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Abstract
Causal discovery is a primary focus in many fields. Various methods have been developed to mine causal relationships
from observational data. Most of the methods are only capable of identifying individual causes without considering their
interactions. However, in real life, many effects are due to multiple factors that interact with each other. Therefore, detecting
the interactions between those causal factors is essential for understanding the real causal mechanisms. So far, there are
no efficient data-driven approaches to discovering causal interactions from data, especially large data sets. In this paper,
we propose a general data-driven framework and develop four algorithms instantiated from the framework to detect causal
interactions, directly from data. Extensive experiments on both synthetic and real-world data have shown that the proposed
framework and the algorithms can achieve high effectiveness and efficiency for causal interaction discovery.

Keywords Causal discovery · Potential outcome · Causal interactions

1 Introduction

Everything occurs with reasons. An immature death may be
caused by the malnutrition in childhood, a lack of exercise
in teens, smoking in youth, bad diets in middle age, and a
family history of heart attacks, etc. Often it is the case that
not only the causal factors alone, but also the interactions
between the factors lead to an immature death.

The study of the interactions between multiple causal
factors (called causal interactions hereafter) is indeed very
useful, as the knowledge of causal interactions hasmany real-
world applications [3,37]. For example, it has been increas-
ingly accepted that many diseases are resulted from not only
genetic defects and environmental exposures, respectively,
but also the interactions between them [8]. Knowing such
interactions is helpful for understanding and preventing dis-
eases.

In this paper, we study causal interactions and develop an
efficient method to detect them directly from data. The inter-
action refers to the case that risk in the exposure to multiple
factors simultaneously cannot be explained by the individual
effects of these factors. In other words, the combined effect
of multiple variables (e.g. a genetic factor G and an envi-
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ronmental factor E) on an outcome Y is different from the
additive effects of multiple variables considered separately
(i.e. the addition of G’s effect and E’s effect). For instance,
genes for skin pigmentation (e.g. MC1R) and high-level sun-
light exposure each have effect on getting skin cancer, but the
risk of having skin cancer is much higher when both factors
appear at the same time [8]. An interaction is causal, only if
the interaction always exists in all conditions (when covari-
ates having different values).

It is essential to differentiate causal interactions fromaddi-
tive effects of multiple variables, to determine whether or
not these variables can be studied separately without losing
important characteristics resulting from the interactions [34].
For example, it is biased (even not correct) to separately study
the effect of asbestos exposure on lung cancer, if investiga-
tors ignore the interaction between asbestos exposure and
smoking status [18].

The concept of causal interactions is also different from
the following types of causal relationships involvingmultiple
factors:

– multiple causes [23], which focus on all the individual
causes of a variable that are represented by a causal
Bayesian network or a local causal structure;

– conditional causal relationship [19,28], which concerns
the relationship between a cause and the outcome, under
a specific condition; and
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– combined causes [20], which consider multiple variables
as a single combined variable and examine the effect
of the combined variable on the outcome, without dis-
tinguishing the individual effects from the effect due to
variable interactions.

In contrast, the study on causal interaction is to assess the
interaction between multiple individual variables that pro-
motes to produce or prevent an outcome.

Causal interactions have attracted many attentions from
domain experts, in clinical study, epidemiology, psychol-
ogy, and etc. Various methods have been developed to study
this problem [22,30]. However, thesemethods are hypothesis
driven, i.e. they are used for validating hypothesised causal
interactions. The hypothesis about a causal interaction has to
be established beforehand, which requires prior knowledge
and is often difficult to achieve, especially when there are a
large number of possible interactions.

On the other hand, in many application areas, we have
an abundance of data available. There are data mining or
machine learning methods for finding interactions between
multiple variables [6,21] from data directly, but the interac-
tions found are normally association based and they may not
be causal.

Rothman [29] developed the sufficient-component cause
model to define a natural and logical viewof causation.Under
themodel, the occurrence of a causalmechanism (also known
as a sufficient cause), comprising a set of component causes,
inevitably results in the occurrence of the outcome, and the
component causes of a same sufficient cause always have
causal interactions to lead to the outcome. Van derWeele and
Robins [35] have made progress in detecting causal interac-
tions based on this model. Although they have introduced
some conditions for detecting causal interactions, the work
largely stays at theoretical level and no specific algorithms
have been developed for the detection.

Jiang et al. [10] developed the multiple beam search algo-
rithm (MBS) to identify interacting genes associated with
a disease from data, by learning local causal relationships.
The MBS algorithm firstly does a greedy forward search and
adds the predictor (gene) in each iteration that increases the
Bayesian score the most. Then a greedy backward search
is performed to get the minimal gene set. And they claim
that the genes in the set have causal interactions with each
other. However, if any predictor in the gene set has a strong
individual effect, they will typically be scored highly and be
considered as an interaction even if they do not interact.

To the best of our knowledge, there is no concrete com-
putational methods for discovering the causal interactions
between variables, especially from large data sets. In this
paper, we aim to develop efficient data-driven methods for
causal interaction discovery, by bringing together the prin-
ciple of the well-established potential outcome model and

efficient data mining approaches. The contributions of this
paper are summarised as follows:

1. We study the problem of causal interaction discovery
from a data mining perspective and elaborate the compu-
tational challenges for such discoveries.

2. We present a general framework, the data-driven
approach to causal interaction discovery (DACID) and
develop multiple instantiations of the framework to dis-
cover causal interactions. They are the first data mining
algorithms for discovering causal interactions between
multiple variables.

3. The experiments with both synthetic and real-world data
sets are performed to demonstrate the effectiveness and
efficiency of the proposed algorithms.

In the rest of this paper, the problem definition is pre-
sented in Sect. 2. In Sect. 3, we formally define the concept
of causal interactions and develop the conditions to detect
causal interactions. The DACID framework is proposed to
mine causal interactions from observational data in Sect. 4.
Section 5 demonstrates the effectiveness and efficiency of
the proposed algorithms by experiments. Section 6 reviews
the related work. Finally, we conclude the paper in Sect. 7.

2 Problem definition

In this section, we define the research problem studied in this
paper. Before defining the problem, we firstly differentiate
two concepts: statistical interactions and causal interactions,
and then introduce the potential outcome model [31], the
cornerstone for building the methods to detect causal inter-
actions.

2.1 Notation

We use upper and lower case letters, e.g. X and x , to repre-
sent a random variable and its value, respectively. Bold-faced
upper and lower case letters, e.g. X and x, represent a set of
variables and the corresponding values, respectively. We use
the symbol “\” to denote the set difference operator, and we
use the shorthand, e.g. X\i to represent X\{Xi }. Particularly,
we denote the set of predictor variables and the target variable
with V and Y , respectively.

In this paper, the predictor variables that are to be tested
for possible causal interactions and the target variable are
required to be binary, i.e. having two possible values, 1 or 0.
The presence of a binary variable X means that the value of X
is equal to 1. For a binary set of variables X = {X1, . . . , Xm},
X = 1 denotes that Xi = 1 (i = {1, . . . ,m}) and YX=1

represents the value of Y when X = 1, where 1 means a
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unit vector. We also use x ≤ x′ to represent xi ≤ x ′
i for all

i ∈ {1, . . . ,m}.

2.2 Statistical and causal interactions

In statistics, an interaction is typically defined based on the
departure from additive effects of multiple variables on an
outcome [13]. In other words, there exists an interaction
between two variables G and E ; the effect when G and E
appearing together is different from the additive effect of the
two variables, when they appear separately.

A natural way for assessing the statistical interaction
between two variables is to measure the difference between
the combined effect of the variables and the individual effect
of each variable [30]. Let pi j denote the risk of a specific
disease based on the status of the genetic factor G and
environmental factor E , i, j ∈ {0, 1}. Thus, the interaction
between the two factors can be measured by the risk differ-
ence:

(p11 − p00) − [(p10 − p00) + (p01 − p00)], (1)

where (p11 − p00) represents the effect of both factors
together compared to the reference category (i.e. both factors
are absent) and (p10−p00) and (p01−p00)denotes the effects
of the genetic and environmental factors, respectively. Note
that Eq. (1) is exchangeable with [(p11− p01)−(p10− p00)]
and [(p11 − p10) − (p01 − p00)], which are interpreted as
the difference between the effects of one factor when another
factor has different values.

If the result of Eq. (1) is not equal to zero, it is said that
there exists an interaction betweengenetic and environmental
factors on the disease. Instead of using risk differences, one
may use risk ratios, Odds Ratios, or relative excess risk due
to interaction to measure the statistical interactions [30].

Most existing methods only measure the association-
based relationships that are not necessary to be causal, as
they did not take the effects of confounding variables into
account.However, to assess a causal interaction, it is essential
to control potential covariates (confounders) for adjustment
[1]. We have been aware of some interaction detection meth-
ods considering confounding elimination, but they typically
work under the assumption of the absence of confounding
[37].

Vanderweele et al. [35] developed a theory to detect
the presence of causal interactions based on the sufficient-
component cause model. With the theory, causal interactions
between multiple predictor variables are examined under
each stratum defined by the confounding variables, and there
exists a causal interaction between predictor variables only
if the interaction appears in all strata. However, instead of
providing a concrete exploration approach, the theory can
only be applied to validate hypothesised causal interactions,

where it is required to generate hypotheses about predictor
variables potentially having interactions and the confounding
variables beforehand based on domain knowledge.

Compared with these existing approaches, we aim to
develop a computational method for discovering the causal
interactions between multiple variables directly from data,
where no domain knowledge is required. To this end, we
take advantages of data mining techniques for computational
efficiency and a well-established causal model, the potential
outcome model for causal examination.

2.3 The potential outcomemodel

The potential outcome model [31] is a major framework for
causal inference, specifically for estimating causal effects in
observational or experimental studies.

Let X denote a predictor variable (or treatment variable)
and Y be the target variable. The individual ω receiving the
treatment (i.e. Xω = 1) is in the treatment group, while the
one not receiving the treatment (i.e. Xω = 0) is in the control
group. In the potential outcome model, for individual ω, the
causal effect of the treatment is the difference between the
outcomes of Y ifω receiving the treatment, Y 1

ω, and receiving
the control, Y 0

ω , i.e. δω = Y 1
ω − Y 0

ω .
We often aggregate the causal effects of individuals to

obtain the average causal effect (ACE), E[δω], i.e. the
expected value of causal effects for all individuals, as fol-
lows:

E[δω] = E[Y 1
ω] − E[Y 0

ω] (2)

In fact,we cannot observe bothY 1
ω andY 0

ω at the same time,
because only Y 1

ω can be observed if individual ω receives
the treatment, and vice versa. However, in an ideal (purely
randomised) study, ACE can be estimated as the difference
in the average outcomes between the treatment and control
groups, i.e.

Eideal [δω] = E[Y 1
ω|Xω = 1] − E[Y 0

ω|Xω = 0] (3)

In observational studies, it is not possible to randomly
assign a treatment, and the covariates (denoted as C in this
paper) make difference between individuals in a data set,
which produces bias and affects the estimation of ACE. A
perfect stratification on the covariates stratifies the data into
a number of strata, such that all individuals in each stratum
are indistinguishable, except the state of the treatment. Thus,
we can estimate the ACE within each stratum C = c as:

ACEc = Eideal [δω|C = c]
= E[Y 1

ω|Xω = 1,C = c] − E[Y 0
ω|Xω = 0,C = c]

(4)
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The ACE in a population can be determined by aggregat-
ing the ACEs in the strata:

ACE =
∑

C=c

wcACEc (5)

where wc stands for the weight of the stratum c.

2.4 Problem definition

In this paper, we develop the practical definitions and detec-
tion criteria of causal interactions, based on the potential
outcome model. We also take the advantages of data mining
techniques to develop an efficient framework to detect causal
interactions from observational data.

Normally there exist two types of causal interactions [30]:
(1) positive causal interactions, also named superadditive
interactions in [34], which facilitate to produce the outcome,
and (2) negative causal interactions, also named subadditive
interactions in [34],which are to prevent the occurrence of the
outcome. Both kinds of causal interactions are to strengthen
the overall effect of multiple variables on the target. The
only difference is that positive causal interactions increase
the effects in the positive direction (i.e. producing the out-
come), while negative causal interactions increase the effects
in the negative direction (i.e. preventing the outcome).

For example, if doctors suggest us take two or more drugs,
it is expected that these drugs will have causal interactions
and together help us to recover from the disease more effec-
tively. That is, the interactions positively increase the effect
of the drugs on recovery.An example of negative causal inter-
action is that both high price and high maintenance cost have
negative effects on the action of buying a car, respectively,
while the negative causal interaction between these two vari-
ables will strengthen their individual negative effects, and
thus, the presence of both variables results in a lower chance
of buying a car.

To define the casual interactions, we begin with the defini-
tion of a monotonic effect, which allows for the construction
of powerful statistical tests [35].

Definition 1 (MonotonicEffect [35])Let X = {X1, . . . , Xm}
and Y be a set of binary variables and a binary target, respec-
tively. If we have E[Y |X = x] ≥ E[Y |X = x′] whenever
x ≥ x′, then X has positive monotonic effects on Y . If we
have E[Y |X = x] ≤ E[Y |X = x′] whenever x ≥ x′, then
X has negative monotonic effects on Y .

In this paper, we make an assumption that the effects
of treatment variables are monotonic, as [12,35] did. For
the simplicity of the presentation, we only introduce the
definition of positive causal interactions under the positive
monotonic effect assumption and the corresponding criteria
to detecting positive causal interactions. They can be easily

adapted under the assumption of negative monotonic effects
to define and detect negative causal interactions by changing
only the direction of the effects of variables. In the exper-
iments, we will show the results of the discovery of both
positive and negative causal interactions from data.

Definition 2 (Positive Causal Interactions) Let a variable
set X = {X1, . . . , Xm} satisfy the assumption of positive
monotonic effects. If ∃Xi ∈ X s.t. ACE{Xi ,X\i=1} −∑

j �=i
ACE{Xi ,X j=0,X\{i, j}=1} > 0, i.e. the causal effect of Xi with
the presence (participation) of all remaining m − 1 variables
exceeds the sum of the causal effects of Xi with the presence
of m − 2 (i.e. 1 less) variables, then X has m-way positive
causal interactions.

In Definition 2, we use ACE{Xi ,X\i=1} to denote the aver-
age causal effect of Xi with all variables in X except Xi set to
1, and ACE{Xi ,X j=0,X\{i, j}=1} represents the average causal
effect of Xi with X j = 0 and X\{i, j} = 1.

The research problem in this work is to detect causal inter-
actions from data, which is shown as follows.

Problem 1 Given an observational data set D for the predic-
tor variables V and the targetY , find the variable sets X ⊆ V ,
s.t. X has causal interactions with respect to the target Y by
Definition 2.

3 Detecting causal interactions

In this section, we present the criterion for detecting causal
interactions. We firstly illustrate the main idea for detect-
ing the 2-way causal interactions, the interaction involving
2 variables, then we introduce the criterion for detecting m-
way (m ≤ 2) causal interactions.

3.1 2-Way causal interactions

Taking the study of the causes of lung cancer as an example,
let X1 = 1 or 0 denote occupational exposure to asbestos or
not, X2 = 1 or 0 denote smoking or not and Yx1x2 represent
suffering the lung cancer or not when X1 = x1 and X2 =
x2, x1, x2 ∈ {0, 1}. Then from Eq. (2), the average causal
effect of X1 when X2 is present (X2 = 1) and not present
(X2 = 0) can be, respectively, estimated as ACE{X11} =
E[Y11] − E[Y01] and ACE{X10} = E[Y10] − E[Y00], where
ACE{X1x2} denotes the ACE of X1 when X2 = x2. If we have
ACE{X11} > ACE{X10}, i.e. the causal effect of X1 with X2’s
presence is larger than the causal effect of X1 without X2’s
presence, then based on Definition 2, we can conclude that
there is a positive causal interaction between X1 (exposure to
asbestos) and X2 (smoking) on Y (lung cancer). Note that the
condition also can be presented as ACE{1X2} > ACE{0X2}.
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The above conditions can be presented as the following
criterion for testing the presence of a positive causal interac-
tion between two variables.

Criterion 1 Let X1 and X2 have positivemonotonic effects on
the target Y . There is a positive causal interaction between
X1 and X2, if any of the following conditions is met

ACE{X11} −ACE{X10} > 0 (6)

ACE{1X2} −ACE{0X2} > 0 (7)

where ACE{X1x2} represents the causal effect of X1 on Y
when X2 = x2 and ACE{x1X2} the causal effect of X2 on Y
when X1 = x1.

Note that these two conditions (Eqs. (6) and (7)) are iden-
tical, if the ACE in the above conditions is expanded by the
following Eq. (4).

Criterion 1 presents the conditions for detecting 2-way
causal interactions, where we suppose there are no con-
founders, i.e. no other variables influencing the causal effects
of X1 and X2 on the target Y . However, as mentioned in
Sect. 2.3, randomised assignment of treatments is not possi-
ble in observational studies, so we employ the stratification
strategy to address the confounding issue, which stratifies the
data into a number of strata. Then we estimate the average
causal effects in each stratum and aggregate them over all
the strata (see Eqs. (4) and (5)). So we have the following
criterion for detecting the 2-way positive causal interaction.

Criterion 2 Let X1 and X2 have positive monotonic effects
on the target Y and C be the covariates. There is a positive
causal interaction between X1 and X2, if any of the following
conditions is met

∑

C=c

wc(ACE{X11|c} −ACE{X10|c}) > α (8)

∑

C=c

wc(ACE{1X2|c} −ACE{0X2|c}) > α (9)

wherewc is the weight of stratum C = c and α is a threshold
specified by users to filter the causal interactions with low
strength.

Note that in this paper we assume that the differences of
individuals could be captured by the covariates, i.e. the set of
variables used for stratification. This assumption implies that
there are no hidden confounding variables to bias the causal
effect estimation.

3.2 m-Way causal interactions

Similar to 2-way causal interactions, we can derive the cri-
terion for detecting m-way causal interactions from data.
However, when m > 2, the situation becomes more com-
plicated, since there exist more ways for selecting variables

X1

alone X1X3
X3

alone
+
X2

ACE1X21

X1

alone X1X3
X3

alone
+
X2

ACE0X21

X1X3
X3

alone
+
X2

ACE1X20

X1X3

+
X2

- - =
X1

alone

Fig. 1 An illustration of 3-way causal interactions

Xi and X j (see Definition 2). In the following, we discuss
how to do the variable selection for the m-way causal inter-
actions. We firstly look at the case of 3-way (i.e. m = 3)
causal interactions.

Given three binary variables, X1, X2, and X3, if we
focus on X1, and consider the causal effect of X1 when
both X2 and X3 are present, in comparison with the causal
effects when either X2 or X3 is absent, based on Defini-
tion 2, we have: if ACE{X111} −(ACE{X101} +ACE{X110}) >

0, the three variables have a positive causal interaction.
Similarly when we focus on X2 and X3, respectively, we
obtain the other two conditions for 3-way causal inter-
actions: ACE{1X21} −(ACE{0X21} +ACE{1X20}) > 0, and
ACE{11X3} −(ACE{01X3} +ACE{10X3}) > 0. If any of these
three conditions or criteria holds, we say that X1, X2, and
X3 have 3-way positive causal interactions with respect to
the target Y .

To understand the physical meaning of the conditions for
3-way causal interactions, as illustrated inFig. 1 (when focus-
ing on X2), we can consider that the overall causal effect of
X2 with the participation of X1 and X3 (ACE{1X21}) on Y
in fact attributes to three elements: the causal effect of X2

with the presence of X1’s contribution, the causal effect of
X2 with the presence of X3’s contribution, and the causal
effect of X2 with the presence of the combined contribu-
tion of X1 and X3. The 3-way causal interaction is indeed
the third element, the causal effect of X2 with the presence
of the combined contribution of X1 and X3. Therefore, we
take away ACE{1X20} and ACE{0X21} from the overall causal
effect of X2 with the participation of X1 and X3 (ACE{1X21})
to get the causal effect of the 3-way causal interaction.

Now let us develop the criterion for detecting m-way
causal interactions. Firstly, we need to introduce the con-
cept of a subordinate set [35], which enables us use the ACE
concept and notation to present the causal effects of m − 1
variables on Y in the criterion to be developed (Criterion 3).

Definition 3 (Subordinate Set) Given a set of binary vari-
ables X = {X1, . . . , Xm}, let uim = {(x1, . . . , xm) ∈
{0, 1}m : x\i = 1, xi = 0} and ui, jim = {(x1, . . . , xm) ∈
{0, 1}m : x\{i, ji } = 1, xi = x ji = 0, i �= ji }. The set

Sk = {u1, j1m , . . . , uk−1, jk−1
m , uk+1, jk+1

m , . . . , um, jm
m } is a sub-

ordinate set of order m, if ∃l ∈ {1, . . . , k − 1, k + 1, . . . ,m},
s.t. ul, jlm ≤ ukm .

In Definition 3, uim (ui, jim ) represents an m-length vec-
tor with i-th (i-th and ji -th) element(s) equal to 0 and the
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remaining equal to 1. Now we use the following example to
explain the subordinate set and the detection of the 3-way
causal interaction.

Example 1 For the estimation of 3-way causal interactions
(m = 3), if we focus on the causal effect of X2 (i.e. k = 2)
on Y , then S2 = {u1, j13 , u3, j33 }, which has three possible

combinations based onDefinition 3: {u1,33 , u3,23 }, {u1,23 , u3,23 }
and {u1,23 , u3,13 }. Any one of the three combinations can be
selected for detecting 3-way causal interactions, e.g. S2 =
{u1,23 , u3,23 } (i.e. i = 1, ji = 2 and i = 3, ji = 2), and
thus, a condition of 3-way causal interaction is expressed as
ACE{1X21} −(ACE{0X21} +ACE{1X20}) > 0.

As illustrated in the above example, the subordinate set
Sk normally is not unique. The different conditions can be
created based on different subordinate sets, and the causal
interactions will exist, once any one condition is satisfied
[35].

The formal criterion for detecting an m-way causal inter-
action is shown in the following, with the confounding taken
into account.

Criterion 3 X = {X1, . . . , Xm} satisfy the positive mono-
tonic effect assumption, and C be the covariate set. The
variable set X exhibits an m-way positive causal interac-
tion, if ∃Xk ∈ X and some subordinate sets Sk , s.t.

∑

C=c

wc(ACE{Xk ,X\k=1|c} −
∑

{i, ji }:ui, jim ∈Sk

ACE{X ji ,Xi=0,X\{i, ji }=1|c}) > α,

where α is the threshold and wc is the weight of the stratum
C = c.

4 A data-driven approach to causal
interaction discovery

In this section, we present the proposed framework, data-
driven approach to causal interaction discovery (DACID)
and the specific algorithms instantiated from the framework
for discovering causal interactions in observational data. As
shown in Framework 1, the algorithm includes three main
steps: (1) candidate variable generation (lines 1–4), to only
include the variables associated with the given target and to
generate candidate sets for testing causal interactions; (2)
data stratification (lines 10–11), to balance observed covari-
ates between control and treatment groups to reduce bias; and
(3) causal interaction discovery (lines 12–22), to detect the
causal interactions between multiple variables with respect
to the target. In each step, different datamining and statistical

FRAMEWORK 1: Data-driven Approach to Causal
Interaction Discovery (DACID)
Input: A binary data set D for predictor variable set V and the
target Y , the significant threshold α for testing causal
interactions, and the maximum level of causal interactions k0.
Output: C IY = {X1, . . . , Xq }, where Xk ⊆ V is a set of
variables with causal interactions w.r.t Y .
1: V ′ ← predictorSelection(V , Y )

2: C IY ← ∅
3: Let m = 2
4: Pairwise generate the 2-way candidate set V2 based on V ′
5: while m ≤ m0 do
6: if m + 1 ≤ m0 then
7: (m + 1)-way candidate set Vm+1 ← ∅
8: end if
9: for each Xm in Vm do
10: C ← stratifyVariable(V , Xm , Y )

11: S ← stratification(Xm , D,C)

12: for each stratum S = s do
13: CIValues ← causeInteraction(Xm , Y , s)
14: Get ws from s
15: end for
16: CIValue ← ∑

wsCIValues
17: if CIValue > α then
18: C IY ← C IY ∪ Xm
19: if m + 1 ≤ m0 then
20: for each X ∈ V ′\Xm , Vm+1 ← Vm+1 ∪ {Xm , X}
21: end if
22: end if
23: end for
24: m = m + 1
25: end while
26: Output C IY

algorithms can be involved. Meanwhile, a pruning schema is
employed to improve the efficiency of the algorithms.

4.1 Candidate variable generation

If a set of variables X has a causal interaction with respect to
a target, Y , then it is reasonable to assume that every variable
in X is associated with Y. In this work, only variables associ-
ated with Y will be considered to generate the candidate sets
for testing causal interactions. In Framework 1, the function
predictor Selection() in line 1 is used for the associated
variable selection. Various methods can be implemented for
this function as introduced in the following.

Correlation, Pearson correlation, Chi-square test are a
commonly used criterion to describe the association between
two variables. These methods for association analysis pri-
marily vary in term of the types of variables (categorical or
continuous variables). Under the proposed framework, one
may use any of the association analysis methods suitable to
their data types to select the associated variables. Once the
associated variables selected,we pairwise generate the 2-way
candidate set V2 (line 4) for testing causal interactions in the
next sections.
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4.2 Stratification

Stratification attempts to balance observed covariates by
obtaining similar covariate distributions between treatment
and control groups to reduce estimation bias. As described in
Sect. 2.3, ideally, within a stratum where the distributions of
covariates of the control group and the treatment group are
indistinguishable, we can use Eq. (4) to obtain an unbiased
estimation of the causal effects. Then we can aggregate the
causal effects across all the strata. To this end, the key to the
proper stratification of a data set is the choice of stratifying
variables from the set of predictor variables.

In the DACID framework, we conduct stratification only
on the covariates that are associated with the target (repre-
sented by stratifying variables C). This is done by function
stratifyVariable() in Framework 1 (line 10). For example,
it is not necessary to control one person’s facial features
(e.g. a hawk nose), when estimating the causal interactions of
asbestos exposure and the smoking status, regarding to lung
cancer.

With the stratifying variable set selected, the simplest
stratification is the perfect stratification (PS). PS requires
that all individuals within a stratum have same values of the
stratifying variables C, to remove the effects of covariates on
the target Y . Thus, PS is capable of eliminating bias in the
estimations of causal effects and causal interactions. In the
proposed DACID framework, PS is employed as an option
when performing data stratification.

However, for a high-dimensional data set, PS may have a
low statistical power for detecting dependency in data, as too
many strata may be generated and each stratum has a small
size. An alternative option, propensity score [26], is provided
to increase the statistical power. The idea of propensity score
is to stratify individuals to different strata, such that indi-
viduals in the same stratum have similar propensity scores.
For an individual (sample), the propensity score is defined
as the probability of the individual receiving the treatment T
conditioning on the stratifying variables C:

e(c) = pr(T = 1|C = c).

However, normal propensity score method cannot handle
our specific problem of detecting causal interactions, which
involves multiple treatments. [9] proposed the generalised
propensity score (GPS) to extend binary treatment tomultiple
treatments. The GPS is defined as the conditional probability
of receiving a particular treatment t given C:

g(t, c) = pr(T = t |C = c).

Thus, each individual obtains a GPS vector G(C) =
(g(t1, c1), ..., g(tZ , cZ)), the conditional probabilities of
receiving Z different treatments, respectively.

In the proposed framework, stratification on generalised
propensity score (SGPS) is employed as an alternative option
of (PS). We use multinomial logistic regression to obtain
the GPS vector. K-means clustering is employed to separate
individuals with similar generalised propensity score vectors
into the same stratum. It has been shown that subclassification
with 5 subgroups can remove at least 90%of the bias resulting
from the covariates in the causal analysis [27,31]. And thus
k is set to 5 in this work.

4.3 Causal interaction discovery

The stratification puts individuals with similar distribution
of stratifying variables C in the same stratum. Within each
stratum S = s, a contingency table is generated for the esti-
mation of causal interactions.Nowwe illustrate the discovery
of 2-way causal interactions.

Given a data set D, X1 and X2 are binary predictors of
the binary target Y . Each stratum S = s of data D is divided
into 4 treatment groups based on different values of X1 and
X2 (see the contingency table below): treatment 1 ({X1 =
1, X2 = 1}), treatment 2 ({X1 = 1, X2 = 0}), treatment 3
({X1 = 0, X2 = 1}), and treatment 4 ({X1 = 0, X2 = 0}),
where ni j (i ∈ {1, 2, 3, 4}, j ∈ 1, 2) denotes the frequencies
of the values of X1, X2 and Y .

X1 X2 Y
1 0

1 1 n11 n12
1 0 n21 n22
0 1 n31 n32
0 0 n41 n42

Since individuals are indistinguishable in terms of the
stratifying variables in the same stratum, no matter which
treatment group the individuals are in, we can unbiasedly
estimate the causal effects between any two treatment groups
in the stratum. As an illustration, we use an example to show
how to calculate the causal effect of X2 in the cases of X1 = 1
and X1 = 0, respectively, and determine if there is a causal
interaction between them.

Example 2 For clear presentation, we break the above con-
tingency table into two 2 × 2 contingency tables, as shown
in Table 1. Then the causal effect of X2 in the case of
X1 = 1 can be estimated by comparing the individuals
receiving treatment 1 ({X1 = 1, X2 = 1}) and treatment
2 ({X1 = 1, X2 = 0}), see the first contingency table in
Table 1. Similarly, ACE between treatment 3 and treatment
4 groups is estimated from the second contingency table, to
get the causal effect of X2 when X1 = 0. Probabilities (Prob)
are the most common approach to calculating the ACEs [36].
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Table 1 Two 2 × 2 contingency tables

X1 X2 Y X1 X2 Y
1 0 1 0

1 1 n11 n12 0 1 n31 n32

1 0 n21 n22 0 0 n41 n42

ACE{1X2|s} = n11/(n11 + n12) − n21/(n21 + n22)

ACE{0X2|s} = n31/(n31 + n32) − n41/(n41 + n42)

Odds Ratio (OR) [5] is another widely used measure
and may be more suitable to determine the ACEs when the
response variable is binary [25].

ACE{1X2|s} = n11n22/n12n21

ACE{0X2|s} = n31n42/n32n41

With the calculations of Prob and OR, the causal effects
of X2 with X1 = 1 and X1 = 0 on the stratum S = s are
obtained. Then the causal interactions between X1 and X2

on Y can be determined based on Criterion 2, by aggregating
ACEs in all strata. Here the weight ws of one stratum s is set
as the ratio of the sample size of s to the size of data D.

The above is an example of 2-way causal interaction esti-
mation. m-way causal interactions can be obtained with the
similar progress.

4.4 Pruning schema and complexity analysis

Logically, if a set of k variables (k ≥ 3) has a causal interac-
tion on an outcome, then at least one of its subsets also has a
causal interaction on the outcome. In other words, if a set of
variables do not have causal interaction, any of its superset
of variables does not have causal interaction either. Using
this property, we can prune the search space by generating
high-level causal interaction candidates based on confirmed
lower-level interactions, as shown in line 19 of Framework
1. Thus, for the sake of the computational efficiency, the
DACID framework identifies causal interactions in a level
by level manner.

Now we analyse the time complexity of the proposed
framework. In the case without the pruning schema, the
number of all possible causal interaction candidate sets is∑|V |

k=2

(|V |
k

)
, and the number of causal interaction tests is

O(2|V |). For the case with the pruning schema, if the number
of all k-level causal interaction candidate sets is N (k) and the
number of sets confirmed is N ′(k) (N ′(k) � N (k)), then the
number of (k + 1)-level causal interaction candidate sets is
N (k + 1) = N ′(k)(|V | − k). The total number of causal
interaction candidate sets is

∑|V |−1
k=2 N ′(k)(|V | − k)+ (|V |

2

)
,

i.e. O(|V |2). Therefore, the pruning schema significantly
improves the efficiency of causal interaction discovery.

This pruning schema may bring about some false nega-
tives, when the causal interaction discovery approach misses
the lower-level causal interactions, since the higher-level
(e.g. (k + 1)-level) candidates are generated from the lower-
level (e.g. k-level) causal interactions. Fortunately, for a
(k+1)-level candidate, if any k-level causal interaction found
is a subset of this (k + 1)-level candidate, then this can-
didate will not be missed. For example, when we missed
the causal interaction between X2 and X3, the candidate
X1X2X3 still could be generated if we detected the causal
interaction between X1 and X2. Thus, the causal interaction
discovery approach with the pruning schema can still obtain
high-quality causal interaction discovery and high computa-
tional efficiency as well.

5 Experiments

In this work, Probability (Prob) and Odds Ratio (OR) are
employed for the estimation of causal effects. Combined
with two different stratification strategies, perfect stratifica-
tion (PS) and stratification on generalised propensity score
(SGPS), the proposed DACID framework is instantiated into
four different algorithms: PS-OR, PS-Prob, SGPS-OR, and
SGPS-Prob.

A collection of synthetic and real-world data sets are used
to evaluate the effectiveness and efficiency of four instanti-
ated algorithms of the proposed framework. We firstly run
experiments on the synthetic data with known ground truth,
where the threshold of detecting causal interactions is set to
0.15 (i.e. α = 0.15 in Criterion 3 for all four algorithms), and
compare the results with MBS [10] in Sect. 5.1. Then we run
experiments on the real-world data sets, where 0.10 is set as
the threshold to expectmore potential causal interactions, and
then, the results with strong causal interactions are extracted
for detailed discussions (Sects. 5.2 and 5.3). Finally, we com-
pare the efficiency between four instantiated algorithms with
MBS on the synthetic datasets randomly generated by logis-
tic regression (Sect. 5.4).

5.1 Synthetic data

To evaluate the proposed algorithms, we generate multiple
binary synthetic data sets based on the definition of suffi-
cient causes defined in [35]. According to the theorem in
[29,30], there must exist causal interactions between compo-
nent causes of each sufficient cause, and thus, the interactions
among the component causes of a sufficient cause can be con-
sidered as the ground truth of causal interactions.

Specifically, three main steps are performed to generate
a synthetic data set: (1) samples of the predictor variables
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Table 2 Causal interactions discovered by the proposed algorithms and MBS

V50-5K V80-5K V100-5K V120-5K V150-5K V200-5K

F1 (SD) F1 (SD) F1 (SD) F1 (SD) F1 (SD) F1 (SD)

no noise PS-OR 0.98 (0.05) 1.00 (0.00) 1.00 (0.00) 0.96 (0.08) 1.00 (0.00) 1.00 (0.00)

PS-Prob 1.00 (0.00) 0.95 (0.06) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

SGPS-OR 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.94 (0.08) 1.00 (0.00)

SGPS-Prob 1.00 (0.00) 1.00 (0.00) 0.96 (0.06) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

MBS 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.96 (0.07) 0.93 (0.11)

10% noise PS-OR 1.00 (0.00) 0.95 (0.07) 1.00 (0.00) 1.00 (0.00) 0.94 (0.09) 0.93 (0.08)

PS-Prob 1.00 (0.00) 1.00 (0.00) 0.96 (0.06) 1.00 (0.00) 0.95 (0.08) 1.00 (0.00)

SGPS-OR 1.00 (0.00) 0.95 (0.07) 1.00 (0.00) 0.96 (0.06) 1.00 (0.00) 0.95 (0.07)

SGPS-Prob 1.00 (0.00) 1.00 (0.00) 0.92 (0.08) 1.00 (0.00) 0.96 (0.07) 1.00 (0.00)

MBS 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.98 (0.05) 0.92 (0.10) 0.90 (0.14)

20% noise PS-OR 0.90 (0.09) 0.91 (0.10) 0.92 (0.09) 0.93 (0.08) 0.86 (0.08) 0.89 (0.07)

PS-Prob 0.91 (0.09) 0.87 (0.08) 0.90 (0.08) 0.93 (0.08) 0.85 (0.07) 0.91 (0.10)

SGPS-OR 0.93 (0.07) 0.89 (0.08) 0.92 (0.08) 0.94 (0.08) 0.87 (0.07) 0.89 (0.08)

SGPS-Prob 0.90 (0.07) 0.89 (0.09) 0.94 (0.09) 0.91 (0.10) 0.88 (0.09) 0.89 (0.09)

MBS 0.93 (0.17) 0.95 (0.08) 0.94 (0.08) 0.93 (0.10) 0.82 (0.27) 0.75 (0.15)

V and the target Y are randomly generated, (2) a subset of
predictor variables X are randomly picked up from V and
values of the variables in X aremodified such that their values
(and the values of Y ) satisfy the definition of sufficient causes
[35], i.e. let X be a sufficient cause of Y , and (3) repeat steps
2 and 3 to obtain another sufficient cause (and their samples)
of Y . For example, a variable set X = {X1, X2} is picked up;
then, we modify the samples of X1 and X2 such that for the
whole data set we have Y = 1 once X1 = 1 and X2 = 1. In
this way, there exists causal interaction between X1 and X2

based on the theorem in [30].
We have generated six data sets containing 50, 80, 100,

120, 150, and 200 variables, respectively, and each with 5K
samples. To test the robustness of the proposed algorithms,
we add random noise on 10% and 20% of samples for each
predictor variable, respectively.

Table 2 shows the average results (F1-measure) and stan-
dard deviations of 10 runs of experiments on the synthetic
data sets. We can that see all of algorithms perform very well
on the data sets without noise. The reason is that if two vari-
ables are sufficient to cause the occurrence of the target, then
these two variables are more likely to have a strong causal
interaction on the target, and thus, this type of causal inter-
actions is easier to be discovered from the data.

As the noise increases, the performance of the proposed
algorithms slightly decreases, but the accuracy still keeps
above 0.85, while the MBS algorithm has a lower accuracy,
especially on the data sets with more variables. Meanwhile,
the standard deviations of the F1-measure show that the pro-
posed algorithms are more stable than MBS. Furthermore,
MBS has a poor performance in terms of identifying the exact

set of variables that have a real interaction with each other, as
MBS is designed to greedily search a variable set, by adding
variables into it so as to increase the overall causal effects.
For example, the ground truth indicates that X1 and X2 have
a causal interaction and X3 does not interact with other vari-
ables, but MBS regards X1, X2, and X3 have interactions,
if they have a higher causal effect. Therefore, MBS fails to
identify the exact pair with a real interaction, which in turn
may generate a misleading understanding and action.

5.2 BRCA data

The BRCA (TCGA breast invasive carcinoma) contains
the expression profiles of messenger RNAs (mRNAs) and
microRNAs (miRNAs) of 753 cancer patients. MiRNAs are
an important type of gene regulator, and there has been evi-
dence that a group of miRNAs often co-regulate the same
mRNAs, i.e. the miRNAs work together to cause the change
of the expression levels of the same mRNAs [2]. As an
example of demonstrating the performance of the proposed
algorithms, we apply the algorithms to the BRCA data set
to discover the causal interactions between the co-regulating
miRNAs.

As our focus is on finding the causal interactions of the
regulators (miRNAs), rather than findingmiRNA targets (i.e.
which miRNA regulates which mRNA), we pre-process the
data set as follows. Firstly, we use the Limma package [24]
to find the significantly differentially expressed miRNAs and
mRNAs between the tumour and normal samples (p-value
< 0.05, adjusted by the Benjamini–Hochberg (BH)method).
The top 100 differentially expressed miRNAs are chosen as
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Table 3 Statistical significance of validated miRNA–mRNA-miRNA
causal interaction triplets

BCL-2 RAS VEGF

PS-OR 1.51E−16 7.81E−01 1.89E−03

PS-Prob 1.31E−12 8.39E−03 8.04E−03

SGPS-OR 1.10E−16 1.51E−02 1.09E−08

SGPS-Prob 1.46E−05 1.55E−01 5.07E−02

the predictor variables. Then we select 3 mRNAs (i.e. BCL-
2, RAS and VEGF) from 5 differentially expressed mRNAs
in the “pathways in cancer” as the targets. At the end, we
obtain the data set containing the expression profiles of 100
miRNAs and 3 mRNAs.

We apply each of the four proposed algorithms to the
pre-processed data set to discover 2-way causal interactions
between the miRNAs. The predicted direct sequence bind-
ing information in TargetScan (v7.0) [15] is employed for
the post-process, to filter the miRNAs that may be incapable
of binding the 3 selected mRNAs. We denote an interaction
output by our algorithms in the form of “miRNA–mRNA–
mRNA, which represents (1) each miRNA is capable of
binding the target mRNA, and (2) the two miRNAs have
a cause interaction in co-regulating the mRNA.

The enrichment analysis is used to validate the quality of
the relationships between miRNAs and mRNAs, by check-
ing if (1) both of the interacting miRNAs and the target
mRNA are in the same pathway, and (2) a miRNA pair hav-
ing causal interactions has been experimentally confirmed
to regulate the same target mRNA. Specifically, we focus
on one significant KEGG (Kyoto Encyclopedia of Genes
and Genomes) [11] pathway, “pathways in cancer”. The
MiRSEA package (https://cran.r-project.org/web/packages/
MiRSEA/index.html) is used to retrieve the set of miRNAs
that are in the pathway “pathways in cancer”. The experimen-
tally confirmed miRNA–mRNA regulatory relationships are
downloaded from [14]. Based on the relationships, we iden-
tify the miRNA–mRNA–miRNA triplets.

A cumulative hypergeometric distribution model is then
employed to assess the statistical significance of causal inter-
actions discovered. Let N be the number of possible patterns
(miRNA–mRNA–miRNA causal interaction triplets) in the
pre-processeddata set, K be the number of patterns in the data
satisfying the above two conditions (i.e. in the same pathway
and experimentally confirmed co-regulation relationships), n
be the number of patterns discovered, and k be the number of
validated patterns. The p-values of the validation results are
obtained using the cumulative hypergeometric test formula:

p(X ≥ k) =
n∑

i=k

(K
i

)(N−K
n−i

)
(N
n

) (10)
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Fig. 2 Causal interactions discovered by at least three proposed algo-
rithms, which are associated with the KEGG pathway, pathways in
cancer, and have the experimentally confirmed co-regulation relation-
ships

The top 50 detected causal interactions on eachmRNAare
extracted to analyse the performance of proposed algorithms.
Table 3 shows the validated miRNA causal interactions on
the three different mRNAs. The results show that the four
proposed algorithms have a good performance in detecting
causal interactions betweenmiRNAs in co-regulating a target
mRNA.

Figure 2 shows an example of the miRNA causal inter-
actions discovered by at least three proposed methods with
all miRNAs and mRNAs appearing in the “pathways in can-
cer”, and the co-regulation relationships are experimentally
confirmed.

5.3 METABRIC data

The METABRIC data set [33] contains clinical traits and
outcomes for 1981 primary cancer tumours collected from
participants of the Molecular Taxonomy of Breast Cancer
International Consortium (METABRIC) trial. For continu-
ous variables, we convert them to categorical ones and then
dichotomise them to get the binary data set. The transformed
data set contains 35 binary variables and 1358 samples. The
outcome variable in our experiments is 5-year survival, i.e.
whether patients survive more than 5 years after being diag-
nosed as having breast cancer. In addition, the R package
“impute” [7] is employed to impute missing data, when the
maximum percentage of missing data in any row or column
is less than 60%. If more than 60% of data is missed, then
the row or column is dropped.

With the threshold setting of α = 0.10, 42, 22, 63,
and 19 causal interactions are detected by four instantiated
algorithms. We rank the results based on the strength of
causal interactions and extract TOP 5 positive and TOP 5
negative causal interactions for the evaluation and list the
ones detected by at least two algorithms in Table 4. The
results indicate that chemo = no (the patient did not have
chemotherapy) interacts with some features, e.g. stage = 1
(early stage), si ze = 0-19 (small size of tumour), and
posi tive_lymph = 0 (no positive lymph nodes), to have a
high chance to increase the 5-year survival rate. Chemother-
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Table 4 Some causal
interactions identified by four
algorithms, from the
METABRIC data set

Positive causal interactions (5-year survival) PS-OR PS-Prob SGPS-OR SGPS-Prob

posi tive_lymph = 0 & chemo = no
√ √ √

stage = 1 & chemo = no
√ √ √

diag_age = 55–69 & chemo = no
√ √ √

si ze = 0–19 & chemo = no
√ √

removed_lymph = 4–9 & radiation = yes
√ √

ER.Expr = − & radiation = yes
√ √

negative causal interactions (5-year survival) PS-OR PS-Prob SGPS-OR SGPS-Prob

ER.Expr = + & chemo = yes
√ √ √ √

posi tive_lymph = 2–3 & grade = 2
√ √

grade = 2 & chemo = yes
√ √

diag_age = 70–84 & posi tive_lymph = 2-3
√ √

stage = 3 & Er .Expr = + √ √
stage = 3 & hormone = yes

√ √
posi tive_lymph = 1 & removed_lymph = 1-3

√ √

diag_age age at diagnosis of the disease; si ze size of tumour in cm; grade grade of disease; stage composite
of size and # positive nodes; pos_lymph # positive lymph nodes; removed_lymph # lymph nodes removed;
ER.Expr oestrogen receptor expression; chemo whether patient had chemotherapy; radiation whether
patient had radiation therapy; hormone whether patient had hormone therapy

(a) (b)

Fig. 3 Scalability evaluation

apy usually is not recommended for patients with non-
invasive breast cancer, which may be a reason that chemo =
no interacts with various features to get positive results.

5.4 Scalability evaluation

In Sect. 4.4, we have analysed the computational complexity
of the proposed framework. To experimentally assess its effi-
ciency, we conduct scalability evaluation on the instantiated
algorithms. We run PS-OR, PS-Prob, SGPS-OR, and SGPS-
Prob on 10 synthetic data sets and compare the runtime with
MBS. The data sets are randomly generated by using logistic
regression, where the predictor variables and the target vari-
able are binary. All the scalability evaluation experiments are

run on the same computer with a 3.4 GHz Quad-core CPU
and 16 GB of memory.

Figure 3a shows the running time of the algorithms using
the data sets of the same sample size (5K) but different num-
bers of variables (50, 100, 150, 200 and 250). The results
show that the five algorithms all scale well, butMBS is most
efficient with respect to the number of variables. The algo-
rithms using PS (PS-OR and PS-Prob) are slightly more effi-
cient than the ones with SGPS (SGPS-OR and SGPS-Prob),
since PS is faster than SGPS. Another observation is that
the scalability of PS-OR and PS-Prob (SGPS-OR and SGPS-
Prob) is the same. It is because that the different measures of
theACE estimation (OR orProb) do not impact the efficiency
of algorithms, when the stratification strategies are the same.
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We then apply the algorithms to the data sets with 50
variables but different sample sizes (10K, 20K, 30K, 40K,
and 50K). The execution time is shown in Fig. 3b. PS-OR
and PS-Prob are much faster than other three methods con-
sistently for different record sizes, while the running time
of SGPS-OR and SGPS-Prob increases sharply as the data
sets get larger. The main reason is that propensity scores are
obtained using the logistic regressions, whose time complex-
ity is polynomial to the number of samples. Thus, SGPS-OR
and SGPS-Probmay not handle data sets with too large sam-
ple size, while PS-OR, PS-Prob, and MBS scale well with
both number of variables and number of samples.

6 Related work

Numerous methods have been proposed to address the prob-
lemof causality, butmost of themare designed to discover the
causal relationship between a single factor and the outcome
[4,23,32]. A little but growing literature seeks to detectmulti-
factor causes consisting of two or more component variables
[16,17,20]. Although these methods were able to capture the
causal relationships between multi-factor predictor variables
and the target, they focus on measuring the combined effect
of multiple variables on the outcome, instead of quantifying
the interactions between these variables.

Novick et al. [22] developed theories to test conjunc-
tive causes, which act in concert to produce or prevent an
effect, and to detect the interactions between causes. Con-
tingency information was used to judge interactions between
two causal candidates [38]. These methods were designed
to validate hypothesised causal interactions, which may be
difficult to be generated even based on domain knowledge.

More recently, data mining and machine learning strate-
gies are applied to learn interactions from large data sets. [6]
proposed a maximum entropy probability model to search
for genomic interactions on disease risks. [21] developed
a multi-factor dimensionality reduction (MDR) method for
collapsinghigh-dimensional genetic data into a single dimen-
sion and then detected interactions in relatively small sample
sizes. By employing Bayesian network learning and infor-
mation gain, [10] have developed a new method to discover
interacting single nucleotide polymorphism (SNPs) and suc-
cessfully detected some insights from real-world data. [39]
have formalised the concept of synergistic interaction and
applied it to causal inference.

In the past decade, Vanderweele et al. [35] have made
progress in detecting causal interactions under the sufficient-
component cause model [29]. However, the work largely
stays at theoretical level and it is difficult to be applied to
exploring causal interactions directly from data.

Distinct from these methods, the proposed DACID frame-
work is capable of discovering the interactions between

multiple individual variables, each of which may or may not
be a cause of an outcome. Interactions identified by DACID
are causal interactions w.r.t. the outcome, since the effects
of covariates have been eliminated during the estimation of
causal interactions. Moreover, DACID can be easily instanti-
ated for the exploration of causal interaction from data, with
no domain knowledge required.

7 Discussion and conclusion

Causal interaction discovery is an important topic in the
field of causal discovery, as understanding the interactions
between causal factors helps us gain valuable insights into
the underlying causal mechanisms. It also provides us an
alternative and effective way for identifying important causal
factors.

The research of causal interactions has had a long history,
but finding the interactions directly from data is still a new
and challenging topic. There is a severe lack of data-driven
approaches to discovering causal interactions, particularly
from large data sets.

We have set up our ultimate goal to tackle the challenges
by bringing together traditional causal discovery methods
and efficient data mining techniques. This paper presents the
outcome of our first and important step towards this goal.

In this paper, the concept of causal interactions is re-
formalised by considering the detection of causal interactions
as a data mining task, such that they can be applied to discov-
ering causal interactions from observational data. A general
framework has been developed to address the problem of
causal interaction discovery around a given target variable.
The framework is instantiated in various ways. The resulting
algorithms are sound under themonotonic effect assumption.

In the set of experiments on synthetic data sets, all instanti-
ated algorithms achieve a high accuracy for causal interaction
discovery. The proposed algorithms have a good perfor-
mance in detecting causal interactions between miRNAs in
co-regulating a target mRNA. Meanwhile, experiments on
the clinical data sets have shown that the proposed frame-
work can find many causal interactions justifiable based on
domain knowledge. The algorithms also achieve a high com-
putational efficiency, especially for algorithms using perfect
stratification.

In the near future, we will apply the proposed frame-
work and algorithms to solve real-world problems, such as
identifying the co-regulation mechanisms of multiple types
(instead of just one type) of gene regulators, such as miRNAs
and transcription factors.
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