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Abstract

Symbolic Aggregate approXimation (SAX) as a major symbolic represen-
tation has been widely used in many time series data mining applications.
However, because a symbol is mapped from the average value of a segment,
the SAX ignores important information in a segment, namely the trend of
the value change in the segment. Such a miss may cause a wrong classifica-
tion in some cases, since the SAX representation cannot distinguish different
time series with similar average values but different trends. In this paper, we
firstly design a measure to compute the distance of trends using the starting
and the ending points of segments. Then we propose a modified distance
measure by integrating the SAX distance with a weighted trend distance.
We show that our distance measure has a tighter lower bound to the Eu-
clidean distance than that of the original SAX. The experimental results on
diverse time series data sets demonstrate that our proposed representation
significantly outperforms the original SAX representation and an improved
SAX representation for classification.
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1. Introduction

Mining time series has attracted an increasing interest due to its wide
applications in finance, industry, medicine, biology, and so on. There are a
number of challenges in time series data mining, such as high dimensional-
ity, high volumes, high feature correlation and large amount of noises. In
order to reduce execution time and storage space, many high level represen-
tations or abstractions of the raw time series data have been proposed. The
well-known representations include Discrete Fourier Transform (DFT) [1],
Discrete Wavelet Transform (DWT) [2], Discrete Cosine Transform (DCT)
[3], Singular Value Decomposition (SVD) [4], Piecewise Aggregate Approxi-
mation (PAA) [5] and Symbolic Aggregate approXimation (SAX) [6].

The SAX has become a major tool in time series data mining. The
SAX discretizes time series and reduces dimensionality/numerosity of data.
The distance in the SAX representation has a lower bound to the Euclidean
distance. In other words, the error between the distance in the SAX rep-
resentation and the Euclidean distance in the original data is bounded [7].
Therefore, the SAX representation speeds up the data mining process of time
series data while maintaining the quality of the mining results. The SAX
has been widely used for applications in various domains such as mobile data
management [8], financial investment [9] and shape discovery [10].

The SAX representation has a major limitation. In the SAX repre-
sentation, symbols are mapped from the average values of segments. The
SAX representation does not consider the trends (or directions) in the seg-
ments. Different segments with similar average values may be mapped to
the same symbols, and the SAX distance between them is 0. For example,
in Fig. 1, time series (a) and (b) are different but their SAX representations
are the same as ’feacdb’. This drawback causes misclassifications when using
distance-based classifiers.

The ESAX representation overcomes the above limitation by tripling the
dimensions of the original SAX [11]. To distinguish the two time series in
Fig. 1, the ESAX representation adds additional symbols for the maximum
and minimum points of a segment. The ESAX representations of time series
(a) and (b) are ‘efffecaaaacffdbcbb’ and ‘effcefbaafcaadfbbc’ respectively.

We propose to store one value along with a symbol in the SAX to improve
the distance calculation of the SAX. Time series (a) and (b) in our representa-
tion are represented as ‘0.2f1.2e−0.1a−1.2c1d−0.2b−0.3’ and ‘−0.3f−0.8e0a1.3c−1.4d0.4b0.3’
respectively. Note that we store one additional value for the last segment. For
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(a) Time series 1 (b) Time series 2

Figure 1: (a) and (b) have the same SAX symbolic representation ‘feacdb’
in the same condition where the length of time series is 30, the number of
segments is 6 and the size of symbols is 6. However, they are different time
series.

the same number of segments, our representation doubles the dimensions of
the SAX representation. In contrast, the ESAX triples the dimensions of the
SAX representation. Our presentation improves the precision of calculating
the distances greatly over the SAX and the ESAX representations.

In this work, we have made three main contributions. Firstly, we present
an intuitive trend distance measure on time series segments. Because of the
approximately linear trend in a short segment, the average value of the seg-
ment and its starting and ending points help measure different trends. Our
presentation captures the trends in time series better than the SAX and the
ESAX representations. Secondly, we propose a distance measure of two time
series by integrating the SAX distance with our weighted trend distance. Our
improved distance measure not only keeps a lower-bound to the Euclidean
distance, but achieves a tighter lower bound than that of the original SAX
distance. Thirdly, comprehensive experiments have been conducted to show
that, in comparison with the SAX and the ESAX representations, our repre-
sentation has improved the classification accuracy. In addition, for achieving
the best classification accuracy, our representation has attained a similar
dimensionality reduction as the SAX.

The remainder of this paper is organized as follows: Section 2 provides
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the background knowledge of the SAX. Section 3 reviews the related work.
Section 4 introduces our improved distance measure and its lower bounding
property. Section 5 presents experimental evaluation on several time series
data sets. Finally, Section 6 concludes the paper and points out the future
work.

2. Background

The SAX is the first symbol representation of time series with a dimen-
sionality reduction and a lower bound of the Euclidean distance. For in-
stance, to convert a time series sequence C of length n into w symbols, the
SAX works as follows. Firstly, the time series is normalized. Secondly, the
time series is divided into w equal-sized segments by Piecewise Aggregate
Approximation (PAA) [5]. That is, C = c1, . . . , cw, the ith element of C is
the average of the ith segment and is calculated by the following equation:

ci =
w

n

n
w
i∑

j= n
w
(i+1)+1

cj, (1)

where cj is one point of time series C, j is from the starting point to the
ending point for each segment. Next, the “breakpoints” that divide the
distribution space into α equiprobable regions are determined. Breakpoints
are a sorted list of numbers B = β1, . . . , βα−1 such that the area under a
N(0, 1) Gaussian curve from βi to βi+1 = 1/α. A lookup table that contains
the breakpoints is shown in Table 1.

Finally, each region is assigned a symbol using the determined break-
points. The PAA coefficients are mapped to the symbols corresponding to
the regions in which they reside. The symbols are assigned in a bottom-up
fashion, i.e. the PAA coefficient that falls in the lowest region is converted to
“a”, in the one above to “b”, and so forth. These symbols for approximately
representing a time series are called a “word”. Fig. 2 illustrates a sample
time series converted into the SAX word representation.

For the utilization of the SAX in classic data mining tasks, the distance
measure was proposed. Given two original time series Q and C with the same
length n, Q̂ and Ĉ are their SAX representations respectively with the word
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Table 1: A lookup table for breakpoints with the alphabet size from 3 to 10.

βi 3 4 5 6 7 8 9 10
β1 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 -1.22 -1.28
β2 0.43 0 -0.25 -0.43 -0.57 -0.67 -0.76 -0.84
β3 - 0.67 0.25 0 -0.18 -0.32 -0.43 -0.52
β4 - - 0.84 0.43 0.18 0 -0.14 -0.25
β5 - - - 0.97 0.57 0.32 0.14 0
β6 - - - - 1.07 0.67 0.43 0.25
β7 - - - - - 1.15 0.76 0.52
β8 - - - - - - 1.22 0.84
β9 - - - - - - - 1.28

Figure 2: A time series of length 128 is mapped to the word ‘edbaabcd’,
where the number of segments is 8 and the size of alphabetic symbols is 5.

size w, their SAX distance function MINDIST is defined as the following:

MINDIST (Q̂, Ĉ) =

√
n

w

√√√√ w∑
i=1

(
dist (q̂, ĉ)

)2
, (2)

where the dist() function can be implemented using the lookup table as
illustrated in Table 1, and is calculated by the following equation:

dist(q̂, ĉ) =

{
0 , if |q̂ − ĉ| ≤ 1

βmax(q̂,ĉ)−1 − βmin(q̂,ĉ), otherwise
. (3)
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3. Related Work

The SAX has a generality of the original presentation and works well in
many problems. There have been some improvements of the SAX represen-
tation recently.

Some methods improve the SAX by adaptivity choosing the segments.
The method in [12] uses the discretization of Adaptive Piecewise Constant
Approximation (APCA) [13] to replace the PAA [5] in the SAX. The method
in [14] makes use of an adaptive symbolic representation with the adaptive
vector of “breakpoints”. While the two methods above reduce the recon-
struction error on some data sets, they still use the average values as the
basis for approximation (the latter method uses the same distance measure
as the SAX) and do not consider the differences of value changes between
segments.

Some methods improve the SAX by enriching the representation of each
segment. The method in [11] uses three symbols, instead of a single symbol,
to represent a segment in time series. This method triples the dimensions
of the SAX, and the high dimensionality increases the computational com-
plexity. The method in [15] utilizes a symbolic representation based on the
summary of statistics of segments. The method considers the symbols as a
vector, including the discretized mean and variance values as two elements.
However, it is may be inappropriate to transform the variances to symbols
using the same breakpoints for the transformation of the mean values to
symbols.

Trend estimation of time series is an important research direction. Many
methods have been proposed to represent and measure trends. It is a common
way to fit a line and then characterize the trend of the line. The least square
fitting and Piecewise Linear Approximation (PLA) [16] are two normally
used fitting methods [17, 18], as well as their extensions [19, 20]. The least
square method chooses the best fitting line with the minimal sum of the
squared errors from a given segment of data. The PLA splits the series into
many representative segments, and then fits a polynomial line model for time
series. The trends are categorized as two (up and down) or three (up, down
and level) directions using the slopes of the lines. The distance is measured
by some artificial instantiations, such as -1, 0 and 1. These approaches are
simple and easily understandable. However, they have several drawbacks.
Firstly, it is not possible to capture the difference between the segments with
the same direction. For example, distance between two up trends is zero.
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Secondly, there is not an appropriate measure to characterize the difference
of segments with different directions, such as the distance between “up”
and “down” trends. Some other statistic approaches have been proposed in
[21, 22, 23], but their models are complex.

4. SAX-TD: Improved SAX Based on Trend Distance

As we reviewed above, the time series segments are mapped to symbols
by their average values when using the SAX. This representation is imprecise
when the trends of the segments are different but with similar average values.
Fig. 3 lists several typical segments with the same average: (a) level and slight
up, (b) obvious up, (c) down, up and then down, (d) level and slight down,
(e) obvious down, (f) up, down and then up.

Trends are important characteristics of time series, and they are crucial
for the analysis of similarity and classification of time series [24]. Although
there are not a common definition of trend and a measurement of trend
distance in time series, the starting and the ending points are important in
segment trend estimation. For example, a trend is up when the value of the
ending point is significant lager than the value of the starting point, while
the trend is down when the value of the ending point is significant smaller
than the value of the starting point. It is difficult to qualitatively define
a trend, such as the definitions of “significant up” and “significant down”,
“significant down” and “slight down”. However, if the trend information of a
segment is not utilized, the representations of a time series containing many
segments are rough.

In this paper, we do not use symbols to capture the trends of time series,
but quantitatively measure the trends by calculating their distance, called
trend distance. Because the divided segments are short, the trend in a seg-
ment approximates a linear relationship in most of cases. Therefore, the
starting and the ending points approximatively determine a trend. When
more data points are used, the trend will be represented more precisely.
However, the dimensions of the representation will be increased significantly.
When we use the starting and the ending points, because of the continuity
of time series data, only one extra dimension is added to one segment.

4.1. Distance Measures

We use the difference of changes between the average and the values of
starting and ending points to quantify the distance of segments. For an
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(a) (b) (c)

(d) (e) (f)

Figure 3: Several typical segments with the same average value but different
trends.

illustration, given two time series segments q and c, let △q(ts) and △c(ts)
represent the changes between the average and the starting point’s value, and
△q(te) and △c(te) represent the changes between the average and the ending
point’s value. |△q(ts)−△c(ts)| and |△q(te)−△c(te)| indicate the difference
between the trends of the two segments, and is called the divergence of two
trends. For example in Fig. 3, the divergence of (b) and (e) is larger than
that of (b) and (c), that means the trends of (b) and (c) are more similar
than the trends of (b) and (e); the trends of (a) and (d) are more similar
than the trends of (a) and (b) although (a) has slight up trend.

Based on the discussion above, we define the trend distance between two
segments.

Definition 1. trend distance: Given two time series segments q and c
with the same length, the trend distance td(q, c) between them is defined as:

td(q, c) =

√(
△ q(ts)−△c(ts)

)2
+
(
△ q(te)−△c(te)

)2
, (4)

where ts and te are the starting and ending time points of q and c, respectively.
△q(t) (△c(t)) means the difference between q(t) (c(t)) and its average value,

8



and can be calculated by:

△ q(t) = q(t)− q. (5)

The △c(t) is calculated in a similar way. Note that in Eq. (5), q is a
known value obtained by the PAA discretization, we just need to calculate
the △q(ts) and △q(te). We call △q(ts) and △q(te) as the trend variations of
a segment.

We incorporate the trend variations into the SAX representation. Because
the continuity of time series data, the ending point of a segment is the starting
point of the following segment. One segment needs only one trend variation
(except the last segment). For an illustration, given two time series Q and
C with the length of n, the representations with w words of them are:

Q : △q(1)q̂1△q(2)q̂2△q(3) . . .△q(w) q̂w△q(w+1),

C : △c(1)ĉ1△c(2)ĉ2△c(3) . . .△c(w) ĉw△c(w+1),

where q̂1, q̂2 . . . q̂w are the symbolic representations by the SAX,△q(1),△q(2)
. . .△q(w) are the trend variations, and △q(w + 1) is the change of the last
point. Compared to the original SAX, our representation adds w+1 dimen-
sions for trend variations.

We define the distance between two time series based on the trend dis-
tance as the following.

TDIST (Q̂, Ĉ) =

√
n

w

√√√√ w∑
i=1

((
dist(q̂i, ĉi)

)2
+

w

n

(
td(qi, ci)

)2)
, (6)

where Q̂ and Ĉ are the new representations of time series Q and C with the
same length n. w is the number of segments (or words), q̂i and ĉi are the
symbolic representations of segments qi and ci, respectively.

From Eq. (6), we see that the influence of the trend distance on the
overall distance is weighted by the ratio of dimensionality reduction w

n
. w

n
is

larger when there are more divided segments and each segment is shorter. w
n

is smaller when there are fewer divided segments and each segment is longer.
This is because in a short segment, the trend is likely to be linear and can be
largely captured by two points and hence the weight for the trend distance
is high. When the segment is long, the trend is complex, two points are
unlikely to capture the trend and hence the weight of the trend distance is
low.
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We use an example to show the difference of the SAX distance and our
SAX-TD distance. Two time series are given from data set CBF [25], the
lengths of both are 128. The Euclidean distance between them is 11.88. We
show the distances calculated by the SAX and the SAX-TD while w are
assigned from 2 up to 64 (2 to n/2, and we double the value each time) in
Table 2. The distances of the SAX-TD are closer to the true distance than
that of the SAX.

Table 2: The distances of the SAX and the SAX-TD with different w. The
Euclidean distance is 11.88.

w 2 4 8 16 32 64
SAX 0 4.72 4.54 6.21 6.60 7.24
SAX-TD 2.84 6.30 6.44 7.94 8.49 9.12

4.2. Lower Bound

One of the most important characteristics of the SAX is that it provides
a lower bounding distance measure. Lower bound is very useful for control-
ling errors and speeding up the computation. Below, we will show that our
proposed distance also lower bounds the Euclidean distance.

According to [5] and [7], the authors have proved that the PAA distance
lower bounds the Euclidean distance as the following.√√√√ n∑

i=1

(qi − ci)2 ≥
√

n

w

√√√√ w∑
i=1

(qi, ci)2. (7)

For proving the TDIST also lower bounds the Euclidean distance, we repeat
some of the proofs here. Let Q and C be the means of time series Q and C
respectively. We first consider only the single-frame case (i.e. w = 1), Ineq.
(7) can be rewritten as:√√√√ n∑

i=1

(qi − ci)2 ≥
√
n

√
(Q− C)2. (8)

Squaring both sides we get

n∑
i=1

(qi − ci)
2 ≥ n(Q− C)2. (9)
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Recall that Q is the average of the time series, so qi can be represented in
terms of qi = Q−△qi. The same applies to each point ci in C. Thus, Ineq.
(9) can be rewritten as the following.

n∑
i=1

(
(Q−△qi)− (C −△ci)

)2 ≥ n(Q− C)2. (10)

Rearranging the left-hand side, we get

n∑
i=1

(
(Q− C)− (△qi −△ci)

)2 ≥ n(Q− C)2. (11)

We can expand and then rewrite Ineq. (11) by the distributive law as the
following.

n∑
i=1

(Q−C)2+
n∑

i=1

(△qi−△ci)
2−

n∑
i=1

2(Q−C)(△qi−△ci) ≥ n(Q−C)2. (12)

Note that Q and C are independent to n, Ineq. (12) can be transformed as
the following.

n(Q−C)2+
n∑

i=1

(△qi−△ci)
2−2(Q−C)

n∑
i=1

(△qi−△ci) ≥ n(Q−C)2. (13)

It was also proved that
∑n

i=1(△qi −△ci) = 0 in [5]. Therefore, after substi-
tuting 0 into the third term on the left-hand side, Ineq. (13) becomes:

n(Q− C)2 +
n∑

i=1

(△qi −△ci)
2 ≥ n(Q− C)2. (14)

Because
∑n

i=1(△qi − △ci)
2 ≥ 0, Ineq. (14) holds. Recall the definition in

(4),
(
td(q, c)

)2
=

(
△ q(ts)−△c(ts)

)2
+
(
△ q(te)−△c(te)

)2
, we can obtain

an inequality as the following (i = 1 is the starting point and i = n is the
ending point).

n∑
i=1

(△qi −△ci)
2 ≥ (△q1 −△c1)

2 + (△qn −△cn)
2. (15)
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Substituting Ineq. (15) into Ineq. (14), we get:

n(Q− C)2 +
n∑

i=1

(△qi −△ci)
2 ≥ n(Q− C)2 +

(
td(qi, ci)

)2
. (16)

According to [7], the MINDIST lower bounds the PAA distance, that is:

n(Q− C)2 ≥ n
(
dist(Q̂, Ĉ)

)2
. (17)

where Q̂ and Ĉ are symbolic representations of Q and C in the original SAX,
respectively. By transitivity, the following inequality is true:

n(Q− C)2 +
n∑

i=1

(△qi −△ci)
2 ≥ n

(
dist(Q̂, Ĉ)

)2
+
(
td(qi, ci)

)2
. (18)

Recall Ineq. (9), this means:

n∑
i=1

(qi − ci)
2 ≥ n

((
dist(Q̂, Ĉ)

)2
+

1

n

(
td(qi, ci)

)2)
. (19)

N frames can be obtained by applying the single-frame proof on every
frame, that is:√√√√ n∑

i=1

(qi − ci)2 ≥
√

n

w

√√√√ w∑
i=1

((
dist(q̂i, ĉi)

)2
+

w

n

(
td(qi, ci)

)2)
. (20)

The right-hand side of the above inequality is TDIST (Q,C) and the left-
hand side is the Euclidean distance between Q and C. Therefore, the TDIST
distance lower bounds the Euclidean distance.

The quality of a lower bounding distance is usually measured by the
tightness of lower bounding (TLB).

TLB =
Lower Bounding Distance(Q,C)

Euclidean Distance(Q,C)
.

The value of TLB is in the range [0,1]. The larger the TLB value, the better
the quality. Recall the distance measure in Eq. (6), we can obtain that
TLB (TDIST ) ≥ TLB (MINIDIST ), which means the SAX-TD distance
has a tighter lower bound than the original SAX distance.

In conclusion, our improved SAX-TD not only holds the lower bounding
property of the original SAX, but also achieves a tighter lower bound.
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5. Experimental Validation

In this section, we will present the results of our experimental validation.
Firstly we introduce the data sets used, the comparison methods and param-
eter settings. Then we evaluate the performances of the proposed method in
terms of classification error rate, dimensionality reduction and efficiency.

5.1. Data sets

We performed the experiments on 20 diverse time series data sets, which
are provided by the UCR Time Series repository [25]. Some summary statis-
tics of the data sets are given in Table 3. Each data set is divided into a
training set and a testing set. The data sets contain classes ranging from
2 to 50, are of size from dozens to thousands, and have the lengths of time
series varying from 60 to 637. In addition, the types of the data sets are also
diverse, including synthetic, real (recorded from some processes) and shape
(extracted by processing some shapes).

5.2. Comparison methods and parameter settings

Since our method aims to improve the SAX by modifying the distance
measure, we do the evaluation on the classification task, of which the ac-
curacy is determined by the distance measure. We compare the accuracies
with the classic Euclidean distance and the original SAX. To the best of
our knowledge, there is no other research improving the SAX distance by
measuring trends. We choose an extension of SAX called as Extended SAX
(ESAX) [11] to compare with. The ESAX adds two additional symbols for
the maximum and minimum values in a segment, but uses the same distance
measure as the SAX after mapping. For example in Fig. 3, let us assume that
the SAX words of sub-figure (b) and (e) are ‘b’, the ESAX representations of
them are ‘abc’ and ‘cba’, respectively. Thus the distance calculated by the
ESAX is more accurate than that calculated by the SAX.

To compare the classification accuracy, we conduct the experiments us-
ing 1 Nearest Neighbor (1-NN) classifier. The main advantage is that the
underlying distance metric is critical to the performance of 1-NN classifier,
hence, the accuracy of the 1-NN classifier directly reflects the effectiveness of
a distance measure. Furthermore, 1-NN classifier is parameter free, allowing
direct comparisons of different measures.

To obtain the best accuracy for each method, we use the testing data to
search for the best parameters w and α. For a given time series with length
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Table 3: The description of data sets used.

No. Data set name # Classes
Size of
training set

Size of
testing set

Length of
time series

Type

1 Synthetic Control 6 300 300 60 Synthetic
2 Gun-Point 2 50 150 150 Real
3 CBF 3 30 900 128 Synthetic
4 Face (all) 14 560 1690 131 Shape
5 OSU Leaf 6 200 242 427 Shape
6 Swedish Leaf 15 500 625 128 Shape
7 50 Words 50 450 455 270 Real
8 Trace 4 100 100 275 Synthetic
9 Two Patterns 4 1000 4000 128 Synthetic
10 Wafer 2 1000 6174 152 Real
11 Face (four) 4 24 88 350 Shape
12 Lightning-2 2 60 61 637 Real
13 Lightning-7 7 70 73 319 Real
14 ECG 2 100 100 96 Real
15 Adiac 37 390 391 176 Shape
16 Yoga 2 300 3000 426 Shape
17 Fish 7 175 175 463 Shape
18 Beef 5 30 30 470 Real
19 Coffee 2 28 28 286 Real
20 Olive Oil 4 30 30 570 Real

n, w and α are picked using the following criteria (to make the comparison
fair, the criteria are the same as those in [7]):

• For w, we search for the value from 2 up to n/2, and double the value
of w each time.

• For α, we search for the value from 3 up to 10.

• If two sets of parameter settings produce the same classification error
rate, we choose the smaller parameters.

After obtaining the values of parameters, we will measure the dimension-
ality reduction ratios as the following.

Dimensionality Reduction Ratio =
Number of the reduced data points

Number of the original data points
.
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The dimensionality reduction ratio of the SAX is w
n
, and the dimensionality

reduction ratios of the ESAX and the SAX-TD are 3∗w
n

and 2∗w+1
n

respectively.

5.3. Results

The overall classification results are listed in Table 4, where entries with
the lowest classification error rates are highlighted. SAX-TD has the lowest
error in the most of the data sets (12/20), followed by the ESAX (6/20)1. We
use the sign test to test the significance of our method against other methods.
The sign test results are displayed in Table 5, where n+, n− and n0 denote
on the numbers of data sets where the error rates of the SAX-TD are lower,
larger than and equal to those of another method respectively. The p-values
(the smaller a p-value, the more significant the improvement) demonstrate
that our distance measure achieves a significant improvement over the other
three methods on classification accuracy. On average, SAX-TD reduces the
classification error by almost a half from the original SAX, with a slightly
decrease of the dimensionality reduction ratio due to the smaller parameter
w used in the SAX-TD than the others.

To show the performance of our method in comparison with other meth-
ods using different parameters, we run the experiments on data sets Gun-
Point and Yoga. Specifically, on Gun-Point, we firstly compare the classifica-
tion error rates with different w while α is fixed at 3, and then with different
α while w is fixed at 4 (to illustrate the classification error rates using small
parameters); on Yoga, w varies while α is fixed at 10, and then α varies while
w is fixed at 128 (to illustrate the classification error rates using large param-
eters). The comparison lines are shown in Fig. 4. SAX-TD has lower error
rates than the other two methods when the parameters are small and large.
The superiority of the SAX-TD is more significant when the parameters are
small. In addition, unlike the SAX and the ESAX, our method is not very
sensitive to the size of α. These demonstrate that our method can achieve
high accuracy with low parameter values.

To provide an illustration of the performance of the different measures
compared in Table 4, we use scatter plots for pair-wise comparisons. In a
scatter plot, the error rates of two measures under comparison are used as
the x and y coordinates of a dot, where a dot represents a particular data

1These numbers include two cases that the ESAX and the SAX-TD have the same
error rate.
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Table 4: 1-NN classification error rates of EU (Euclidean distance); 1-NN
best classification error rates, w lengths, α numbers and dimensionality re-
duction ratios of the SAX, ESAX and SAX-TD on 20 data sets. The lowest
error rates are highlighted in bold.

Data set

No.

EU

error

SAX

error

SAX

w

SAX

α

SAX

ratio

ESAX

error

ESAX

w

ESAX

α

ESAX

ratio

SAX-TD

error

SAX

-TD w

SAX

-TD α

SAX-TD

ratio

1 0.12 0.02 16 10 0.27 0.157 16 10 0.80 0.077 8 10 0.28

2 0.087 0.18 64 10 0.43 0.193 64 10 1.28 0.073 4 3 0.06

3 0.148 0.104 32 10 0.25 0.138 64 10 1.50 0.088 4 10 0.07

4 0.286 0.33 64 10 0.49 0.333 64 9 1.47 0.215 16 8 0.25

5 0.483 0.467 128 10 0.30 0.446 16 9 0.11 0.446 32 7 0.15

6 0.211 0.483 32 10 0.25 0.4 64 10 1.50 0.213 16 7 0.26

7 0.369 0.341 128 10 0.47 0.321 32 10 0.36 0.338 128 9 0.95

8 0.24 0.46 128 10 0.47 0.16 4 10 0.04 0.21 128 3 0.93

9 0.093 0.081 32 10 0.25 0.129 64 10 1.50 0.071 16 10 0.26

10 0.0045 0.0034 64 10 0.42 0.0031 64 9 1.26 0.0042 32 8 0.43

11 0.216 0.17 128 10 0.37 0.182 128 7 1.10 0.181 32 9 0.18

12 0.246 0.213 256 10 0.40 0.18 32 7 0.15 0.229 8 9 0.02

13 0.425 0.397 128 10 0.40 0.37 128 8 1.20 0.329 16 10 0.10

14 0.12 0.12 32 10 0.33 0.09 32 10 1.00 0.09 16 5 0.34

15 0.389 0.89 64 10 0.36 0.89 64 10 1.09 0.273 32 9 0.37

16 0.17 0.195 128 10 0.30 0.2 128 10 0.90 0.179 128 10 0.60

17 0.217 0.474 128 10 0.28 0.469 128 10 0.83 0.154 64 9 0.28

18 0.467 0.567 128 10 0.27 0.533 32 9 0.20 0.2 64 9 0.27

19 0.25 0.464 128 10 0.45 0.179 4 5 0.04 0 8 3 0.06

20 0.133 0.833 256 10 0.45 0.833 2 3 0.01 0.067 64 3 0.22

Average 0.234 0.340 - - 0.36 0.310 - - 0.82 0.172 - - 0.31

Table 5: The sign test results of the SAX-TD vs. other methods. A p-value
less than or equal to 0.05 indicates a significant improvement.

Methods n+ n− n0 p-value
SAX-TD vs. Euclidean 18 2 0 p < 0.01
SAX-TD vs. SAX 16 4 0 0.01 < p < 0.05
SAX-TD vs. ESAX 14 4 2 p = 0.05

set [26]. When a dot falls within a region, the corresponding method in the
region performs better than the other method. In addition, the further a dot
is from the diagonal line, the greater the margin of an accuracy improvement.
The region with more dots indicates a better method than the other.

In the following, we explain the results in Fig. 5.
First, we review that the Euclidean distance versus the SAX distance in
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(a) on Gun-Point, w varies while α is fixed
at 3

(b) on Gun-Point, α varies while w is fixed
at 4

(c) on Yoga, w varies while α is fixed at
10

(d) on Yoga, α varies while w is fixed at
128

Figure 4: The classification error rates of the SAX, ESAX and SAX-TD with
different parameters w and α.

Fig. 5 (a). Although the number of data points (data sets) in two regions
are similar, the errors on some data sets by the Euclidean distance are much
smaller than the errors by the SAX. The SAX has very high classification
error rates on some data sets such as Adiac and Olive Oil (0.89 and 0.833).
Therefore, the SAX distance is not superior over the Euclidean distance.

Secondly, we illustrate the performances of our distance measure against
the Euclidean distance, the SAX distance and the ESAX distance in Fig. 5
(b), (c) and (d) respectively. Our method outperforms the other three meth-
ods by a large margin, both in the number of points and the distance of these
points from the diagonals. From these figures, we can see that most of the
points are far away from the diagonals, which indicates our method has much
lower error rates on the most of the data sets. For example, on Coffer and
Beef data sets, the error rates of our method are 0 and 0.2 respectively, but
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(a) The Euclidean distance vs. the SAX
distance

(b) The Euclidean distance vs. the SAX-
TD distance

(c) The SAX distance vs. the SAX-TD
distance

(d) The ESAX distance vs. the SAX-TD
distance

Figure 5: A pairwise comparison of classification error rates for the Euclidean
distance, the SAX distance, the ESAX distance and the SAX-TD distance
on 20 data sets. The round dots indicate the values are better in the lower
triangle region, the square dots indicate the values are better in the upper
triangle region and the triangular ones indicate the values in both regions
are similar or equal.

the error rates of the Euclidean distance are 0.25 and 0.467 respectively. On
Adiac and Olive Oil data sets, the error rates of our method are 0.273 and
0.067 respectively, but both the error rates of the SAX and ESAX are 0.89
and 0.833 respectively.
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5.4. Dimensionality reduction and efficiency

Since one major advantage of the SAX representation is its dimensional-
ity or numerosity reduction, we shall compare the dimensionality reduction
of our method with the SAX and the ESAX. The dimensionality reduction
ratios are calculated using the w when the three methods achieve their small-
est classification error rates on each data set. The results are shown in Fig. 6.
The SAX-TD is competitive with the SAX on dimensionality reduction. For
each segment, the SAX-TD representation uses more values than the SAX
but fewer symbols than the ESAX. However, to achieve the lowest classifi-
cation error rate, the SAX-TD needs a smaller number of words than the
SAX and the ESAX do. For example, using the SAX, the values of w on
data sets Gun-Point, CBF, Lightning-2 and Coffee are 64, 32, 256 and 128
respectively. When using the SAX-TD, the values of w on them are 4, 4,
8 and 8 respectively. On average, the dimensionality reduction ratio by the
SAX-TD (0.31) is similar to that by the SAX (0.36), but much lower than
that by the ESAX (0.82).

Figure 6: Dimensionality reduction ratios of the SAX, the ESAX and the
SAX-TD on 20 datasets with their smallest error rates.

Finally, we compare the computation time of the SAX, ESAX and SAX-
TD. The experimental environment is a machine with 2× 2.53 GHz processors
and 4 GB RAM running 32-bit Windows Operating System. Four data sets
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are used to show the running time with different w: Synthetic Control, ECG,
CBF and Yoga. The maximum w values of the data sets are 16, 32, 64 and 128
respectively. The α is fixed2 at the maximum value, i.e. 10. The results are
shown in Fig. 7. Note that, the running time includes the transformation time
(mapping values into words) and classification time (training and testing).
We see that the running time increases with the increase of w. The SAX and
the SAX-TD take similar amount of time while the ESAX takes more time
than the both especially when w becomes larger. Since the SAX-TD needs
smaller parameter w for achieving the best classification accuracy in most
cases, the computation time of SAX-TD is shorter than that of the SAX and
ESAX in many data sets.

6. Conclusions and Future Work

We have proposed an improved symbolic aggregate approximation dis-
tance measure for time series. We firstly define a trend distance using the
divergences between the starting and ending points and the average. We
then modify the original SAX distance measure by integrating a weighted
trend distance. The new distance measure keeps the important property
that lower bounds the Euclidean distance. Furthermore, the lower bound of
our proposed measure is tighter than that of the original SAX. According
to the experimental results on diverse data sets, our improved measure de-
creases the classification error rate significantly and needs a smaller number
of words and alphabetic symbols for achieving the best classification accu-
racy than the SAX does. Our improved method has similar capability of
dimensionality reduction and has similar efficiency as the SAX.

For the future work, we intend to extend the method to other data min-
ing tasks such as clustering, anomaly detection and motif discovery. The
proposed method may be utilized in improving the indexable Symbolic Ag-
gregate approXimation (iSAX) [27] for terabyte sized time series.
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(a) Synthetic Control running time (w ≤
16)

(b) ECG running time (w ≤ 32)

(c) CBF running time (w ≤ 64) (d) Yoga running time (w ≤ 128)

Figure 7: The running time of different methods with different values of w on
data sets Synthetic Control, ECG, CBF and Yoga. We marked the w used
in different methods when they achieve the best classification accuracy.
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