm, MCFS, for causal feature selection with mul-
tiple datasets. Experiments on synthetic and real-world data-
sets have illustrated that if the distributions between training
and testing datasets are different, MCFS is significantly bet-
ter than the existing causal and non-causal feature selection
algorithms.

Additionally, we empirically analyzed the bounds pro-
posed in Theorems 6 and 7. The experiments have illustrated
that with multiple intervention datasets, the set of parents of
the class attribute is promising for reliable prediction while
the MB of the class attribute may not be for optimal predic-
tion. In future, on the one hand, we will explore MCFS to
tackle large MBs and propose efficient methods to find
invariant sets in Phase 2 of MCFS; on the other hand, our
work also can be put in the context of domain adaptation,
although here we focus on causal feature selection for stable
predictions. In next work, we will systematically explore our
work proposed in the paper for domain adaptation.

APPNDIX A
MUTUAL INFORMATION

Given two random variables X and Y , the mutual informa-
tion IðX;Y Þ and the conditional mutual information IðX;
Y jZÞ are calculated in Eqs. (11) and (12) below [7]

IðX; Y Þ ¼ HðXÞ �HðXjY Þ

¼ Sx2X;y2Y P ðx; yÞlog P ðx; yÞ
P ðxÞP ðyÞ :

(11)

The entropy HðXÞ and HðXjY Þ are defined as HðXÞ ¼
�Sx2XP ðxÞlogP ðxÞ and HðXjY Þ ¼ �Sy2Y P ðyÞSx2XP ðxjyÞlog
P ðxjyÞ, respectively. P ðxÞ is the prior probability of value x
that feature X takes, and P ðxjyÞ is the posterior probability
of x given the value y that feature Y takes

IðX;Y jZÞ ¼ HðXjZÞ �HðXjYZÞ

¼ Sz2ZP ðzÞSx2X;y2Y P ðx; yjzÞlog P ðx; yjzÞ
P ðxjzÞP ðyjzÞ :

(12)

APPNDIX B
PROOFS OF THEOREMS IN SECTION 4

By Eqs. (11) and (12), we get Lemmas 1 and 2 as follows.

Lemma 1. IðFi;FjÞ � 0 with equality if and only if P ðFi; FjÞ ¼
P ðFiÞP ðFjÞ.

Lemma 2. IðFi;FjjSÞ � 0 with equality if and only if P ðFi;
FjjSÞ ¼ P ðFijSÞP ðFjjSÞ.

Fig. 12. AUC of SVM using the features selected by MCFS and its rivals
in Experiment 3.

Fig. 11. AUC of KNN using the features selected by MCFS and its rivals
in Experiment 3.

TABLE 17
Number of Selected Features and Running Time (E1, E2,
and E3 Refer to Experiments 1, 2 and 3 Respectively)

Algorithm
#Feature Time

E1 E2 E3 E1 E2 E3

MCFS 4 3 2 44 38 53
ICP 1 1 1 10 14 21

HITON-MB 5 5 6 39 35 50
[HITON-MB 10 9 9

IAMB 92 64 114 298 193 358
[IAMB 183 125 224

STMB 24 28 27 385 142 440
[STMB 47 55 53

mRMR 15 15 15 7 11 12
[mRMR 20 28 24

FCBF 20 24 21 2 2 2
[FCBF 41 47 37

TABLE 18
Average AUC of MCFS and Its Rivals

Algorithm NB KNN SVM

MCFS 0.9655 
 0.0567 0.9890 
 0.0191 0.9890 
 0.0191
ICP 0.8486 
 0.0501 0.8587 
 0.1230 0.8054 
 0.2002
HITON-MB 0.8703 
 0.1416 0.8682 
 0.1533 0.8741 
 0.1642
[HITON-MB 0.8244 
 0.2376 0.9182 
 0.0759 0.7689 
 0.2477
IAMB 0.6054 
 0.1826 0.6780 
 0.2273 0.7223 
 0.2343
[IAMB 0.5980 
 0.1698 0.7072 
 0.1609 0.5184 
 0.0319
STMB 0.8818 
 0.1598 0.7623 
 0.0543 0.6692 
 0.1682
[STMB 0.8647 
 0.1866 0.7314 
 0.0543 0.6732 
 0.1562
mRMR 0.8997 
 0.1301 0.8292 
 0.0971 0.8059 
 0.1793
[mRMR 0.8577 
 0.1799 0.8292 
 0.1202 0.6724 
 0.2735
FCBF 0.8527 
 0.1815 0.7037 
 0.0556 0.5294 
 0.0509
[FCBF 0.8207 
 0.2662 0.7204 
 0.0353 0.5000 
 0.0
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Proof of Theorem 2. Case 1: For 8S � F n fC [MBðCÞg,
by Eq. (12), we can get the following equation:

IðC;SjMBðCÞ ¼ EfC;S;MBðCÞglog
P ðC; SjMBðCÞÞ

P ðCjMBðCÞÞP ðSjMBðCÞÞ :

By Theorem 1, P ðC; SjMBðCÞÞ ¼ P ðCjMBðCÞÞP ðSjMBðCÞÞ
holds, and thus we get IðC;SjMBðCÞÞ ¼ 0. By the chain
rule, IððS;MBðCÞ;CÞ ¼ IðC;MBðCÞÞþ IðC;SjMBðCÞÞ ¼
IðC;SÞ þ IðC;MBðCÞjSÞ. Since IðC;SjMBðCÞÞ ¼ 0 holds,
then IðC;MBðCÞÞ ¼ IðC;SÞ þ IðC;MBðCÞjSÞ holds. By
Lemmas 1 and 2, we get IðC;MBðCÞÞ � IðC;SÞ with
equality if S equals toMBðCÞ.

Case 2: For 8S � MBðCÞ and S0 ¼ MBðCÞ n S, by
IðC;MBðCÞÞ � IðC;SÞ ¼ IðC;S [ S0Þ � IðC;SÞ ¼ IðC;SÞþ
IðC;S0jSÞ � IðC;SÞ ¼ IðC;S0jSÞ, then IðC;MBðCÞÞ �
IðC;SÞ holds.

Case 3: Let S0 � MBðCÞ and S00 � F n fC [MBðCÞg,
and S ¼ fS0 [ S00g, then by Theorem 8, we get Eq. (13)
below. By IðC;MBðCÞÞ þ IðC;SjMBðCÞÞ ¼ IðC;SÞþ
IðC; MBðCÞjSÞ and Eq. (13), in the case, IðC;MBðCÞÞ �
IðC;SÞ holds

P ðC; SjMBðCÞÞ
P ðCjMBðCÞÞP ðSjMBðCÞÞ
¼ P ðC; S00;MBðCÞÞ

P ðCjMBðCÞÞP ðS00;MBðCÞÞ
¼ P ðCjS00;MBðCÞÞP ðS00;MBðCÞÞ

P ðCjMBðCÞÞP ðS00;MBðCÞÞÞ ¼ 1:

(13)

By Cases 1 to 3, IðC;MBðCÞÞ � IðC;SÞ with equality
holds if S equals toMBðCÞ. tu

Proof of Theorem 4. Suppose S ¼ F n fC [MBðCÞg and

S0 ¼ F nMBðCÞ. Let P ðspðCÞÞ ¼ QjspðCÞj
k¼1 P ðFkjPaðFkÞÞ,

P ðpaðCÞÞ ¼ QjpaðCÞj
m¼1 P ðFmjPaðFmÞÞ, and P ðchðCÞÞ ¼ QjchðCÞj

j¼1

P ðFjjPaðFjÞÞ, then by Eq. (1), P ðCjMBðCÞÞ is calculated

as follows:

P ðCjMBðCÞÞ ¼ P ðC;MBðCÞÞ
P ðMBðCÞÞ

¼
P

S

QjSj
i¼1 P ðFijpaðFiÞÞP ðCjpaðCÞÞP ðspðCÞÞP ðchðCÞÞP ðpcðCÞÞP

S0
QjS0 j

i¼1 P ðFijpaðFiÞÞP ðCjpaðCÞÞP ðspðCÞÞP ðCjpaðCÞÞP ðchðCÞÞP ðpcðCÞÞ

¼ P ðCjpaðCÞÞP ðchðCÞÞPS

QjSj
i¼1 P ðFijpaðFiÞÞP ðspðCÞÞP ðpcðCÞÞP

C P ðCjpaðCÞÞP ðchðCÞÞPS

QjSj
i¼1 P ðFijpaðFiÞÞP ðspðCÞÞP ðpcðCÞÞ

¼ P ðCjpaðCÞÞQjchðCÞj
j¼1 P ðFjjpaðFjÞÞP

C P ðCjpaðCÞÞQjchðCÞj
j¼1 P ðFjjpaðFjÞÞ

:

(14)

By Eq. (2), the post-manipulation distribution of an inter-

vention �i can be factorized as

PiðF jdoð�i ¼ giÞÞ ¼ P ðCjpaðCÞÞ
�
Y

Fj2chðCÞP ðFjjpaðVjÞÞ �
Y

Fj =2 f�i[chðCÞgP ðFjjpaðFjÞÞ:
(15)

By Eq. (15), since C and the variables in chðCÞ are not

manipulated, 8Di 2 D, PiðCjpaðCÞÞ ¼ P ðCjpaðCÞÞ andQ
Fj2chðCÞ P

iðFjjpaðVjÞÞ ¼
Q

Fj2chðCÞ P ðFjjpaðVjÞÞ hold. Thus,
by Eq. (14), the theorem is proven. tu

Proof of Theorem 5. a) If paðCÞ =2 �i 8i, by Eq. (15), then
PiðCjpaiðCÞÞ ¼ PjðCjpajðCÞÞ ði 6¼ jÞ holds; (b) If paðCÞ
2 �i 8i, by Properties 1 and 2, the theorem holds. tu

Proof of Theorem 6. Since C is not intervened, paðCÞ is
invariant across D. Case 1: for 8Di 2 D and chðCÞ~�i, by
Theorem 4, MBðCÞ remains invariant across D and
paðCÞ � MBðCÞ. Case 2: for 8Di 2 D, 9S � chðCÞ and
S � �i, for the invariant set S0 across D, paðCÞ � S0. Case
3: for 8Di 2 D, if chðCÞ � �i, chðCÞ and the corresponding
spðCÞ are not in MBiðCÞ, by Theorem 5, paðCÞ remains
invariant across D. Thus, considering the three cases,
paðCÞ is theminimally invariant set acrossD. tu

Proof of Theorem 8. Since C is not manipulated, (1) for
8Di 2 D, pcðCÞ keeps invariant across D. Thus for
8MBiðCÞ, paðCÞ in MBiðCÞ holds; (2) If 9Fj 2 chðCÞ and
Fj 2 �, by the conservative rule, there must exist a set �m

and Fj =2 �m. Then in Dm, Fj is not manipulated, and the
edge betweenC and Fj is not deleted. Then Fj 2 MBmðCÞ.
Since Fj is not manipulated in Dm, the edges between Fj

and its parents (C andC0s spousesw.r.tFj) are not deleted.
Then the set spðCÞ with respect to Fj 2 chðCÞ is in
MBmðCÞ; (3) If 9Fj 2 chðCÞ and Fj =2 �, Fj is not manipu-
lated. Thus, for 8Di 2 D, as the same as the proof in (2), Fj

and the corresponding spðCÞ are inMBiðCÞ. tu
Proof of Theorem 9. (1) C is not manipulated, then for

8MBiðCÞ, paðCÞ inMBiðCÞ holds. (2) Since� is not conser-
vative, if 9Fj 2 chðCÞ and for 8�i 2 �, Fj 2 �i holds, then
for 8Di 2 D, Fj is manipulated. Thus Fj and the corre-
sponding spðCÞ are not in MBiðCÞ. Then S K

i¼1MBiðCÞ �
MBðCÞ holds. Otherwise, if chðCÞ~� and 8Fj 2 chðCÞ, for
8Di 2 D, Fj is not manipulated, and fchðCÞ [ spðCÞg �
MBiðCÞ. In the case,

S K
i¼1MBiðCÞ ¼ MBðCÞ holds. tu
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