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Abstract

Motivation: Cancer is not a single disease and involves different subtypes characterized by differ-

ent sets of molecules. Patients with different subtypes of cancer often react heterogeneously to-

wards the same treatment. Currently, clinical diagnoses rather than molecular profiles are used to

determine the most suitable treatment. A molecular level approach will allow a more precise and

informed way for making treatment decisions, leading to a better survival chance and less suffering

of patients. Although many computational methods have been proposed to identify cancer sub-

types at molecular level, to the best of our knowledge none of them are designed to discover sub-

types with heterogeneous treatment responses.

Results: In this article we propose the Survival Causal Tree (SCT) method. SCT is designed to dis-

cover patient subgroups with heterogeneous treatment effects from censored observational data.

Results on TCGA breast invasive carcinoma and glioma datasets have shown that for each subtype

identified by SCT, the patients treated with radiotherapy exhibit significantly different relapse free

survival pattern when compared to patients without the treatment. With the capability to identify

cancer subtypes with heterogeneous treatment responses, SCT is useful in helping to choose the

most suitable treatment for individual patients.

Availability and Implementation: Data and code are available at https://github.com/WeijiaZhang24/

SurvivalCausalTree.

Contact: weijia.zhang@mymail.uinsa.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Choosing the most appropriate treatment is of great importance in

the battle against cancer. Although many advanced techniques have

been developed to treat the dreaded disease, there has been no con-

sensus about which treatment is most suitable when it comes to a

particular patient with a specific type of cancer (Hayden, 2009).

Recent research has shown that rather than being a single dis-

ease, cancer involves different subtypes characterized by different

sets of molecules (Perou et al., 2000; The Cancer Genome Atlas

Network, 2012), and different subtypes often respond heteroge-

neously towards the same treatment (Goldhirsch et al., 2011). For

example, estrogen receptor (ER) positive breast cancer subtype re-

sponds to hormone therapy, and the human epidermal growth factor

receptor 2 (HER2) positive subtype will most likely respond to

chemotherapy.

Unfortunately, our current understanding of cancer subtypes at

the molecular level is far from complete. Decisions for cancer treat-

ments are almost entirely based on clinical factors, disease stages,

morphology based pathological indicators and types of surgery ra-

ther than expression profiles.

Treating cancer patients based on their molecule subtypes has

important clinical impact. In breast cancer, more than 50% of the
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patients have received radiotherapy (RT) as treatment, equating to

over half a million patients worldwide each year. Although RT is ef-

fective for many patients, not all patients have benefited from the

treatment as evidenced by distant metastatic spread and local recur-

rence (Bellon, 2015). Prediction of individual responses will allow a

stratified approach of applying the treatment, saving those unsuit-

able patients from the associated iatrogenesis.

Many computational methods have been proposed to identify

molecular cancer subtypes. Efron (1988), Goeman (2009), and Park

and Hastie (2007) proposed techniques based on L1-regularization

and COX proportional hazard model (Cox, 1972) to identify im-

portant genes that are related to patient survival time. The Cancer

Genome Atlas Network (2012), Monti (2003), Wilkerson and

Hayes (2010) and Shen et al. (2009) exploited the idea of clustering

to discover disease subgroups at a molecule level. Bair and

Tibshirani (2004) and Koestler et al. (2010) combine Cox regression

with recursive partitioned mixture model (RPMM) to form a semi-

supervised approach for identifying disease subtypes.

However, these methods do not answer the critical question of

whether the identified subtypes show heterogeneous responses to-

ward a treatment. In other words, the survival outcome of treated

and untreated patients may not be significantly different for each of

their identified subtypes.

Identifying subtypes with heterogeneous treatment effects is a

causal problem. In order to estimate the effect of a treatment, one

has to answer the counterfactual question: what would the survival

outcome of a treated patient be, if he had not accepted the treat-

ment; and what would the outcome of an untreated patient be, if he

had been treated? The fundamental challenge is that for each patient

only one of the two potential outcomes can be observed.

Heterogeneous treatment effect analysis has attracted increasing

attention (Athey and Imbens, 2016; Doove et al., 2013; Imai and

Ratkovic, 2013; Kang et al., 2012; Su et al., 2009). These

approaches utilize recursive partitioning to discover the desired sub-

groups. However, two limitations prevent these methods from being

applied to our task. Firstly, existing methods are only applicable to

data without censoring, unfortunately the outcomes in medical stud-

ies are seldom complete but almost always censored. Secondly,

many of the existing methods are designed to analyze data with

randomized treatment assignment, directly applying them to obser-

vational data will cause estimation bias since the treatment assign-

ment not randomized (Imbens and Rubin, 2015).

In this article we extend the causal tree (Athey and Imbens,

2016) method to censored survival data and propose the Survival

Causal Tree (SCT) method. Utilizing gene expression profiles and

censored survival outcomes, SCT is able to identify molecular cancer

subtypes with heterogeneous treatment effects towards the treat-

ment of interest.

By analyzing the causal relationships between gene expressions

and treatment responses, the subtypes identified by SCT can be used

to predict the potential treatment effects of unseen patients. Our re-

sults on both TCGA breast invasive carcinoma and glioma datasets

(The Cancer Genome Atlas Network, 2012) have shown that not

only the subgroups identified from the training data have heteroge-

neous treatment effects, but also the survival patterns are similar in

the test data.

Since the output of SCT is a tree model, the identified disease sub-

groups are readily interpretable. Each subgroup is defined by only a

handful of genes, which is convenient for future clinical applications.

The method can be used to help oncologists in determining the best

treatment strategy for each individual cancer patient. Figure 1 pre-

sents the work flow of how SCT can be applied.

2 Materials and methods

2.1 Estimating treatment effects from data with

censoring
First we introduce the necessary preliminaries for causal studies

with fully observed outcomes, then we extend the discussion to cen-

sored outcomes.

Let Wi 2 f0;1g denote the treatment assignment, with Wi¼1

indicating the ith unit is treated and Wi¼0 indicating the opposite.

Let Yi be the observed survival outcome of interest, and Xi ¼ fXi1;

. . . ;Xipg be a vector describing the patient’s gene expressions. The

observed dataset consists of i.i.d. samples Yi;Wi;Xið Þ, for

i ¼ 1; . . . ;N. For the sake of simplicity, the subscript i is dropped

when the context is clear.

Let Y (W) denote the potential survival time of a patient if he had

received treatment W, the observed survival time can be described as

Y ¼WY 1ð Þ þ 1�Wð ÞY 0ð Þ. Note that each patient Y is associated

with two potential outcome Y (1) and Y (0), but only one of them can

be observed as Y. The average treatment effect of the population is

defined as the expected survival time of all patients if they were

treated minus their expected potential survival time if they were not

treated:

s ¼ E Y 1ð Þ
h i

� E Y 0ð Þ
h i

: (1)

Since each patient can only receive or not receive the treatment,

Equation 1 is counterfactual and thus cannot be directly estimated.

If the treatment assignment is completely randomized, i.e.

Y 0ð Þ;Y 1ð Þ� �
??WÞ, the average treatment effect can be estimated

using s ¼ E YjW ¼ 1ð Þ � E YjW ¼ 0ð Þ. Therefore an unbiased esti-

mator of average treatment effect for data with randomized treat-

ment assignment can be given as:

bsrct ¼

PN
i¼1

Wi � Yi

PN
i¼1

Wi

�

PN
i¼1

1�Wið Þ � Yi

PN
i¼1

1�Wið Þ
(2)

For observational data, the treatment assignment is usually not com-

pletely randomized therefore treated patients may not be compar-

able with untreated patients. To estimate treatment effects from

observational data, Imbens and Rubin (2015) introduces the uncon-

foundedness assumption:

Assumption 1. (Unconfoundedness) W?? Y 0ð Þ;Y 1ð Þ� �
jX.

The assumption ensures that for all samples the treatment assign-

ment W is independent of the outcome Y when the expression pro-

files X are considered. With this assumption, propensity score

(Rosenbaum and Rubin, 1983) can be used with inverse probability

Patient ID Gene 1 Gene 2 Gene 3 …

Patient 1 11 12 …

Patient 2 21 22 …

… … … …

No effect

No effect

Positive 
effectNo effect

Negative 
effect

Gene expression profiles

Clinical Information

Patient ID Treatment 
Assignment

Censored Survival 
Time

Patient 1 Treated Yes X days

Patient 2 Not treated No Y days

………

SCT 
algorithm

Expression profile of 
new patient 

Predict 
treatment 

effectiveness

Gene 1: high or low?

Gene 2: high or low?

Survival Causal Tree

Fig. 1. Workflow of the application of Survival Causal Tree (SCT). SCT utilizes

matched clinical information and gene expression profiles to train a causal

tree model. The trained model can be used to predict whether a treatment

should be applied to unseen patients
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weighting (Seaman and White, 2013; Zhang and Zhou, 2014) to ob-

tain an unbiased estimation of average treatment effect. The propen-

sity score is defined as the probability of treatment assignment

conditional on the covariates:

p Xð Þ ¼ Pr W ¼ 1jXð Þ (3)

Utilizing Assumption 1 and the fact that W(1– W)¼0, we have

E W � Y=p Xð Þ½ � ¼ E
I W ¼ 1ð Þ � Y 1ð Þ

p Xð Þ

� �

¼ E E
I W ¼ 1ð Þ � Y 1ð Þ

p Xð Þ jY 1ð Þ;X

� �� �

¼ E
Y 1ð Þ

p Xð Þ � E I W ¼ 1ð ÞjY 1ð Þ;X
h i� �

¼ E Y 1ð Þ� 	
:

(4)

Similarly E 1�Wð Þ � Y= 1� p Xð Þð Þ½ � ¼ E Y 0ð Þ� 	
. The average treat-

ment effect for observational data can be estimated as (Lunceford

and Davidian, 2004):

bsob ¼
PN

i¼1
Wi �Yi

p Xið ÞPN
i¼1

Wi

p Xið Þ
�
PN

i¼1
1�Wið Þ�Yi

1�p Xið Þð ÞPN
i¼1

1�Wi

1�p Xið Þð Þ
: (5)

The denominators of Equation 5 come from the fact that E

W=p Xð Þ½ � ¼ 1 and E 1�Wð Þ= 1� p Xð Þð Þ½ � ¼ 1.

Now we extend our discussion towards data with censoring. In

medical studies the observation of outcomes are almost always not

complete because the limited time of the follow-up period. For ex-

ample, the relapse free survival time of a cancer patient is only com-

pletely observed if the event of interest (i.e. relapse of cancer) occurs

within the follow-up period, otherwise the outcome is considered as

censored.

Formally, let W denote the treatment indicator, C denote the

censoring time. Let Y denote the realized survival outcome and Y (j)

denote the potential survival time. Instead of observing Y, one ob-

serves Q ¼WQ 1ð Þ þ 1�Wð ÞQ 0ð Þ where Q jð Þ ¼ minfY jð Þ;Cg, as

well as the complete case indicator d ¼Wd 1ð Þ þ 1�Wð Þd 0ð Þ, where

d jð Þ ¼ I C � Y jð Þ� �
. The censored survival data can be described as

i.i.d. random vectors Q; d; dY;W;X
� �

. The focus is using this data to

estimate the average treatment effect scensor ¼ E Y 1ð Þ� 	
� E Y 0ð Þ� 	

.

Similar to data without censoring, we assume the treatment as-

signment is independent of censored and uncensored outcomes given

the expression profiles, the unconfoundedness assumption is ex-

tended to:

Assumption 2. Y 0ð Þ;Y 1ð Þ;Q 0ð Þ;Q 1ð Þ� �
??WjX.

In addition, we assume that censoring is independent of the out-

comes and covariates when treatment assignment is considered:

Assumption 3. Y 0ð Þ;Y 1ð Þ;Q 0ð Þ;Q 1ð Þ;X
� �

??CjW.

Let Kp uð Þ ¼ Pr C � ujWð Þ denote the treatment specific censor-

ing distribution, for treated samples we have:

E
WdY

p Xð ÞK1 Qð Þ

� �
¼E E

WdY 1ð Þ

p Xð ÞK1 Qð ÞjQ
0ð Þ;Q 1ð Þ;Y 1ð Þ;X;W

� �� �

¼E
WY 1ð Þ

p Xð Þ �K1 Qð ÞE I C�Qð ÞjQ 0ð Þ;Q 1ð Þ;Y 1ð Þ;X;W
h i� �

¼E
WY 1ð Þ

p Xð Þ

� �
¼E Y 1ð Þ� 	

:

(6)

The first equation uses W2¼W;W 1�Wð Þ¼1 and the law of total

expectation. The second equation is obtained by utilizing the

assumptions. The inner expectation of the third equation is given as

K1 Q 1ð Þ� �
I W¼1ð ÞþK0 Q 1ð Þ� �

I W¼0ð Þ, and equals to K1 Q 1ð Þ� �
I

W¼1ð Þ when multiplied by W. The derivation of the last equation

is as same as that of observational data without censoring.

Similarly, for untreated samples

E Y 0ð Þ� 	
¼ Ef d � Y � 1�Wð Þ½ Þ�= 1� p Xð Þð Þ � K0 Qð Þ½ �g. Therefore the

average treatment effect for censored survival data can be estimated

by (Anstrom and Tsiatis, 2001):

bscensor ¼

Pn
i¼1

Wi �di �Yi

p Xið Þ�bK1 Qið ÞPn
i¼1

Wi �di

p Xið Þ�bK1 Qið Þ

�

Pn
i¼1

1�Wið Þ�di �Yi

1�p Xið Þð Þ�bK0 Qið ÞPn
i¼1

1�Wið Þ�di

1�p Xið Þð Þ�bK0 Qið Þ

; (7)

where cKp Qð Þ is the Kaplan–Meier estimation (Kaplan and Meier,

1958) of the censoring distribution.

2.2 Recursive partitioning for heterogeneous treatment

effects
The goal of SCT is not only estimating the average treatment effect

with censored data. More importantly, it aims to find the patient

subgroups with heterogeneous treatment effects. Therefore, instead

of estimating the average treatment effect on the whole population

level, we want to find subgroups with heterogeneous conditional

treatment effect (Athey and Imbens, 2016):

sc Xð Þ ¼ E Y 1ð Þ � Y 0ð ÞjX½ �: (8)

Recursive partitioning is an ideal way for finding such subgroups.

Starting from the root node containing the entire population, a tree

model is constructed by recursively splitting the node into two dis-

joint child nodes until a stopping criterion is met. By the end of this

construction, each sub-populations is naturally presented by a ter-

minal node of the tree.

We follow the most popular recursive partitioning approach,

CART (Breiman et al., 1984) to construct the survival causal tree.

The tree construction consists of three major components: (i) grow-

ing a large initial tree; (ii) a pruning strategy; (iii) a cross validation

method to determine the best tree size.

To grow the initial tree, we want to find the splitting variable

and the threshold that maximizes the sum of squared average treat-

ment effects of the two children nodes (Athey and Imbens, 2016):

Qsplit bscð Þ ¼ bsL
c


 �2
þ bsR

c


 �2
; (9)

where bsL
c is the conditional treatment effect of the left child node

estimated with Equation 7 using the samples within the node, andbsR
c is the conditional treatment effect of the right child node.

The splitting process is repeated in each child node until one of

the stopping criteria is met, usually the maximum depth of the tree.

The procedure results in a large initial tree.

To prune the tree, we adopt the standard cost complexity prun-

ing strategy. Specifically, for a pre-specified complexity parameter a,

we penalize the splitting criterion proportional to the complexity of

the tree model

Qprune bscð Þ ¼ Qsplit bscð Þ � a � K; (10)

where K is the number of leaves in the tree. The best a value is se-

lected using cross validation as in the original CART algorithm

(Breiman et al., 1984).

In practice the size of the tree can also be moderated by setting

the minimum number of samples in terminal nodes or the minimal

number of samples in a node to consider a split.
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We summarize the SCT algorithm in the following procedure.

3 Results

In this section, we compare SCT with two existing methods on

TCGA cancer datasets to study their effectiveness for discovering

heterogeneous treatment effects.

3.1 Breast cancer
This dataset contains breast invasive carcinoma (BRCA) samples ob-

tained from TCGA, which includes both expression profiles and the

corresponding clinical information.

The data is preprocessed by removing genes with mean expres-

sion levels in the lower quartile. The processed dataset contains ex-

pression levels of 11 535 genes across 964 patients.

The radiotherapy (RT) status of each patient is used as the treat-

ment indicator, and the relapse free survival (RFS) time is considered

as the outcome of interest.

The dataset is divided into a training set containing half the sam-

ples and a test set with the remaining samples. The number of

treated and untreated samples are forced to be similar in both sets.

At whole population level, the impact of RT on RFS is not sig-

nificant. The treated and untreated RFS curves in compared in

Figure 2 (left). The result is agreed with the findings from clinical re-

search (Bellon, 2015), that no study has shown a significant survival

benefit of RT at the entire population level.

SCT identifies four subgroups of patients from the training data.

The corresponding tree model is illustrated in Figure 3 (left), and the

RFS curves of treated and untreated patients in each subgroup are

shown in Figure 4. The first group of patients, defined by low ex-

pressions of AGR2 and MFAP3L, is found to have a non-significant

response towards RT; the second group of patients, defined by low

expressions of the MFAP3L and ABCC2 genes but high expression

of AGR2, is found to receive negative effect from RT; the third

group which is defined by low expression of MFAP3L and high ex-

pressions of both AGR2 and ABCC2, and the fourth group which is

defined by high expression of MFAP3L, are both found to benefit

significantly from RT.

The subgroups identified from the training set generalize well to

the patients from the test set. From Figure 4 (second row), each sub-

group in the test set show similar RFS curves as those in the training

set. These results demonstrate that SCT can be used to predict treat-

ment responses of unseen patients.

All three genes selected by SCT have been biologically proven to

be closely related to cancer development. ABCC2 is shown to be

closely related to the relapse free survival of breast cancer patients

(Maciejczyk et al., 2011); AGR2 has been considered as a potential

drug target and biomarker for breast cancer patients (Salmans et al.,

2013); and MFAP3L has been studied in colorectal cancer and is

shown to be able to promote cell invasion and metastasis (Lou et al.,

2014). We have also validated these genes on an independent collec-

tion of 3951 breast cancer patients (Gyrffy et al., 2009), the results

show that the expressions of these genes are significantly related to

the RFS time of the patients (P<0.00001) (the details is included in

the Supplementary Material).

3.2 Glioma
The glioma dataset is also obtained from TCGA. The data is pro-

cessed with the same procedure as the BRCA dataset. The processed

dataset contains 632 samples and 11 543 genes.

At the whole population level, the effectiveness of RT on RFS is

complicated. The treated and untreated RFS curves are illustrated in

Figure 2 (right). It is clear that during initial weeks, RT improves the

survival significantly (Valduvieco et al., 2012). However, later on

the survival probability of treated patients drops dramatically and

becomes significantly lower than the untreated patients. One pos-

sible explanation is that radiotherapy is known to have different ef-

fects on glioma patients based on the grade and location of the

tumor (Chao and Suh, 2006).

SCT has identified four subgroups in this dataset, and the con-

structed tree is shown in Figure 3 (right). The RFS curves of treated

and untreated patients in each subgroup are shown in Figure 5. For

the first subgroup (high expression of ETS 2 but low expression of

GHDC), no significant difference in survival time between treated

and untreated patients has been found. However, for the second

(low expression of ETS2) and the third group (high expression of

ETS2 but low expression of TMEM57), the untreated survival prob-

ability is significantly higher than the treated survival probability.

For the fourth group of patients, defined by high expression of ETS2

Fig. 2. The Kaplan–Meier curve of the relapse free survival for breast cancer

(left) and glioma (right) patients with and without radiotherapy treatment.

The P-value is obtained by log-rank test (Schoenfeld, 1981). The unit of time

is day

Fig. 3. The survival causal tree (SCT) constructed from the training data BRCA

(left) and Glioma (right) datasets, respectively. s(X) and sc(X) are the average

treatment effect and conditional average treatment effect at a node,

respectively

Procedure. Survival Causal Tree

Input: n training examples ðYi; di;Wi;XiÞ, where ðYobs
i ; diÞ are

the censored survival time, Xi are the covariates, Wi is the

treatment.

1. Construct a causal tree using the splitting criterion in

Equation 9 with fixed a (usually a ¼ 0).

2. Find the optimal a with cross validation.

3. Prune the tree with a.

Output: The pruned tree model, where the subgroups are

defined by the leaf nodes of the tree.
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and high expression of TMEM57, the RFS curve of treated patient is

significantly better than that of the untreated patient.

Both EST2 and TMEM57 are known to be related to cancer me-

tastasis from biologic experiments. ETS2 is related to multiple can-

cers, including breast cancer, lung cancer, and prostate cancer

(Carbone, 2003). TMEM57 encodes transmembrane proteins, and

the dysregulation of transmembrane proteins is related to multiple

cancers (Kampen, 2011; Zhang et al., 2016). However, as men-

tioned earlier, the effectiveness of RT depends on many factors. The

type of glioma, the grade and the location of the tumor should all be

considered when deciding whether radiotherapy should be used as a

treatment. Currently the limited amount of samples from public

available datasets does not support an analysis considering all the

factors. However, the results demonstrate that SCT can serve as a

promising way for discovering the genes responsible for the hetero-

geneous responses to cancer treatment.

3.3 Comparison to existing methods
In this section we investigate whether existing methods can be used

to find patients subgroups with heterogeneous treatment effects.

Two representative methods are examined for this purpose: semi-

supervised clustering (Bair and Tibshirani, 2004) and L1-regularized

COX proportional hazard model (Goeman, 2009).

Clustering is one of the most widely used methods for identifying

cancer subtypes (Bair and Tibshirani, 2004; Koestler et al., 2010;

Liu et al., 2014; Monti, 2003; Shen et al., 2009; Wilkerson and

Hayes, 2010). Instead of utilizing all genes, semi-supervised cluster-

ing (SS-Clust) selects genes that are most relevant to the survival out-

come, then uses k-means clustering to identify the disease

subgroups. In order to utilize treatment information, genes related

to the RFS of treated and untreated patients are selected separately.

Then the union of two sets of selected genes is used for the clustering

procedure. The number of cluster k is determined by the silhouette

method (Rousseeuw, 1987). As shown in the Supplementary

Material, different k-values do not change the results.

The subgroups found by SS-Clust show different RFS curves

(Fig. 6). However, for each subgroup identified by SS-Clust, the RFS

curves between treated and untreated patients are not significantly

p = 0.37 p = 0.017 p = 0.017 p = 0.0023

p = 0.64 p = 0.04 p = 0.12 p = 0.034
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Fig. 4. The RFS curves of treated and untreated BRCA patients of each subgroups identified by SCT. First row shows the results on the training data, second row

shows the result on the test data. The unit of time is day

p = 1 p < 0.0001 p = 0.0048 p < 0.0001

p = 0.46 p = 0.00023 p = 0.014 p = 0.0015
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Fig. 5. The RFS curves of treated and untreated Glioma patients of each subgroup identified by SCT. First row shows the results on the training data, second row

shows the result the test data. The unit of time is day
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Fig. 6. The Kaplan–Meier curve of the RFS for different subtypes found by SS-

Clust on both datasets. The unit of time is day
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separated for either dataset (Fig. 7). These results indicate that al-

though SS-Clust is effective for finding subgroups with different sur-

vival patterns, it is not effective for discovering subgroups with

heterogeneous treatment effects.

Proportional hazards (PH) model (Cox, 1972) is one of the most

widely used survival analysis methods. L1-regularized Cox (Goeman,

2009) improves the high dimensional performance of PH model by

utilizing L1 regularization. In this comparison we use L1-regularized

Cox model (L1-Cox) with the following settings. The regressors Xreg

consist of treatment variable W, gene expression levels X and the

interaction term between the treatment and the expression levels

W �X, i.e. Xreg ¼ W;X;W �Xð Þ. The shrinkage parameter is selected

by 5-fold cross validation. Once the regression coefficients b are esti-

mated, the patients are divided into four subgroups according to the

quartiles of value I ¼ bXregjW¼1 � bXregjW¼0, where I is the difference

between treated prognostic index (PI) and the untreated PI (Bovelstad

et al., 2007).

For L1-Cox, the first and the last subgroups show different treat-

ment effects for both datasets (Fig. 8). Specifically, patients in the

first quartile show positive treatment effect, and those in the last

quartile have negative effect. Although L1-Cox can be used to iden-

tify subgroups with different treatment effects, it is different from

SCT. First, L1-Cox is necessarily a linear model whereas SCT is a

tree-based model thus more general. The subgroups found by L1-

Cox is reciprocal in a sense that the differences will almost always

occur between the first and the last quartiles; however, such

limitation does not apply to SCT. In addition, L1-Cox uses

much more genes to define the subgroups (60 genes) than SCT (3

genes), which makes SCT more friendly for potential clinical

implementation.

4 Conclusions

Identifying patient subgroups with heterogeneous treatment effects

is of great importance for personalized cancer treatment. Recent re-

search has shown that due to the genetic differences in people and

their tumors, widely used cancer treatments are not suitable for

every patient.

Computational methods are needed to find the genes responsible

for heterogeneous treatment effects. However there are no com-

monly accepted criteria for deciding whether a treatment is applic-

able for each individual patient, largely because of the large number

of genes in human genome.

Existing methods for finding disease subtypes are not suitable for

the task. As shown in the experiments, even with treatment informa-

tion considered the subtypes identified by existing methods do not

differentiate heterogeneous treatment effects.

In this article we propose the SCT method, a causal approach for

discovering patient subgroups with heterogeneous treatment effect

from censored survival data. To the best of our knowledge, this is

the first method designed for such a task. Results on two TCGA
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datasets demonstrate that SCT is effective for identifying patient

subgroups with different responses to RT.

The method can be used for personalized treatment. As demon-

strated in the experiments, the models derived from training data

generalize well to the test sets on both datasets. This would enable

medical institutes to build models on existing patient data, and use

the model to help medical practitioners in selecting the most suitable

treatment strategy for each individual patient.

There are multiple research directions for future exploration. First,

a more comprehensive study considering more clinical factors should

be conducted when more samples are available. Second, estimating the

survival distribution is time consuming and a more efficient approach

may significantly reduce the running time of the algorithm (see

Supplementary Material for a brief comparison). Alternative principles

for choosing the splitting gene are also worth considering, such as maxi-

mizing the homogeneity within each child node. In addition, ways to

relax the independent assumptions should also be explored.
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