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Abstract. Data anonymization has become a major technique in privacy preserv-
ing data publishing. Many methods have been proposed to anonymize one dataset
and a series of datasets of a data holder. However, no method has been pro-
posed for the anonymization scenario of multiple independent data publishing.
A data holder publishes a dataset, which contains overlapping population with
other datasets published by other independent data holders. No existing methods
are able to protect privacy in such multiple independent data publishing. In this
paper we propose a new generalization principle (�, �)-anonymization that effec-
tively overcomes the privacy concerns for multiple independent data publishing.
We also develop an effective algorithm to achieve the (�, �)-anonymization. We
experimentally show that the proposed algorithm anonymizes data to satisfy the
privacy requirement and preserves high quality data utility.
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1 Introduction

Existing privacy preserving data publishing techniques focus on one-time publication
[11, 8, 4] and multiple views of the same data [17]; recently address the scenario of
re-publication by single data holder [14, 15]. Specifically, privacy preserving data re-
publication is restricted to single data holder, and does not support overlapping pop-
ulation by multiple publishers. The seminal work [2] firstly identify the breach of
privacy of existing anonymization methods in multiple independent data publishing,
called ‘composition attack’. However, the solution of [2] supports only interactive set-
ting (where only data statistics and/or query results are published), and is inapplica-
ble for non-interactive setting (where the data needs to be published after anonymiza-
tion). Independent data publishing of overlapping subset by multiple publishers in non-
interactive setting remains an open problem.

To illustrate the problem, consider Table 1(a) of Hospital-1. Identifier attribute(s)
can directly identify individuals, such as Name, SSN etc. They should be removed in a
published dataset. Quasi identifier (QIDs) attributes could indirectly lead to the identifi-
cation of individuals in a dataset, such as Age, Zipcode and Sex etc. They are normally
★★ This research has been supported by ARC Discovery grants DP0774450 and DP110103142



Table 1: Patient data and its generalization at Hospital-1
(a) Original data Q1

Identifier Attribute Quasi-Identifiers Sensitive Attribute 

Bob 15 male B  

Hudson 45 male H 

Robi 40 female G 

David 20 male B 

Khan 25 male C 

Victor 50 male H 

(b) Generalized Q∗1
Group ID Age Sex Disease 

1 15 – 25 male 

B 

B 

C 

2 40 – 50 * 

G 

H 

H 

generalized so that no individuals are identifiable in a generalized table. The Sensi-
tive attribute contains the private information about the individuals that needs to be
protected such as Disease, Income etc. A generalized table is considered privacy pre-
serving, if it satisfies a privacy constraint, such as k-anonymity [11] or ℓ-diversity [8].
For example Table 1(b) is 3-anonymous and 2-diverse version of Table 1(a). In other
words, 3-anonymity means that values in the QIDs have at least 3 identical copies. So
one could not be distinguished from other 2 records. 2-diversity means that each of such
a group has at least 2 distinct values in the sensitive attribute. So, the sensitive value of
each individual could not be guessed with a high confidence.

1.1 Problem Description and Motivation

Consider the patient overlapping scenario of three hospitals in figure of Table 2(c);
David from Hospital-1 and Eliza from Hospital-2 were referred to Hospital-3 so the
data of Hospital-3 also include the records of David and Eliza. For simplicity, we omit
the overlapping scenario between Hospital-1 and Hospital-2; although our solution pro-
vides the privacy protection in any overlapping scenario.

Hospital-3 anonymized its dataset and release it as Table 3(b). Assume that an ad-
versary knows David’s QIDs (20 years old male), and the fact that David has visited
both Hospital-1 and Hospital-3. The adversary would find the records of David in both
hospitals since only one record matches David’s QIDs and has the same disease in Table
1(b) and 3(b) respectively i.e. {B} . Therefore, David is identified in the anonymized
datasets of both hospitals. The understanding remains the same for Eliza where adver-
sary can get her disease {R} using her QIDs in Table 2(b) and 3(b).

A patient may visit more than one hospitals of his/her area and we assume that
hospitals visit information is available in public domain i.e. adversary knows about the
hospitals visited by a patient. Moreover, each hospital also knows about other hospi-
tals where it can have overlapping patients. Both are realistic assumptions. Firstly, an
adversary is a person that is close to the patient (i.e. a friend, a colleague or a neigh-
bor) and it is reasonable to believe that s/he is aware of the hospitals visited by the
patient. Secondly, hospitals visit information is also part of a patient medical record so
each hospital also knows about other hospitals where it can have overlapping patients.
Although, each hospital knows about the overlapping with other hospitals but each hos-
pital does not (due to internal privacy policies) or cannot (due to legal restrictions) share
its original data with another organization.



Table 2: Patient data and its generalization at the Hospital-2
(a) Original data Q2

Name Age Sex Disease 

Eliza 40 female R 

Arthur 30 male M 

Paul 20 male M 

Noreen 45 female S 

Mathew 15 male Q 

Panama 35 female T 
 

(b) Generalized Q∗2
Age Sex Disease 

15 – 30 male 

M 

Q 

M 

35 – 45 female 

R 

S 

T 
 

(c) All overlapping patients

 

 

Hospital-1  

 
David 

Eliza 

Hospital-3  

Hospital-2  

 

 

Table 3: Patient data and its generalization at the Hospital-3
(a) Original data P

Name Age Sex Disease 

David 20 male B 

Anthony 35 male C 

Rick 30 male C 

Stewart 30 male L 

George 28 male B 

Smith 38 male W 

Eliza 40 female R 
 

(b) Generalized P ∗

Age Sex Disease 

20 – 30 male 

B 

C 

C 

30 – 40 * 

L 

B 

W 

R 
 

(c) P ∗ with �-overlap
Age Sex Disease 

15 – 35  male 

B 

C 

C 

L 

28 – 45  

(1) 
* 

B 

W 

R 

S 

The problem of overlapping data publication is not resolvable by the methods of
sequential data publication, such as m-invariance [15]. m-invariance deals with two
overlapping data publications of the same data holder by employing the same publica-
tion scheme. In multiple publication scenario datasets are more than two, released from
different data holders, and mostly anonymized by different publication schemes. Our
problem is different from sequential publication and more details are in Section 4.2.

In this paper, our proposed method (�, �)-anonymization (details later in Section
4) leads to the publication of Table 3(c) at Hospital-3. Now an adversary has at most
50% chance (in this simple example) to guess the sensitive value of any overlapping
individual. Let us reconsider the adversary who has the precise QIDs detail of David
and attempts to infer the disease of David from Tables 1(b) and 3(c). S/he can locate that
the tuple of David must have been generalized in the first QID groups of Tables 1(b) and
3(c), respectively. These groups encompass the 2 common sensitive values i.e. {B,C}.
Therefore adversary cannot get any specific disease that David has contracted. In case of
Eliza, there are also two candidate diseases i.e. {R,S}. There is one ‘counterfeited’ tuple
(shown in parentheses) in the QID group of Eliza because there was no {S} disease in
Table 3(a) (details later in Section 5).

1.2 Contributions

This paper presents the first model to prevent the composition attack in non-interactive
data publishing setting by combining sampling and generalization. Our solution inte-
grates two novel concepts: (�, �)-anonymization and composition-based generalization.
The former is a new anonymization mechanism, which overcomes the drawbacks of



generalization by combining it with sampling and provide privacy protection for com-
position attack. The latter is a technique that facilitates the enforcement of privacy, in
the presence of overlapping population.

Secondly, we design an efficient algorithm to compute anonymous datasets that
conforms to (�, �)-anonymization. Our algorithm aims to maximize the utility of the
released data, by minimizing (i) the number of counterfeited tuples, and (ii) the amount
of generalization on the QIDs. Furthermore, the algorithm is versatile, namely, it en-
ables a data holder to produce an anonymized release, by consulting any number of
already published anonymous releases of other data holders.

2 Fundamental Definitions

Let P be a dataset maintained by a data holder. There are n other published datasets
Q∗1,Q∗2, . . . ,Q∗n which have overlapping population with P . Each published datasetQ∗i
(i ∈ 1,2,3,. . . ,n) is independently anonymized from its original dataset Qi.

We classify the columns of P and Qi (i ∈ 1,2,3,. . . ,n) into three types (already
explained in Section 1): (i) an identifier attribute Aid, which is the primary key of P ,
(ii) d quasi-identifier (QIDs) attributes Aqi1 , Aqi2 , . . . , Aqid , and (iii) a sensitive attribute
As. The QIDs can be either numerical or categorical. For each tuple tp ∈ P , tp[A]
denotes its value on attribute A.

Definition 1 (Generalized QID group / Equivalence class). For an anonymous dataset
P ∗, a generalized QID group is subset of the tuples in P . Each generalized QID group
is assigned an unique ID Ag . All tuples in P ∗ with the same Ag have the identical
values in QID attribute.

For a tuple t∗p ∈ P ∗; the t∗p.QI denotes such generalized QID group which has t∗p in
P ∗. We refer to t∗p.QI as the ‘generalized QID hosting group’ of the t∗p in P ∗. Next, we
introduce an important notation OL.

Definition 2 (Overlapping Set). For dataset P and each already published indepen-
dent anonymous dataset Q∗i (i ∈ 1, 2, 3 . . . , n), the overlapping set (OL) contains all
those tuples in P such that:

OL =
∪n
i=1(Q

∗
i ∩ P ) (i ∈ 1, 2, 3 . . . , n)

Each tuple t ∈ OL is an intersection (to be explained) of two corresponding tuples
t∗i ∈ Q∗i and tp ∈ P ; who satisfy the following properties:

1. t∗i [A
s] = tp[A

s]; both tuples have same sensitive value and
2. t∗i [A

qi
j ] ∩ tp[A

qi
j ] ∕= ∅, (1 ≤ j ≤ d); t∗i and tp have overlapping value interval in

j-th QID attribute.

Note that none of the data holder shares its original data with another data holder.
Rather, before anonymizing its original data, the data holder of P gets the publicly
available anonymous datasets of other data holders, i.e. Q∗1,Q∗2, . . . , Q∗n, and computes
the overlapping set (OL) using Definition 2. After that the data holder of P applies our
anonymization technique (described in detail in Section 4).



For numeric QIDs, the intersection in Definition 2 returns the overlapping value. For
example, the intersection of age QID value 15–25 in Q∗i and 20 in P returns 15–25 ∩
20 = 20. For categorical QIDs, the intersection returns the value of the closest common
generalization of two values. For example, intersection of values ‘male’ ∩ ‘female’
= ‘∅’. If one value is the generalization of another value, the intersection returns the
more specific value. For example, the intersection of ‘∗’∩ ‘male’ = ‘male’. Here ‘∗’
corresponds to most generalized QID value in any generalization hierarchy. In sex QID
generalization hierarchy, ‘∗’ presents both male and female.

3 Cases of Privacy Breach in Composition Attack

3.1 Pros and Cons of Sampling in Composition Attack

An apparent way to combat the composition attack is sampling, i.e. only publish a
portion of data. After a dataset is sampled, an adversary does not know if the record is
in the published dataset or not. However, sampling only reduces the chance of finding
overlapping tuples, but does not reduce the confidence of an adversary for inferring the
sensitive information once overlapping tuples are found.

Example 1. Let us assume that the true match is caused by the same person visiting
two hospitals, and that a false match is caused by two unrelated patients who happened
to have the same QIDs and disease in two datasets. Let the sample rate be 50%. The
probability of a true match is 25% when a patient have visited two hospitals. The chance
of two unrelated patients to have the same QIDs (false match) depends on the data
distributions of two datasets. For a simple illustration, let us assume that the chance is
50%. Assume that there are 5 sensitive values and each has the same chance to associate
with QIDs. The chance for two QIDs matched tuples to have the same disease is only
4% and this reduces the probability of a false match down to 2%; which is much less
than the 25% probability of true match. Therefore, an adversary has a reason to be
confident about true match.

3.2 Pros and Cons of Generalization in Composition Attack

Let us assume that two or more data holders achieve ℓ-diversity [8] in the overlapping
set (OL); such that overlapping equivalence classes have at least ℓ overlapping patients
common that are suffering from distinct diseases (although it is not trivial to achieve
this, and we discuss it in the following section). Intuitively, adversary only learns that
an overlapping victim suffering from one of ℓ possible diseases. However, the privacy
is possibly compromised for non-overlapping victim(s).

Example 2. In published datasets P ∗ and Q∗i , there are QID groups as P ∗ = {31–35,
male, (A,B,C)} and Q∗i = {31–35, male, (A,B)}. The adversary has only 50% chance
of knowing if two overlapping victims who visited both P ∗ and Q∗i suffer from disease
{A} (or {B}). However, the adversary has a chance to learn the sensitive information
of a victim that is not in the overlapping set (OL). For example, the adversary knows



a victim (male, 31) who only visited P ∗. Based on the above data publication, the
adversary knows that the victim (male, 31) suffers from disease {C}.

Data publication by generalization also suffers the minimality attack [13]. An ad-
versary can use the knowledge of an anonymization algorithm to infer the sensitive
information of individuals. The same attack applies to multiple data releases.

Example 3. Assume that an algorithm follows the following procedure. If the over-
lapping set (OL) satisfies ℓ-diversity, publish the data section. Otherwise, generalize
the data section with the adjacent tuples to make the overlapping set (OL) satisfy ℓ-
diversity. If not possible, suppress tuples to make the overlapping set (OL) empty.
Based on the principle, P ∗ is published using the information of already published
Q∗i = {31–35, male, (A,B)} and P ∗ = {35–40, male, (A,C)}. The adversary knows
that victim (male, 33) visited both Q∗i and P ∗. Based on the published datasets, he
does not know if the victim suffers from disease {A} or {B}. The adversary knows that
the victim’s record has been suppressed from the subsequent dataset P ∗, but this infor-
mation does not help her/him to figure out the true sensitive information of the victim
either. However, s/he knows the generalization algorithm as well. S/he reasons the sen-
sitive value of victim as disease {A} as the following. If the victim suffers from disease
{B}, the subsequent published dataset P ∗ should be as P ∗ = {33–40, male, (A,B,C)}
to maintain the 2-diversity in the overlapping set (OL). The record of the victim is sup-
pressed from P ∗ because the victim does not suffer from disease {B} and there is no
possibility to generalize the data to satisfy 2-diversity in the overlapping dataset (OL).
Therefore, the victim suffers disease {A} for sure.

4 (�, �)-anonymization Model

�-sampling and �-overlapping, in short (�, �)-anonymization, model consists of two
steps anonymization, as detailed in the following.

Definition 3 (�-Sampling). Given a sampling probability � ≤ 1, each tuple t ∈ P is
sampled with the probability of � without replacement, i.e. whether a tuple is included
in sampled dataset P � for subsequent publication is decided by tossing a coin with head
probability �. Only if the coin heads, a tuple is included in P �.

Sampling is already a routine practice in data publishing [12], because data pub-
lishers hold gigantic data and only a subset is publicly released. As shown in previous
section, an adversary infers the sensitive values of individuals in overlapping and non-
overlapping datasets with different confidences. The sampling is necessary for privacy
protection of non-overlapping tuples in multiple independent data releases since it re-
duces the confidence of locatability of an adversary. Later, in Section 4.1, we discuss in
detail how sensitive value inference of a non-overlapping tuple is bounded by sampling.
Next we preserve the privacy of overlapping tuple(s).

Definition 4 (�-overlap). Independently published anonymous datasetP ∗ (formed from
P �) satisfies �-overlap, if for any tuple t ∈ OL; its QID group in P ∗ contains at least
� (� ≥ 2) uniformly distributed distinct sensitive values with Q∗i .



The overlapping set (OL) is computed by utilizing publicly available anonymous re-
leases of other publishers using Definition 2. The rationale of �-overlap is that, if a
tuple t is published by more than one publishers then all its generalized QID hosting
groups must contain � common sensitive values in a way such that its sensitive values in
QID hosting groups forms uniform distribution (i.e. equal number) for � common sen-
sitive values in overlapping set (OL). The uniform distribution in overlapping set (OL)
makes an adversary’s confidence equally split over � sensitive values. The distributions
of the sensitive values in P ∗ and Q∗i can be quite different. The uniform distribution is
a good trade-off between diverse distributions.

4.1 Privacy Analysis of (�, �)-anonymization

In this section we analyze the privacy of overlapping and non-overlapping tuples in
(�, �)-anonymization. We start with the privacy of non-overlapping tuples.
Observation 1 If dataset P ∗ satisfies (�, �)-anonymization, then the confidence of an
adversary to derive the true sensitive value of any non-overlapping tuple t from P ∗ is
bound by sampling probability �.

Example 4. Reconsider the scenario of Example 2 with additional assumption that P ∗

is sampled with 50% probability. Now, adversary has maximum � chance that the record
<male, 31–35, C> is the one s/he is looking for and there is no other source of infor-
mation to reinforce this.

Next we reason about the privacy of overlapping tuples in (�, �)-anonymization.
Observation 2 If dataset P ∗ satisfies (�, �)-anonymization with all already published
anonymous datasets, then the confidence of an adversary to derive the sensitive value of
any overlapping tuple t ∈ OL through the composition attack is bound by ⌈ 1�⌉; where
⌈ ⌉ is ceiling operator.

An ideal situation is that the confidence of guessing a sensitive value by an adversary
from an anonymous dataset is similar to the distribution of sensitive value in original
data, like in t-closeness [7]. However, in the composition attack, we deal with more
than one datasets which may have different distributions for sensitive values. We do not
have a “standard” distribution to close to. Further, the overlapping set (OL) is a small
proportion of a dataset, and may not represent the distribution of the global dataset.
Uniform distribution for � common sensitive values is a good trade off. Any latter data
holder, (who is at the risk of composition attack i.e. Hospital-3 in our case) can simply
set � to a sufficiently larger value, for every overlapping tuple t ∈ OL, to achieve the
required extent of privacy preservation.

Example 5. Reconsider the scenario of Example 3, where the P ∗ will be P ∗ = {31–40
(1), male, (A,B,C)} to maintain the 2-overlap withQ∗i . Note that, although the adversary
learns that a counterfeit exits in QID group of P ∗, s/he still cannot narrow down the
possible diseases of overlapping victim (male, 33). In fact, to the adversary, there is a
50% chance that either {A} or {B} would be the counterfeit.



Table 4: Major symbols used in different phases of composition based generalization
P Input dataset to be anonymized Q*[ ] Already published overlapping datasets 

  Input sampling parameter for dataset P   
Input parameter, a trade-off for 

efficiency and quality 

k Input parameter for k-anonymity   Input parameter for  -diversity 

  Minimum uniformly distributed distinct sensitive values to be placed in overlapping set    
 

4.2 m-invariance: similar model but not good in this scenario

m-invariance [15] model is a very typical model in serial data publication. It has certain
strengths for privacy protection in multiple data publications, but it has its limitations
in our problem. First, it needs a sampling process for m-invariance model in our sce-
nario too. Second, m-invariance model requires every tuple in an overlapping dataset
to persistently associate with the same set of sensitive values, called signature in [15].
In our scenario, the number of counterfeit or suppressed tuples must be large to satisfy
the persistent consistency as required inm-invariance [15].m-invariance requires every
overlapping tuple in P ∗ to associate with m number of same sensitive values, (signa-
ture as defined in [15]), as the corresponding tuple in Q∗i . In other words, m-invariance
requires all sensitive values (both overlapping and non-overlapping) in QID groups of
datasets P ∗ and Q∗i with overlapping QID values be the same; whereas we only need
to handle overlapping QID groups to combat composition attack.

Example 6. Let the sensitive values of the QID groups in Q∗1 = {A,B}, Q∗2 = {A,C},
Q∗3 = {A,D} and the available sensitive values in P � = {A,B,C} (let P � = P with � =
50%). Now to meet 2-invariance requirement we need 3 QID groups with counterfeit
tuples {∅}, {A} and {A,D} respectively. In contrast, we require one counterfeit tuple,
i.e. {D}, to meet (50%, 2)-anonymization. Intuitively, m-invariance [15] principle is
too strong in our scenario.

5 Composition Based Generalization

5.1 Phases

We use the running example to demonstrate the different phases of composition based
anonymization to achieves (�,�)-anonymization; where � = 50%, k = 4, ℓ = 3, � = 2,
Q∗1,Q∗2 and P are Tables 1(b), 2(b) and 3(a) respectively. Given already published tables
Q∗1 and Q∗2 available to data holder of P , we show how to compute the anonymized
version P ∗ from P . We perform the computation in following five phases: sampling,
division, balancing, assignment and generalize. The explanation of the major symbols
used in different phases of composition based generalization is shown in Table 4.

Sampling Firstly, we apply the sampling on P with input sampling probability � to
obtain P �. Each tuple of P is independently sampled. In our example, we assume sam-
pling probability � = 0.5 and sampling function f�(t) returns the tuple (i.e. f�(t) = t)
if f� = 1 and fx(t) = ∅ if f� = 0. In our case the probability of getting {0,1} is 0.5. In
our example, we assume that for all the tuples of P , fx(t) = t, i.e. P � = P .



Division In this phase we partition the sampled P � into two disjoint sets i.e. overlap
tuples S∩ = Q∗i ∩ P (i ∈ 1, 2); computed as per Definition 2 and non-overlap tuples
S− = P � − S∩. In case of our example the tuples with sensitive values {B,R} and
{C,C,L,B,W} are included in S∩ and S− respectively. For each tuple t∩ ∈ S∩, we define
its ‘possible sensitive values’ as the set of distinct sensitive values in the corresponding
generalized QID hosting group in already published Q∗i . In the running example the
tuples, with sensitive value {B} in S∩, has possible sensitive values as {B,C}; i.e. the
distinct sensitive values in QID group-1 of Table 1(b). Whereas the set of possible
sensitive values for {R} is {S,R,T}; i.e. the distinct sensitive values in QID Group-2 of
Table 2(b).

In the end of division phase, we simply divide S∩ into several QID groups, on
the basis of their possible sensitive values. In our running example, we have two QID
groups i.e. GRP1(B,C) and GRP2(S,R,T).

Balancing We say that a QID group GRPi (i ≥ 1) is balanced, if it contains at least
� tuples; having such distinct sensitive values that these � tuples along with their cor-
responding QID group(s) in already published overlapping dataset(s) comply with �-
overlap principle (Definition 4). For example, the QID group GRP1 will become bal-
ance with corresponding overlapping QID group-1 of Table 1(b) if we include two
tuples (from S−) having sensitive value {C} (� = 2). The objective of this phase is to
balance all QID groups.

Continuing our example, we cannot balance QID group GRP2 with corresponding
QID group-2 in Table 2(b) because to balance GRP2 we need at least one tuple having
either of sensitive values {S,T} in S−. As there is no such sensitive values in S− so
we add one counterfeit sensitive value (either of {S,T}) in the QID group GRP2 to
make it balance with corresponding QID group-2 in Table 2(b) . We add counterfeit
sensitive value, in unbalanced QID groupGRP2, instead of suppressing the overlapping
tuple because suppression can still breach the privacy of overlapping tuple, as shown
in Example 3. A non-desiring solution can be to suppress all the tuples of P � with the
same sensitive values as of corresponding QID group in Q∗i .

Assignment We assign remaining tuples of S− (if any) in two steps. First, we include
the tuples in existing QID group(s) to comply with the generalization principle(s) (k-
anonymity [11], ℓ-diversity [8], t-closeness [7] etc.). Second, if necessary, new QID
group(s) may be created for remaining tuples. A QID group is called complete if it
complies with all underlaying generalization principles. The purpose of this phase is
to make all QID groups complete. In running example, S− has three tuples having
sensitive values {L,B,W}. We have assumed that k = 4 and ℓ = 3 as generalization
principles. The tuple having sensitive value {L} is assigned to GRP1 and remaining
two tuples having sensitive values {B,W} are assigned to GRP2 to make both groups
complete.

The crucial part is the selection of a tuple t− from S− and its assignment to a QID
group. We select first � tuples of S− and search for the optimal tuple which requires
least anonymization of QIDs. � is an input parameter that restricts the search of the
optimal tuple within the first � tuples of S−. The incorporation of � improves the per-



Algorithm 1 overlapAnonymize(P ,Q∗[ ],�,�,�,k,ℓ)

1: P � ⊳ sample each tuple of P with � probability to get P �

2: S∩ = Q∗[ ] ∩ P � ⊳ get overlap tuples (Definition 2)
3: S− = P � − S∩ ⊳ get non-overlap tuples
4: Divide S∩ into GRP [ ] QID groups ⊳ Division phase
5: Sort(S−) ⊳ sort all S− tuples on the basis of QIDs
6: while ∣S−∣ ∕= 0 do ⊳ continue till all tuples are assigned
7: for i← 1, � do ⊳ to access first � tuples of S−
8: t− = S−[i]
9: for j ← 1, ∣GRP ∣ do ⊳ to access all groups

10: if GRP [j] is complete with k, ℓ and � then exclude GRP [j] from GRP [ ]
11: else if t− is optimal to GRP [j] then assign t− to GRP [j]
12: if ∣GRP ∣ == 0 then i = �; j = ∣GRP ∣⊳ set to break the loops of lines 7 and 9
13: end for
14: end for
15: if ∣GRP ∣ == 0 AND ∣S−∣ ≥ k then create new GRP [0] ⊳ all groups become

complete but still there are more than k (from k-anonymity) unassigned tuples
16: else if ∣GRP ∣ == 0 AND ∣S−∣ < k then assign all remaining tuples to recently com-

pleted group
17: else if ∣GRP ∣ ! = 0 AND ∣S−∣ == 0 then complete all remaining groups by adding

counterfeit tuples.
18: end while

formance of assignment process (as shown in experiments in Section 6) because instead
of traversing all the tuples of S−, only � tuples are searched for optimal tuple. Note that
the anonymization of optimal tuple depends on the specific generalization principle(s)
to be employed. Within � tuples, we calculate Distortion [6] caused by every tuple t−
∈ S− to each QID group and assigns such t− (also referred optimal tuple) to the QID
group which has minimum distortion with t−; as long as �-overlap (Definition 4) holds.
Due to space constraint, we are omitting the calculation details of distortion between
QID group and a tuple and reader is referred to the original paper [6] for further details.
Algorithm 1. formally presents the assignment strategy.

In our running example we assume k = 4 and ℓ = 3 and there are two QID groups;
GRP1 contains 3 tuples and GRP2 has two tuples. We have three tuples in S− with
sensitive values {L,B,W}, as per their order in P �. Due to the sorting of the S− (Al-
gorithm 1 line 5) on the basis of QIDs; the sorted tuples have the sensitive values as
{B,L,W}. In first iteration we assign the tuple with sensitive value {L} to GRP1 to
make it complete i.e now GRP1 has four tuples (k = 4), three distinct sensitive values
(ℓ = 3) and two overlap values (� = 2). So, we exclude the GRP1 from all subsequent
iterations (Algorithm 1 line 10). Importantly, we cannot assign the tuple {B} to GRP1

instead of tuple {L} (although the tuple {B} requires less generalization for GRP1)
because after the assignment of tuple {B} to GRP1, the GRP1 will not comply with
�-overlap condition (Definition 4). Now, we are left with two tuples with sensitive val-
ues {B,W} (i.e. ∣S−∣ ∕= 0) and GRP2 is incomplete (as k = 2 instead of 4); so next
two iterations assign the {B,W} tuples to GRP2 (Algorithm 1 line 11) and assignment
algorithm finishes by breaking assignment loop (Algorithm 1 line 6).



Table 5: Attribute domain size
Attribute Age Sex Education Marital Status Birth Place Occupation 

Domain Size 91 2 17 7 50 50 
 

Generalize We can have two types of QID groups, i.e. overlap QID groups (created
during division phase) and non-overlap QID groups (created in assignment phase). The
generalization of non-overlap QID group is trivial; we get the minimum QID range that
covers all the QID values and replace the original QID values with this range.

In case of overlap QID group, we get the minimum QID range that (i) covers all
QID values in current QID group (similarly like non-overlap group) (ii) as well as the
QID generalization range in corresponding overlap QID group of already published
dataset. In our running example, the generalization range of the age in overlap QID
group GRP1 will be (15 – 35). We cannot put (20 – 35) as generalization range for
age in GRP1 because (20 – 35) only covers age QID values in GRP1; whereas the
generalization range of age in corresponding overlap group of already published Q∗1
is (15 – 25). So the minimum range for age in GRP1 is (15 – 35) instead of (20 –
35). There is no need to generalize sex in GRP1 because without any generalization
the aforementioned both conditions of overlap group are met. In the same way, the
generalization range for age in GRP2 is (28 – 45) instead of (28 – 40). The Table 3(c)
is the final outcome after generalization phase.

The complexity of the Algorithm 1 mainly depends on the computation of tuples in
S∩ (Algorithm 1, line 2), sorting of S− tuples (Algorithm 1, line 5) and searching the
optimal tuple (Algorithm 1, line 11). We assume that ∣P ∣ ≈ ∣Q∗i ∣, so major computation
overhead lies on the computation of S∩ i.e. ∣P ∣ ∗ ∣P ∣ steps. Intuitively, the complexity
ofO(m2) wherem = ∣P ∣. The more optimization of anonymization algorithm is future
work we plan to pursue.

6 Experiments

All the experiments are performed on a machine running a 2.4 Ghz CPU with 3 Giga-
byte memory. We deploy two real repositories BIR and OCC from United States cen-
sus data downloadable from http://ipums.org. Both contain 300k and 45k tuples respec-
tively. BIR includes four QID attributes, age, gender, education, marital status, and
a sensitive attribute birtℎ place. Whereas OCC contains the same QID attributes, but
with different sensitive attribute occupation. All columns are discrete with domains
size given in Table 5.

We create four disjoint sub-datasets Qbiri (Qocci ) (n ∈ 1, . . . , 4) from BIR(OCC).
It suffices to clarify the generation and generalization of Qbiri , since the same method is
used for Qocci . Each sub-dataset Qbiri is of 50k tuples. Next, we form the dataset Pbir,
also having 50k tuples. The remaining 50k tuples initiates a pool Obir. The dataset Pbir
will be anonymized using (�, �)-anonymization. For OCC each sub-dataset Qocci and
Pocc contains 8k tuples and remaining 5k tuples goes in pool Oocc. In all experiments we
set sampling probability � = 0.50.



 

0k 
10k 
20k 
30k 
40k 
50k 

2 4 6 8 10 p
ri

va
cy

 r
is

k 
tu

p
le

s 

𝓁-diversity 

(a) P ∗bir

 

0k 
1k 
2k 
3k 
4k 
5k 

2 4 6 8 10 p
ri

va
cy

 r
is

k 
tu

p
le

s 

𝓁-diversity 

(b) P ∗occ

Fig. 1: Successful composition attack vs. the overlap volume u

We run four sets of experiments, involving 4 sub-datasets with Pbir. In each set
of experiment, the publication of n sub-datasets is straightforward, i.e we randomly
select u ∗ n tuples from O

bir and insert separate u tuples in each Qbiri , subsequently
anonymous Qbir∗i (having 50k + u tuples) is created that satisfies some generalization
principle(s). Here u is a parameter, called overlap volume, controlling the overlap rate
between n sub-datasets and Pbir. For the Pbir, the generalized P ∗bir is obtained by,
first, inserting the same u ∗ n tuples in Pbir; i.e. Pbir has separate u overlap tuples with
eachQbir∗i . Consequently Pbir, having 50k + (u∗n) tuples, is anonymized using (�, �)-
anonymization that utilizes other four anonymous sub-datasetsQbir∗1 ,Qbir∗2 , . . . ,Qbir∗4 .
We repeat this process by increasing the u from 10k to 50k (i.e. each set of experiment
includes 5 iterations onBIR). In case ofOCC, we increase the overlap volume u from
1k to 5k tuples in each set of experiment, so total iterations in each set of the experiment
of the OCC are also 5.

6.1 Failure of Conventional Generalization Schemes

In the first set of experiments, we aim at establishing the conjecture that the existing
generalization principles may lead to severe privacy disclosure in independent data pub-
lishing. This finding was also observed in [2]. We adopt the algorithm in [5] to compute
ℓ-diversity [8] as the representative generalization principle, since it is widely adopted
and offers stronger privacy than k-anonymity [11]. In Fig. 1(a), we plot the number of
privacy risk tuples (as explained in Section 1.1) in P ∗bir as a function of u, as this pa-
rameter changes from 10k to 50k in O

bir. Regardless of u and ℓ, there are nearly 90%
overlap tuples whose privacy is not preserved at all in P ∗bir. We repeat the experiments
on sub-datasets Qocci and Pocc. The results are illustrated in Fig. 1(b), confirming the
same observations.

6.2 (�, �)-anonymization Evaluation

We have n = 4 already published sub-datasets of BIR and OCC i.e. Qx∗1 , Qx∗2 , . . . ,
Qx∗4 (x = BIR or OCC). We invoke the (�, �)-anonymization (Section 4) on P x to
compute the generalized version P ∗x for �-overlap publication. The computation of P ∗x
utilizes already published four anonymous datasets to identify overlapping set (OL) us-
ing Definition 2. The P ∗x is characterized by two input parameters, i.e. overlap-volume
u and overlap diversity �.
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Fig. 2: Average and Percentage of counterfeiters in P ∗bir (P ∗occ)

Number of Counterfeited Tuples. We start by demonstrating that only a small num-
ber of counterfeited tuples are needed to enforce (�, �)-overlap. In Fig. 2(a), we set u
= 10(1)k but vary the � from 2 to 10 and measure the average counterfeited tuples
in P ∗bir (P ∗occ). The average number of counterfeited tuples increase along with � be-
cause higher � requires more distinct sensitive values in each overlap QID group for
balancing; failure of this causes insertion of more counterfeited tuples in QID group(s).

Next, we focus on the percentage of counterfeiters with overlap-volume u. We
get the percentage of counterfeited tuples in P ∗bir (P ∗occ) for all sub-datasets of BIR
(OCC). Fixing � = 6, Fig. 2(b) shows the percentage of counterfeited tuples for both
BIR and OCC as a function of u. The percentage decreases as u increases, such that
(�, �)-overlap can utilize more overlapping tuples. This is expected, because for a fix
value of � as u increases, more overlap QID groups are more likely to have same set
of possible sensitive values which can accommodate larger overlap volume. Intuitively,
causing less counterfeited tuples while balancing.

Utility of the Published Data. In the following set of experiments, we will use P ∗x
(where x = BIR or OCC) to answer queries about the original sub-dataset Px. We
concentrate on aggregate queries, since they are the basic operation for numerous min-
ing tasks (e.g., decision tree learning, association rule mining etc.). Specifically, each
query has the form:

SELECT COUNT (*) FROM P ∗x WHERE pred{ t∗x[A
qi
1 ] AND . . . AND t∗x[A

qi
4 ]

AND t∗x[A
s] }

The P ∗x is the sub-dataset generalized using (�, �)-overlap, t∗x[A
qi
1 ], . . . , t∗x[A

qi
4 ] de-

note the four QID attributes in P ∗x , and t∗x[A
s] is the sensitive attribute birtℎ place

(occupation). For each attribute A, the condition pred(A) has the form ∣A∣.�, where
∣A∣ is the domain size of A (see Table 5), and � is a query parameter called selection
range. A larger result is returned with higher �. Our workload consists of 1000 queries
with same P ∗x and t∗x[A

s]. Given a query, we obtain its actual result Ract from original
overlap sub-dataset P x, and compute an estimated answer Rest from its (�, �)-overlap
generalized version P ∗x . The relative error of a query equals ∣Ract − Rest∣/Ract. We
measure the workload error as the median relative error of all the queries. Adopting �
= 6, Fig. 3 plots the workload error as a function of update volume u for P ∗bir(P

∗
occ)

respectively. In all experiments, the error is at most 2.5(5.3)% for �-overlap, indicating
high utility of the (�, �)-overlap.
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Fig. 3: Query error vs. update volume u
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Fig. 4: Computation overhead vs. u and �

Computation Overhead The last experiment evaluates the efficiency of our overlap
generalization algorithm. First in Fig. 4(a), we set � = 6, and measure the average
time of computing a generalized sub-dataset P ∗bir (P ∗occ) for different u. The cost is
more expensive when u is higher, because the algorithm needs to process more tuples
of overlap volume in each QID group. Then in Fig. 4(b), we fix u to 10(1)k, and got
the cost as a function of �. The overhead decreases as � increases, since a larger �
necessitates fewer overlap QID groups, and requires less time in generalization phase.

7 Related Work

Privacy preserving data publishing has mainly focused on taking into account other
known releases, such as previous publications by the same data holder (called sequen-
tial, serial or incremental releases) [14, 15] and multiple views of the same dataset [16,
17]. Another line has considered incorporating knowledge from partitioned views of a
same dataset to group individuals [16]. The sequential/multiple view release models do
not fit because, in this paper, we deal with the case when there are multiple independent
publishers but their release is single. A hypothetical discussion of the same problem is
in [2] (driving concepts from differential privacy [1]) without the actual implementation
and the test results. Although, some recent work has implemented differential privacy in
data publishing [10] but it did not address the composition attack. Most relevant works
to this paper are [9, 3]. But they incorporate the coordinated model; where all locations
communicate with each other before releasing their data to calculate the privacy risk
of overlapping population and subsequently release dataset that is k-linkable i.e. each
overlapping record is minimum linked to k records in each release. The coordinated
model also does not comply with our requirement because we are dealing with non-



coordinated scenario where each location independently anonymizes its data without
having any communication with other location(s). Secondly in coordinated model, all
locations anonymize and publish data at the same time but in our case each location can
publish its data anytime.

8 Conclusion

Existing single/serial data publishing methods do not support multiple independent data
publication by different data holders having overlapping records. This paper has devel-
oped (�, �)-overlap anonymization model to prevent an adversary from using data re-
leases of different data holders to infer sensitive information of overlapping individuals.
We have provided an efficient algorithm for computing anonymized datasets to achieve
(�, �)-overlap. We experimentally showed that the anonymized data adequately protects
privacy and yet supports effective data analysis.
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