
Finding Similar Patterns in Microarray Data

Xiangsheng Chen1, Jiuyong Li1, Grant Daggard2, and Xiaodi Huang3

1 Department of Mathematics and Computing,
Department of Biological and Physical Sciences,

The University of Southern Queensland, Australia
firstName.lastName@usq.edu.au

2 Department of Mathematics, Statistics and Computer Science,
The University of New England, Armidale, NSW, 2350

Abstract. In this paper we propose a clustering algorithm called s-
Cluster for analysis of gene expression data based on pattern-similarity.
The algorithm captures the tight clusters exhibiting strong similar ex-
pression patterns in Microarray data,and allows a high level of overlap
among discovered clusters without completely grouping all genes like
other algorithms. This reflects the biological fact that not all functions
are turned on in an experiment, and that many genes are co-expressed
in multiple groups in response to different stimuli. The experiments have
demonstrated that the proposed algorithm successfully groups the genes
with strong similar expression patterns and that the found clusters are
interpretable.
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1 Introduction

Many clustering techniques in bioinformatics have been applied to analyze gene
expression data. Most clustering models [4, 1, 8, 10, 7, 9] are distance based clus-
terings such as Euclidean distance and cosine distance. However, these similarity
functions are not always sufficient in capturing correlations among genes or con-
ditions. To remedy this problem,the bicluster model [2] uses a similarity score
to measure the coherence of genes and conditions in a sub matrix of Microarray
data.Wang et al. [11] proposed an algorithm to find all (maximum) submatri-
ces such that they are δ-pClusters.Liu et al. [5] introduced a u-Cluster model
to capture the general tendency of objects across a subset of dimensions in a
high dimensional space. In reality, errors are unavoidable in biological exper-
iments and perfect pattern matching in Microarray data may not occur even
among known coordinately regulated genes. In this paper, we will present a
model which tolerates such possible errors in the data. Our proposed algorithm
is simple, interpretable, and deterministic. The proposed algorithm is distinct
from δ-pClustering model in that it is a full space clustering model and al-
lows dissimilarities, possibly caused by experimental errors, in clusters while
δ-pClustering does not.
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2 s-Clusters

We define s-clusters by a threshold as the minimum proportion of conditions
in which genes have the similar express. Our model does not cluster all genes
and allows clusters to overlap. The resulting clusters are tight. A tight cluster is
better for refining a hypothesis.

2.1 Model

The original gene data matrix is first normalized. Gene-condition expression data
is represented as a n-by-p matrix where each entry xij denotes the expression
level of the ith gene in the j th condition (where i = 1,...,n and j = 1,...,p).

The new standardized data matrix Z is obtained by converting the raw values
to z-scores, and it will be used for the following clustering analysis. The mean
of z-scores in each row is zero.

Definition 1. Let N be the set of genes and P be the set of conditions in a
standardized data set Z. Given x, y ∈ N , Zx and Zy denote the vectors of the
xth gene and yth gene, respectively. We define the sScore of two genes under the
jth condition as

sScorex,y,j = |zxj − zyj | (1)

With two given thresholds 0 < α ≤ 1 and δ > 0, we say two genes x and y are
similar, if at least in a α fraction of conditions, sScore ≤ δ for the two genes.

Definition 2. Let S = {Z1, Z2, ..., Zk} be a set of genes, S ⊂ N . Zk denotes
a vector of a gene. We say S forms an s-Cluster if every pair of genes in S is
similar by definition 1.

In the s-Cluster model, one gene can be in several different clusters. In other
words, the clusters are not exclusive. This is very meaningful in the underlying
biological processes in which many individual genes are co-expressed in multiple
function groups in response to different stimuli.

2.2 Algorithm

The algorithm contains three phases: (1) preprocess the data into a normalized
data matrix. The mean and mean absolute deviation are calculated for each row,
and are then converted the raw data into z-scores ;(2) find similar gene pairs.
We go through the z-scores data and identify all similar gene pairs according
to Definition 1; (3) form all s-Clusters. construct a graph where every gene is
represented as a vertex, and two similar genes as an edge. s-Clusters can be
viewed as the cliques in this graph according to Definition 2. We design an
algorithm similar to Bierstone’s algorithm [6] to generate all maximum cliques,
interesting s-Clusters.

In general, finding all maximal cliques in a graph is NP-complete. The al-
gorithm can enumerate all maximal cliques efficiently only when the equivalent
graph is sparse, i.e. edge density is low. Edge density of a gene graph is usu-
ally very low since there are not many genes expressing similarly across most
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conditions. Therefore, this method produces good results with high efficiency in
Microarray data.

A simple heuristic to set δ is outlined as follows. It is set high initially,
and then is reduced gradually. When the visual inspection of similarity of gene
expression patterns in clusters is unacceptable, the process stops. The setting of
α is straightforward since its meanings is clear.

The definition of similarity in this model is more strict than that in most
other clustering models. As a result, the clusters of this model are usually very
tight, including much fewer genes than clusters from other models. We do not
intend to find regular clusters to group all genes, but to find small groups of genes
that exhibit strong similar expression patterns. We find that these clusters are
very interpretable.

3 Experiments

We apply the s-Cluster algorithm to yeast Saccharomyces cerevisiae cell cycle
expression data from Cho et al. [3]. The yeast data contains expression levels of
2,884 genes under 17 conditions. The data set is organized in a matrix where each
row corresponds to a gene and each column represents a condition. Each entry

Gene System Name Description
58 YAR007C 69 kDa subunit of the heterotrimeric RPA (RF-A) single-

stranded DNA binding protein, binds URS1 and CAR1
216 YBR088C Profilerating cell nuclear antigen (PCNA) accessory factor for

DNA polymerase delta, mRNA increases in G1, peaks in S in
mitosis, and increases prior to DNA synthesis in meiosis”

217 YBR089W Unknown
448 YDL003W Unknown
526 YDL164C DNA ligase
616 YDR097C Homolog of the human GTBP protein, forms a complex with

Msh2p to repair both single-base and insertion-deletion mispairs,
redundant with Msh3p in repair of insertion-deletion mispairs”

1022 YFL008W Coiled-coil protein involved in chromosome structure
or segregation

1184 YGR152C GTP-binding protein of the ras superfamily involved
in bud site selection

1286 YHR154W Establishes Silent omatin
1795 YLR103C Omosomal DNA replication initiation protein
1836 YLR183C Unknown
2278 YNL102W DNA polymerase I alpha subunit, p180
2375 YNL312W 1-7, 116-930” subunit 2 of replication factor RF-A 29%

identical to the human p34 subunit of RF-A
2538 YOR074C Thymidylate synthase
2725 YPL153C Protein kinase, Mec1p and Tel1p regulate rad53p

phosphorylation”

Fig. 1. A list of genes in s-Cluster #111. 12 genes are related to DNA synthesis and
replication and 3 are unknown. This raises the possibility that the 3 genes are also
DNA synthesis and replication related.
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represents the relative abundance values (percentage of the mRNA for the gene
in all mRNA) of the mRNA of a gene under a specific condition, which is scaled
into an integer in the range of 0 and 600. We conducted the experiment with the
parameters of δ = 0.8 and α = 0.8. A total of 1764 s-Clusters with a minimum
size of 5 was generated by the algorithm. Clusters of four or fewer genes were
ignored. The 1764 s-Clusters covered 453 genes, or 15.7% of the 2884 genes. This
method only groups some interesting genes, which express coherently with other
genes. All clusters are highly overlapping, and this captures a biological fact that
some genes participate in a number of functions.

There are 15 members in the s-cluster #111 in Figure 1, 12 genes of which are
related to DNA synthesis and replication, and 3 genes (YBR089W, YDL003W,
ULR183C) are unknown. This raises the possibility that the 3 genes are also
related to DNA synthesis and replication. Figure 1 shows genes in this s-Cluster
in details.

Our findings are interesting when compared with those of Tavazoie et al. [8].
Our 15 members in s-Cluster #111 are all in the cluster #2 discovered by Tava-
zoie et al.. Their cluster #2 contains 186 genes which are related to four func-
tions: DNA synthesis and replication, cell cycle control and mitosis, recombina-
tion and DNA repair, and nuclear organization. Our approach successfully sub-
categorized Tavazoie’s cluster #2 into several smaller sized s-Clusters containing
genes which are clearly related to one of the four functional categories. This indi-
cates that the s-Clusters are more tightly grouped and more interpretable than
the clusters from the alternative analysis approach.

4 Conclusions

We have proposed a new pattern-similarity clustering model called s-Cluster
to capture some tight clusters containing groups of genes with strong coherent
expression patterns.Our experimental results show that the proposed algorithm
can successfully group genes with similar expression patterns. When compared
with the clustering results from a conventional method [8], the clusters found by
our algorithm are tighter and more interpretable.
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