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Abstract

Background: microRNAs (miRNAs) regulate target gene expression by controlling their mRNAs
post-transcriptionally. Increasing evidence demonstrates that miRNAs play important roles in
various biological processes. However, the functions and precise regulatory mechanisms of most
miRNAs remain elusive. Current research suggests that miRNA regulatory modules are
complicated, including up-, down-, and mix-regulation for different physiological conditions.
Previous computational approaches for discovering miRNA-mRNA interactions focus only on
down-regulatory modules. In this work, we present a method to capture complex miRNA-mRNA
interactions including all regulatory types between miRNAs and mRNAs.

Results: We present a method to capture complex miRNA-mRNA interactions using Bayesian
network structure learning with splitting-averaging strategy. It is designed to explore all possible
miRNA-mRNA interactions by integrating miRNA-targeting information, expression profiles of
miRNAs and mRNAs, and sample categories. We also present an analysis of data sets for epithelial
and mesenchymal transition (EMT). Our results show that the proposed method identified all
possible types of miRNA-mRNA interactions from the data. Many interactions are of tremendous
biological significance. Some discoveries have been validated by previous research, for example, the
miR-200 family negatively regulates ZEB/ and ZEB2 for EMT. Some are consistent with the
literature, such as LOX has wide interactions with the miR-200 family members for EMT.
Furthermore, many novel interactions are statistically significant and worthy of validation in the
near future.

Conclusions: This paper presents a new method to explore the complex miRNA-mRNA
interactions for different physiological conditions using Bayesian network structure learning with
splitting-averaging strategy. The method makes use of heterogeneous data including miRNA-
targeting information, expression profiles of miRNAs and mRNAs, and sample categories. Results
on EMT data sets show that the proposed method uncovers many known miRNA targets as well
as new potentially promising miRNA-mRNA interactions. These interactions could not be achieved
by the normal Bayesian network structure learning.
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Background

MicroRNAs (miRNAs) belong to a group of single-
stranded, non-coding RNAs that are 21-23 nucleotides in
length [1]. miRNAs target protein coding mRNAs through
complementary base-pairing that results in repressing
translation and causing mRNA degradation [2,3]. Hun-
dreds of miRNAs have been identified and sequenced in
plants, animals, and viruses since the first miRNA, lin-4,
was discovered in 1993 [4]. As a growing class, it is esti-
mated that miRNAs directly regulate at least 30% of the
genes in the human genome [5].

Increasing evidence suggests that miRNAs play important
roles in cell differentiation, proliferation, growth, mobil-
ity, and apoptosis [6-8]. miRNAs regulate target mRNAs
[9], and act as rheostats to make fine-scale adjustments to
protein output [10]. Consequently, dysregulation of
miRNA function may lead to human diseases, including
cancers [11]. However, the functions of most miRNAs and
their precise regulatory mechanisms remain elusive. Thus,
great efforts have been made to elucidate miRNA func-
tions in recent years.

Extensive studies have proposed the diverse features of
miRNA regulation. Mature miRNAs target the 3' untrans-
lated regions (3' UTR) of genes by complementary base-
pairing. Furthermore, mature miRNAs can alter the
expression of genes by binding to the coding regions as
well as the 5' UTR [12,13]. Other regions, known as
extended seed and delta seed regions, also contribute to
the target selection [14]. miRNAs down-regulating target
mRNAs has been widely observed [15,16]. Recent experi-
ments also show that miRNAs up-regulate target mRNAs
in some cases [17-20]. In addition, miRNAs may up-regu-
late target mRNAs in one condition, but repress transla-
tion in another condition. For example, let7 and the
synthetic microRNA miRcxcr4-likewise induce translation
up-regulation of target mRNAs upon cell-cycle arrest; yet,
they repress translation in proliferating cells [17]. The
diversity and abundance of miRNA targets result in a large
number of possible miRNA regulatory mechanisms. It
would be infeasible to test all the possibility with biolog-
ical experiments in large scale. Alternatively, computa-
tional approaches can facilitate experimental validation
by producing valid hypotheses from existing data.

Several computational methods have been proposed to
study miRNA regulatory mechanisms. Yoon et al. [21]
proposed a prediction method for miRNA regulatory
modules (MRMs) in which weighted bipartite graphs are
adopted to model the binding structures of miRNAs and
mRNAs at the sequence level. However, predictions only
based on sequence may not be sufficient to determine the
complex interactions of miRNA-mRNA pairs. Huang et al.
[22] applied Bayesian network parameter learning to infer
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miRNA-mRNA interactions, while Joung et al. [23] uti-
lized a biclustering approach to discover MRMs. Their
methods integrate both sequence information and expres-
sion profiles of miRNAs and mRNAs to identify the rele-
vant miRNA-mRNA pairs, thus potentially reduce false
discovery rate. Furthermore, Tran et al. [24] applied a rule
based method to explore MRMs based on an assumption
that miRNAs and mRNAs of a module have similar
expression patterns. Similarly, their method uses both
sequence information and expression profiles of miRNAs
and mRNAs. However, no information of sample catego-
ries has been utilized. Considering most biological exper-
iments are designed to compare samples from different
phenotypes, conditions, or treatment groups, the sample
categories are important for exploring subtle but useful
differences. All of the above mentioned methods have not
utilized this critical characteristic of comparative design of
biological experiments so far. In this study, we will show
that without using the information of sample categories,
subtle miRNA-mRNA interactions are missed out. In pre-
vious work, Liu et al. [25] associated miRNA-mRNA pairs
with specific conditions to discover the functional
miRNA-mRNA regulatory modules (FMRMs). However,
only down-regulation patterns were considered. In this
work, we will explore all the possible miRNA-mRNA
interactions by taking into account sample categories of
comparative designs of biological experiments.

Considering the complexity and diversity of miRNA-
mRNA interactions, Bayesian Network (BN) structure
learning has the privileges to discover statistically signifi-
cant miRNA-mRNA interactions from data. It has been
used widely for discovering gene regulatory networks
[26], but not often for finding miRNA-mRNA interactions
yet. In the scenario of BN structure learning, the interac-
tions between miRNAs and mRNAs are defined as
dependencies of their states encoded in a graphical repre-
sentation. In the graph, miRNAs and mRNAs are denoted
as nodes and interactions are directed edges. The presence
or absence of a directed edge from a miRNA to a mRNA
indicates the states of the mRNA are dependent or inde-
pendent on that of a miRNA. This implies their regulatory
relationship. Thus, the dependencies in the graph encode
various types of miRNA-mRNA interactions. When the
expression data of miRNAs and mRNAs are given, we can
use the BN structure learning to capture miRNA-mRNA
interactions.

This model-based approach starts by defining the possible
structure space, and then followed by a learning proce-
dure to evaluate each structure with a scoring function on
the given data [27]. The structure with the maximum score
is the one that best depicts the interactions of miRNAs and
mRNAs. As a simple example, consider the expression
observations of miRNA A and mRNA B given in Figure 1-
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An example of Bayesian Network structure learning.
(a) Observations of expression of miRNA A and mRNA B
have been discretized to binary values, where 0 denotes
under-expressed, and | stands for over-expressed. (b) Two
possible structures are hypotheses of their relationship. (c)
The one that received highest score supported by the data is
used to represent the interaction of miRNA A and mRNA B.

(a), where 0 denotes under-expressed and 1 stands for
over-expressed. The possible interactions between miRNA
A and mRNA B are no interaction (no edge between A and
B) and miRNA A regulates mRNA B (a directed edge from
A to B) (Figure 1-(b)). The BN structure learning algo-
rithm calculates a score for each structure against the given
expression observations. The one with the highest score,
which is best supported by the observations, is chosen to
represent the relationship between miRNA A and mRNA
B (Figure 1-(c)). More complex interactions among multi-
ple miRNAs and mRNAs can be factorized to the individ-
ual ones according to the probability theory.

However, under the comparative design of microarray
experiments, subtle interactions are unrevealing to a nor-
mal BN structure learning method. Demonstrated in Fig-
ure 2, six cases represent three observed miRNA-mRNA
interactions in different conditions: i) miRNAs down-reg-
ulate mRNAs (a, b); ii) miRNAs up-regulate mRNAs (¢, d);
and iii) miRNAs down-regulate mRNAs in one category,
but up-regulation appears in another category (e, f). The
normal BN structure learning is able to capture the inter-
actions showed in cases of (a) - (d), but not (¢) and (f). In
the cases of (a) - (d), the sample correlation within one
category (local correlations), either negative or positive, is
consistent with the correlation in the other categories.
However, the local correlation is inconsistent with the
others in the cases of (¢) and (f). In (e), the samples in cat-
egory c, are positively correlated, while negatively corre-
lated in category c,. Similarly, in (f) the samples show
negative correlation in category c¢;, while positive correla-
tion in category ¢,. Without considering the sample cate-
gories, the normal BN structure learning fails to capture
the interactions, even when there is a strong interaction
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within a category. Therefore, the subtle interactions
among miRNAs and mRNAs remain unrevealing.

In this paper, we present a method to capture complex
miRNA-mRNA interactions with BN structure learning for
specific conditions. This method discovers the depend-
ency relationship between miRNAs and mRNAs which
implies their complex interactions on heterogeneous data
sets: miRNA-target binding information, expression pro-
files of miRNAs and mRNAs. In order to capture all possi-
ble interactions, we split expression profiles of miRNAs
and mRNAs according to sample categories, and then
build Bayesian networks on separate data sets. Interaction
networks identified on individual data sets are then inte-
grated by BN averaging procedure. To avoid statistically
insignificant results due to small data sets, we employ
bootstrapping to achieve reliable inference and integra-
tion. We call this strategy splitting and averaging of Baye-
sian networks (SA-BNs).

To test the SA-BNs approach, we used microRNA and
mRNA expression data from the NCI-60 panel of cell lines
and focused on miRNA-mRNA interactions potentially
involved in the biological process of epithelial to mesen-
chymal transition (EMT). A number of miRNAs and
mRNAs are known to be involved in this process and sev-
eral miRNA-mRNA interactions have been experimentally
verified [28,29]. Compared to the results from a normal
BN structure learning, SA-BNs uncover more known
miRNA targets as well as promising miRNA-mRNA inter-
actions.

Methods

In this section, we present a model of SA-BNs to discover
miRNA-mRNA interactions. The scheme of SA-BNs is
shown in Figure 3. After the normalization of expression
profiles of miRNAs and mRNAs, differential gene expres-
sion analysis identifies a set of miRNAs and mRNAs which
are differentially expressed in different conditions under
the investigation. Then, we split the expression profiles of
identified miRNAs and mRNAs according to categories of
samples. Expression profiles of miRNAs and mRNAs have
different scales since they are usually profiled with differ-
ent techniques and platforms. We use discretization as a
standardization means for data from different platforms.
miRNA and mRNA expression profiles are then integrated
for Bayesian network structure learning.

For each sample category, Bayesian network structure
learning is used to learn the dependency structures of
miRNAs and mRNAs on the discretized profiles. The indi-
vidual structures learned from data of each category are
then integrated into an overall miRNA-mRNA interaction
network by the designed BN averaging procedure. In order
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Figure 2

Various miRNA-mRNA interactions in comparative study. Three types of observed miRNA-mRNA interactions are: i)
miRNAs down-regulate mRNAs (a, b); ii)) miRNAs up-regulate mRNAs (c, d); and iii) miRNAs down-regulate mRNAs in one
category, but up-regulation appears in another category (e, f). Subtle interactions in (e) and (f) are unrevealing if the analysis
ignores the sample categories. Our designed method is able to uncover all types of interactions.
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A flowchart of the design of SA-BNs. miRNA-target binding information, expression profiles of miRNAs and mRNAs, and
sample categories are used to discover the complex miRNA-mRNA interactions.

to control the false discovery, we make use of miRNA-tar-
geting information in the learning process.

We note that the sample size of miRNA or mRNA is usu-
ally small in practice. Bootstrapping [30], that is, resam-
pling with replacement, is applied to above procedures for
robust inference. The belief confidences of inferred inter-
actions are estimated by a statistic model. This model is to
approximate frequency distributions of miRNA-mRNA
interactions from bootstrapping. Significant miRNA-

mRNA interactions and their confidence scores are thus
achieved.

Annotation

Consider two expression data sets profiling N miRNA and
M mRNA transcripts across S samples, respectively. Those
samples belong to C different categories, either pheno-
types, conditions, or treatment groups. Let i, j, where 1 <
<N and 1 <j <M, be the indices denoting the particular
miRNA and mRNA. Letx = {x;} andy = {y; } be the vectors
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of miRNAs and mRNAs, and S, be the number of samples
of category k, where 1 <k < C.

According to the sample categories, we reconstruct the two
data sets of miRNA and mRNA to C data sets {D,}. Each
reconstructed data set D, is composed by S, samples pro-
filing miRNAs x and mRNAs y for category k. That is, D,
has S, vectors, and each contains N + M variables, {x, y},
denoting miRNAs and mRNAs. We are interested in inter-
actions between x and y supported by the experiment
data. Assume miRNAs are independent to each other, and
so as to mRNAs. The miRNA-mRNA interactions are rep-
resented as directed bipartite structures. Thus, we shall
explore the relationships between x and y given data sets
{D,} under the constraint of miRNA-targeting informa-
tion.

Design of SA-BNs

The above question can be modeled as learning Bayesian
network structures of miRNAs and mRNAs under topol-
ogy constraints given the observed data sets. That is, to
identify a graph G" depicting the miRNA-mRNA interac-
tions which are best supported by the given data sets
{D,}. We use h to denote a hypothesis. A graph G" = {x,
y, E} encodes the dependencies between vertices x and y
with directed edges E, whereas no edges mean independ-
ence between vertices. We denote the event of presence of
an edge between variables x; and y; with F;;. Our objective
is to find the probability p(F;) from the inferred graph G"
given data {D,}.

{D,} are mutually exclusive to each other after splitting,
we have >,p(D,) = 1. According to the total probability
theorem, the probability p(F;) is expressed as

p(F;) =D p(F; | Dy)p(Dy) (1)
k

It indicates that the inference of an edge between two var-
iables is decomposable by averaging its probabilities
deduced from individual data sets. By introducing the
graph G learned from data set D,, Equation (1) can be
further extended to

p(F;) = Y p(F; |G DIP(G" [Dp(DL) (2
k

h h
D p(F; | GM(G" [ D)D) 3)
k
where
(F. | Gh) 1 if the edge between x; and Y is present in G"
P o ifthe edge between x; and y; is absent in G"
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By Bayesian theorem, the posterior probability p(G"|D) is
calculated by multiplying the prior probability p(G") with
the likelihood p(D|G") as

w oy p(GMpDIGM 4
p(G" | D)= D) (4)

Substitute Equation (4) into Equation (3), we have
p(F)) = D p(F; | Gp(Dy | GMp(G")  (5)
k

The prior probability p(D,,) in Equation (3) is eliminated
in Equation (5). It indicates that the presence of an edge
is independent of the data set conditioned on the graph
learned from the data set.

We adopt the BNs averaging procedure for each data set in
order to alleviate the overfitting which results from the
small sample size of available data. I graphs with the high-

est confidence inferred from the data set are averaged at
the local level. We further extend Equation (5) to

p(F) = DD plF; |Gp(Dy |GG (6)
k l

Thus, the stable inference of interactions between miR-
NAs and mRNAs given multiple data sets can be achieved.
We summarize the procedure of computing p(F;) in the
following algorithm.
Algorithm [: Calculating the interaction belief confidence p(F;) of two
sets of variables given data sets
Function: Cal_InteractionBelief()
Input:

C - number of data set

D, - data sets

I - number of candidate graphs from data set D,

I - index of parents (miRNAs)

J - index of descendants (mRNAs)

p - prior probability of a graph

Output:

p(F;) - the interaction belief set of parent i to descend-
ant j

Cal_InteractionBelief(C, Dy, I, I, ], p)
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forkinlto C

G' = graph_search(D,, I, J);/* Given D,, search for

graphs with the maximum likelihood p(D|G") within the
constrained graph space. The graph space is constrained
by miRNA-targeting information coded by index I and J.
Discussed in section Learning BN structures with con-
straints of domain knowledge. */

end
foriinl

forjinJ

p(Fy) = ZZp(Fij| G )p(D,| G )p(GI')
end

end

}

In Algorithm 1, we constrain the structure learning with
miRNA-targeting information. In the following two sec-
tions, we discuss the constraints, then present a statistical
model to estimate the confidences of inferred interac-
tions.

Learning BN structures with constraints of domain
knowledge

The learning procedure of BNs is computationally con-
suming. The exhaustive search for the structure that best
fits the observations is feasible only when there are a few
genes. The space of possible structures grows hyper-expo-
nentially with the number of genes. It has been shown
that learning the global optimal BN is NP-complete [31].
Heuristic algorithms, such as hill climbing, can be used to
search the state space efficiently. However, heuristic meth-
ods usually find a local optimal solution instead of the
global one. This largely limits applications of BNs in real
world.

An alternative solution to this problem is to constrain the
searching space by integrating domain knowledge. It has
been suggested that the utilization of domain knowledge
can bias the searching space and lead to near optimal
solutions [32]. Some methods have been proposed to
explore gene regulatory networks by combining prior
domain knowledge [33-36]. To a specific research ques-
tion, the domain knowledge provides the problem-solv-
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ing preferable constraints to the state space of the
particular problem by knocking out obviously unreason-
able states without losing the coverage. It may lead to
improved network structures in short time [37].

We are interested in the regulatory relationship between
miRNAs and mRNAs. The assumption of miRNAs regulat-
ing mRNAs constrains the topologies of miRNA-mRNA
interactions to be directed bipartite graphs. This con-
straint reduces the searching space greatly. Furthermore,
miRNA target information based on sequence comple-
mentary base-pairing provides another biological con-
straint to the topology. Many targeting databases can be
used to construct the topology, for example, miRBase
[38], PicTar [39], and TargetScan [40].

We use the miRNA target information from the target
database to constrain the searching space of BNs. The
putative target relation of miRNAs and mRNAs deduced
from the target database is used as an initial structure of
miRNA-mRNA interaction network. In Algorithm 1, this
structure is given by variable I and J. I denotes the index of
parents (miRNAs), and J denotes the index of descendants
(mRNAs). Function graph_search(D,, I, ]) searches bipar-
tite graphs defined by I and J for the graphs that have max-
imum likelihood. Remove operation only is used in this
function. It removes the edges one by one in the graph
space constrained by I and J. By this way, we can constrain
the searching space within the given putative targeting
space. Generally, this space is relatively sparse, and hence
the computational complexity is reduced. Therefore, we
are able to use an exhaustive searching algorithm to dis-
cover the optimal solutions within the given space.

Generating highly confident interactions by integrating
knowledge through bootstrapping

Unstable estimation caused by small number of samples
is another challenge to BNs. A typical microarray experi-
ment usually includes a large amount of genes and a small
number of samples. The small number of samples rarely
support statistically significant discoveries. BNs imple-
ment a model averaging procedure to average over several
candidate solutions to obtain the optimal one. The confi-
dence is estimated by bootstrapping. Averaging and boot-
strapping provide BNs a reliable way to analyze data sets
with the small size of samples. In our methods, we inno-
vatively improve the methods for belief estimation. We
use bootstrapping in the above procedures to estimate the
confidence of discovered interactions. Let n be the
number of bootstrapping, ¢, be the event of learning the
interaction between miRNA i and mRNA j on the local
data set Dj. Assuming each learning process ¢, is a sto-
chastic process, we approximate the whole learning proc-
ess as a Bernoulli experiment where g3, = 1 when miRNA
i targets mRNA j learned from D), otherwise ¢;3, = 0. Thus,
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q;j follows a binomial distribution g;;,~B(n, p), where p is
the probability of ¢;;, = 1. With a reasonable assumption,
p(din=1) = p(q;5 = 0) = 0.5 is used in the design.

At the integration stage by averaging, the interactions
from local data set D, are aggregated. The interaction of
miRNA i and mRNA j learned through multiple data sets,
denoted as Q;; = 2,q;3, also follows a binomial distribu-
tion Q;~B(kn, p). Adopting this statistical model, we are
able to extract the learned interactions at significant levels.

Results
In this section, we provide an analysis of miRNA-mRNA
interactions for EMT data with the SA-BNs method.

EMT is part of processes of tissue remodeling during
embryonic development, wound healing, and an essential
early step in tumor metastasis [41]. Several molecular and
cellular functions are involved in turning an epithelial cell
into a mesenchymal cell. It requires alterations in mor-
phology, cellular architecture, adhesion, and migration
capacity [42]. In this work, we use the proposed computa-
tional method to discover miRNA-mRNA interactions for
EMT.

Data sources

Our method integrates heterogeneous data to discover the
interactions of miRNAs and mRNAs. These data include
miRNA targeting information and expression profiles of
miRNAs and mRNAs.

Several databases provide the putative targets of miRNAs
[38-40]. We use miRBase [38] in this work because it gives
more target predictions compared with experimentally
supported databases. It allows our methods to produce
relatively more hypotheses in a reasonable range. miRNA
expression profiles for the NCI-60 panel of 60 cancer cell
lines were from Gaur et al. [43]. They are available at the
NCI/DTP database http://dtp.nci.nih.gov/mtweb/
search.jsp. The mRNA expression profiles for NCI60 were
downloaded from ArrayExpress http://www.ebi.ac.uk/
arrayexpress, accession number E-GEOD-5720. Cell lines
categorized as epithelial (11 samples) and mesenchymal
(36 samples, one is not available) were used for this work.

Identifying differentially expressed miRNAs and mRNAs
We focus on the differentially expressed miRNAs and
mRNAs in epithelial and mesenchymal samples. Applying
the Welch t-test with 10, 000 times permutation, we iden-
tified 8 miRNAs (Table 1) that are differentially expressed
at significant levels (p-value < 0.05, adjusted by Benjamini
& Hochberg (BH) method). Using a similar method, 3556
probes of mRNAs (Additional file 1) are differentially
expressed at significant levels (p-value < 0.05 without
adjustment).

http://www.biomedcentral.com/1471-2105/10/408

Table I: Differentially expressed miRNAs for EMT

miRNA  Welch t-statistics p-value adjusted p-value
miR-200c -14.0734 1.00 x |04 1.00 x 104
miR-141 -11.3564 1.00 x 104 1.00 x |04
miR-200b -9.3313 1.00 x |04 1.00 x 104
miR-200a -7.4501 1.00 x |04 1.00 x 104
miR-155 6.7720 2.00 x |04 4.00 x |04
miR-140 6.6536 1.00 x |04 4.00 x |04
miR-203 -5.7669 1.00 x |04 0.0031
miR-146 4.7355 7.00 x 104 0.0229

Applying the Welch t-test with 10, 000 times permutation, we
identified 8 miRNAs that are differentially expressed at significant
levels (p-value < 0.05, adjusted by Benjamini & Hochberg (BH)
method).
miRBase target V5.0 [38] is used to build the putative tar-
get pairs between the differentially expressed miRNAs and
mRNAs. 1030 pairs of miRNA-mRNA are linked, compris-
ing 6 miRNAs (miR-200c, miR-141, miR-200b, miR-200a,
miR-155, and miR-203) and 610 probes for 460 unique
mRNAs.

Figure 4 is the clustered heat map for the differentially
expressed miRNAs across the epithelial and mesenchymal
samples. The heat map indicates that the identified miR-
NAs show distinct patterns between epithelial and mesen-
chymal samples.

Discovering and validating miRNA-mRNA interactions
with SA-BNs

To integrate miRNA and mRNA data profiled by different
platforms, we discretized the data sets to binary values
standing for up-regulation and down-regulation. We use
the median of each array as the cut-off. The two discre-
tized data sets were merged together sample wise, and
then split to two data sets by sample categories, such as
epithelia and mesenchymal. It is corresponding to the
constant C in Algorithm 1. SA-BNs are then used to inves-
tigate the miRNA-mRNA interactions on the discretized
EMT data sets with 1000 times bootstrapping. Confi-
dences of interactions are estimated accordingly. As a
result, we identified 231 statistically significant interac-
tions which comprise 127 unique mRNAs and 6 miRNAs
for EMT (Additional file 2).

Correlation test suggests both direct and indirect regulations
discovered

The discovered interactions can be categorized to nega-
tively and positively correlated miRNA-mRNA pairs. Fig-
ure 5 shows the Pearson's correlation of miRNA-mRNA
pairs vs. significant confidences of interaction discovered
by SA-BNs. It shows that the discovered miRNA-mRNA
pairs are largely correlated, either negatively or positively.
The negatively correlated miRNA-mRNA pairs suggest
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The heatmap of differentially expressed miRNAs. The differentially expressed miRNAs are clustered by sample groups
and p-values. The identified miRNAs show distinct patterns between epithelial and mesenchymal samples.

direct interactions, while the positively correlated ones
suggest indirect interactions.

Several miRNAs have recently been described as crucial
regulators of EMT and metastasis. Apart from the up-regu-
latory mechanism of miRNAs, down-regulations have
also been identified in several works. For example, Gebe-
shuber et al. [20] found up-regulation of miRA-29a in
mesenchymal, metastatic RasXT cells relative to epithelial
EpRas cell. Liu et al. [19] found that miRNA-146a was up-
regulated in human bronchial epithelial cells. The results
from SA-BNs suggest that more up-regulation of miRNAs
could be in EMT. In the 231 statistically significant inter-
actions, there are 145 interactions are down-regulation,
while 86 interactions are up-regulation (Figure 6).

We first focus on negatively correlated miRNA-mRNA
pairs. Figure 7-(a) is the significant miRNA-mRNA interac-
tion network for EMT with only down-regulated interac-
tions.

Validating targets with TarBase and miRecords

We validate the results of SA-BNs against two experimen-
tally supported databases, TarBase V5.0 [44] and
miRecords [45]. As shown in Table 2, the number of
experimentally validated targets for the identified miRNAs
is very small. In total, 16 target relationships consisting of

6 miRNAs and 12 mRNAs have experimental supports
from TarBase and miRecords. Among them, 5 target rela-
tionships are supported by our experimental data sets and
also predicated by SA-BNs.

It is worth noting that SA-BNs is mainly designed to
indentify the miRNA-mRNA interactions for specific con-
ditions. In the analysis, it has been used to discover the
miRNA-mRNA interactions for EMT. Table 2 shows that 5
out of 7 identified miRNA-mRNA interactions by SA-BNs
have been confirmed experimentally for EMT. It suggests
that SA-BNs are promising to discover the miRNA-mRNA
interactions for specific conditions. In the following, we
will discuss the interactions for EMT in detail.

SA-BNs discover the miR-200 family target ZEB| and ZEB2 for EMT
which have been experimentally validated

The miR-200 family has been identified to play a central
role in the regulation of the epithelial to mesenchymal
transition [28,29,46]. In the interaction network, SA-BNs
identified experimentally validated targets of miR-200
family. The results of SA-BNs show that ZEB1 is co-tar-
geted by miR-200b and miR-200c, and ZEB?2 is co-targeted
by miR-200a and miR-200b in EMT module at statistically
significant level. Correlation tests show that miR-200 neg-
atively correlates with ZEB1 and ZEB?2 at significant level
(p-value < 0.005, adjusted by BH method). The discovery
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Pearson's correlation of mMiRNA-mRNA pairs vs. sig-
nificant confidences of their interactions discovered
by SA-BNs. The x-axis shows the confidence of interac-
tions, ranging from 0 (the least confident) to | (the most
confident), while only the statistical significant scale remains
(p-value < 0.05). The y-axis shows the sample correlations of
identified miRNA-mRNA pairs. The red and blue points are
miRNA-mRNA pairs which are correlated at the significant
level (p-value < 0.05). It shows that the identified interactions
are largely correlated, either negatively or positively, suggest-
ing direct interactions and indirect interactions correspond-

ingly.
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Figure 6

Percentage of down- and up- regulatory interactions
identified by SA-BNs. In the 231 statistically significant
interactions, 145 are down-regulatory interactions, and 86
are up-regulatory interactions.

http://www.biomedcentral.com/1471-2105/10/408

indicates that the miR-200 family negatively regulates
ZEB1 and ZEB2, in agreement with previous experimental
work showing that the miR-200 family regulate EMT by
directly targeting ZEB1 and ZEB2 [28,29,46]. This discov-
ery of SA-BNss is consistent with the validated results.

SA-BNs discover LOX has wide interactions with miR-200 family for
EMT which is also supported by literature

SA-BNs show that LOX is negatively co-regulated by all
miR-200 family members inducing EMT. Higgins et al.
have suggested that LOX regulates EMT [47]. This is con-
sistent with our results and suggests that LOX has wide
interactions with the miR-200 family members for EMT.

A significant number of mRNAs identified by SA-BNs participate in
the biological processes of EMT

The functions of identified mRNAs and the molecular
pathways they potentially constitute were assessed by
using Ingenuity Pathway Analysis (IPA) software. The reg-
ulated targets are significantly enriched for several biolog-
ical functions. The top five functions listed by IPA are
known to be critical for EMT. They are cellular develop-
ment, cell-to-cell signaling and interaction, cellular move-
ment, gene expression, and cellular growth and
proliferation. Specifically, sub-categories of cellular move-
ment, migration, invasion, and scattering, have been iden-
tified as the functional markers of EMT [42]. In the results
identified by SA-BNs, a significant number of mRNAs
associate with these EMT functional markers (Table 3),
details in Additional file 3). It suggests that SA-BNs cap-
tured many mRNAs and their interactive miRNAs partici-
pating in EMT.

Molecular networks participated in by identified mRNAs are highly
relevant to EMT, suggesting that the pathways of identified mRNAs
may also be regulated by the miR-200 family

IPA identified 8 molecular networks constituted by the 88
predicted targets which are down-regulated by miRNAs,
exemplified by three networks which are highly relevant
to EMT in Figure 8, 9 and 10. The network in Figure 8 sug-
gests functions in cancer, cellular movement and gastroin-
testinal disease. 18 out of 34 mRNAs in this network are
identified by SA-BNs. In the network, FN1 is a hub inter-
acting with many other molecules involved in functions
associated with EMT, including migration, adhesion, cell
spreading, apoptosis, proliferation, formation, attach-
ment, quantity, assembly, and invasion. SA-BNs suggest
that miR-200b and miR-200c¢ co-regulate FN1 for EMT. In
addition, LOX, which was identified to interact with miR-
200 family by SA-BNs, is involved in this network by
interacting with many other molecules, including FN1.
Figure 9 shows the network has functions in cell morphol-
ogy, skeletal and muscular system development, and con-
nective tissue development. 16 out of 35 molecules in this
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Figure 7

Discovered miRNA-mRNA interaction networks. miRNA-mRNA interaction networks discovered by (a) SA-BNs and
(b) normal BNs for EMT, rendered in Cytoscape [49]. In these modules, the miRNA-mRNA pairs are negatively correlated.
miRNA are colored by red. The mRNAs co-targeted by same miRNAs are grouped and shown in the same color.

Page 11 of 19

(page number not for citation purposes)



BMC Bioinformatics 2009, 10:408

Table 2: Validating targets against TarBase and miRecords

http://www.biomedcentral.com/1471-2105/10/408

miRNA Target gene Predicated by SA-BNs for  Validated Interaction for Support Database Pubmed ID
EMT EMT
miR-200a ZEB2/SIPI * * TarBase, miRecords 18376396
miR-200a  ZEB//TCF8 * TarBase, miRecords 18376396
miR- RERE miRecords 17923093
200b
miR- ZEBIITCF8 * * TarBase, miRecords 18376396
200b
miR- ZEB2/SIPI * * miRecords 18376396
200b
miR-200c ZEBI/TCF8 * * TarBase, miRecords 18483486
miR-200c  ZEB2/SIP| * * TarBase 18381893
miR-141 CLOCK TarBase, miRecords 15131085
miR-141 TGF- * miRecords 18483486
miR-155  AGTRI/ATIR TarBase, miRecords 16675453, 17668390,
7588946
miR-155 BACH-1 TarBase, miRecords 17881434
miR-155 LDOCI TarBase, miRecords 17881434
miR-155 MATR3 TarBase, miRecords 17881434
miR-155 TMé6SFI TarBase, miRecords 17881434
miR-203 SOCS-3 miRecords 17622355
miR-203 P63 miRecords 18483491

16 target relationships consisting of 6 miRNAs and 12 mRNAs have experimental supports from TarBase and miRecords. Among them, 5 out of 7

identified miRNA-mRNA interactions by SA-BNs have been confirmed experimentally for EMT (denoted by *).

Table 3: Identified mRNAs are significantly involved in the functional markers of EMT

Functions Molecules Number

p-value

migration ADAM 2, ADRB2, BMX, CSF3R, 17
CTBP2, EFNAI, FAP, FNI,
HAS2, IL6, KDR, LOX, MYH 0,
PTPRU, TIMPI, VCAMI, ZEB2

1.56 x 104-1.65 x 102

invasion DKK3, FNI, HAS2, JUN, LOX, 9
TIMPI, YY1, ZEB2, MYHI0

3.74 x 103- [.15 x 02

scattering EFNAI, FNI 2

4.98 x 103

In the results identified by SA-BNs, a significant number of mMRNAs associate with these EMT functional makers.
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Figure 8

A molecular network with functions in cancer, cellular movement, and gastrointestinal disease. 18 out of 34
mRNAs (colored in grey) in this network are identified by SA-BNs. Highlighted in graph, FN/ is a hub interacting with many
other molecules involved in functions associated with EMT. SA-BNs suggest that miR-200b and miR-200c co-regulate FN/ for
EMT. In addition, LOX, which was identified to interact with miR-200 family by SA-BNs, also involves in this network by inter-
acting with many other molecules, including FN/.
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A molecular network with function in cell morphology, skeletal and muscular system development and func-
tion, connective tissue development and function. 16 out of 35 mRNAs (colored in grey) in this network are identified
by SA-BNs, including one of the validated targets of miR-200 family, ZEB/ (highlighted). In addition, JUN, regulated by miR-200b
according to SA-BNs, interacts with many other molecules involved in apoptosis, proliferation, growth, transformation, cell

death, morphology, cell cycle progression, survival, colony formation, and motility.
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A molecular network with function in cellular growth and proliferation, cellular function and maintenance res-
piratory system development and function. 15 out of 35 mRNAs (colored in grey) in this network are identified by SA-
BN, including one of the validated target of miR-200 family, ZEB2 (highlighted).

network are identified by SA-BNs, including one of the
validated targets of miR-200 family, ZEB1. Furthermore,
JUN, regulated by miR-200b according to SA-BNs, inter-
acts with many other molecules involved in apoptosis,
proliferation, growth, transformation, cell death, mor-
phology, cell cycle progression, survival, colony forma-
tion, and motility. Figure 10 is the network with functions

in cellular growth and proliferation, cellular function and
maintenance. 15 out of 35 of mRNAs in this network are
identified by SA-BNs, including one of the validated tar-
gets of miR-200 family, ZEB2. Mechanisms mediated by
these molecules have been implicated in EMT. Figure 8, 9
and 10 suggest that these pathways may also be regulated
by the miR-200 family.
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Comparing Networks Identified by SA-BNs and Normal
BNs

We compared the miRNA-mRNA interactions discovered
by SA-BNs to those identified by normal Bayesian net-
works under the same settings. With normal BNs, 98
miRNA-mRNA interactions were identified at statistically
significant level. They comprise 6 miRNAs and 84 mRNAs
(Additional file 4). The significant interaction network
with only negatively correlated modules is given in Figure
7-(b). In this network, normal BNs identified only one
validated miR-200 target, ZEBI.

The topology of interaction network identified by SA-BNs is more
biologically appropriate than that of normal BNs

In comparison with the network identified by SA-BNs
(Figure 7-(a)), the network identified by traditional BNs is
more sparse. SA-BNs capture more mRNAs that are poten-
tially co-targeted by multiple miRNAs, which is a biologi-
cal expectation when the miRNAs are known to
contribute to the same biological process, as is the case for
the multiple members of the miR-200 family [29]. Fur-
thermore, based on their sequence similarity in the "seed
region", miR-200a and miR-141 are predicted to interact
with the same target sites. miR-200b and miR-200c¢, which
share identical 5' ends, are predicted to recognize another
set of targets in common [29]. However, in the network
discovered by normal BNs, only one mRNA is co-targeted

W SA-BNs H Normal BNs

http://www.biomedcentral.com/1471-2105/10/408

by miR-200a and miR-141, and only 2 by miR-200b and
miR-200c. In contrast, 16 mRNAs are co-regulated by
miR-200a and miR-141, and 19 mRNAs are co-regulated
by miR-200b and miR-200c in the network discovered by
SA-BNs. Thus the network from SA-BNs gives a more
expected result than the one from normal BNs.

SA-BNs discover more relevant miRNA-mRNA interactions for EMT
Figure 11 shows the number of interactions for each
miRNA and the total number of interactions discovered
by SA-BNs and normal BNs. SA-BNs discovered more sta-
tistically significant miRNA-mRNA interactions than nor-
mal BNs.

To determine whether the unique set of interactions dis-
covered by SA-BNs has different patterns which are spe-
cific to SA-BNs, we reviewed the correlations of miRNA-
mRNA samples for each category, that is, epithelial and
mesenchymal. It shows that a large number of miRNA-
mRNA pairs show inconsistent correlation patterns across
sample categories. For example, SA-BNs captured that
miR-200c interacts with FN1 while the normal BNs did
not. At the data level, miR-200c and FN1 show positive
correlation in epithelial samples, but negative correlation
in mesenchymal samples. The inconsistent patterns of
local correlations prevent the normal BNs from discover-
ing subtle interactions between miRNAs and mRNAs. SA-

231

86

miR-200b  miR-200a miR-200c

Figure 11

miR-155

Tatal

miR-141 miR-203

Number of miRNA-mRNA interactions discovered by SA-BNs and a normal Bayesian network method. The
number of statistically significant interactions for each miRNA and the total number of interactions discovered by SA-BNs and
normal BNs. SA-BNs discovered more statistically significant interactions than a normal BN.
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BNs are able to discover both strong and subtle interac-
tions while the data show inconsistent patterns through
available samples.

To determine whether the unique set of mRNAs discov-
ered by SA-BNs is biologically relevant to EMT, we
inquired IPA the different sets of mRNAs discovered by
SA-BNs and normal BNs. It shows that the number of
mRNA uniquely discovered by SA-BNs is more than that
of the normal BNs in terms of EMT relevant functions,
including the EMT functional markers (Table 4). It sug-
gests that SA-BNs capture more EMT relevant miRNA-
mRNA interactions compared with normal BNs.

Discussion

In the past few years, the identification of miRNAs and
their targets has made significant progress. Current focus
is shifting to the elucidation of miRNA functions. How-
ever, some specific features of miRNAs, for example their
small size, abundance of repetitive copies and mode of
action, pose several challenges in studying of miRNA
functions [48].

miRNAs show diverse regulatory mechanisms with
mRNAs. They have been known to down-regulate target
mRNAs in the majority of cases. The up-regulation of
miRNA also has been reported recently [17,18], and even
down- and up-regulations depending on physiological
conditions [17]. The various observations of miRNA regu-
lation make it difficult to generalize simple rules for
miRNA-mRNA interactions, especially under different
physiological conditions. Most previous work has studied
the discovery of down-regulatory modules of miRNAs and
mRNAs by computational methods [22,25]. The up-regu-
latory and mix-regulatory mechanisms of miRNAs have
not been identified from existing data. However, the dis-
covery of up- and mix-regulatory mechanisms reveal the
complex interactions of miRNAs and mRNAs, such as
indirect regulations. Considering that most biological
experiments have been designed for a comparative study,
such as normal versus malignant, down- and up-regula-
tory mechanisms, especially featuring in the different phe-

Table 4: Comparison of results between SA-BNs and normal BNs

http://www.biomedcentral.com/1471-2105/10/408

notypes, conditions, or treatment groups, are of great
interest to medical researchers.

In this work, we propose a new Bayesian network struc-
ture learning method to explore all types of miRNA-
mRNA interactions by using heterogeneous information.
Much research has been done to discover the gene regula-
tory networks with BNs on homogeneous data, for
instance, microarray data or protein data, but not much
work has been done to discover the interactions between
miRNAs and mRNAs. Apart from making use of heteroge-
neous information such as miRNA-target binding, expres-
sion profiles of miRNAs and mRNAs, and sample
categories, an innovation of the proposed method is to
design a splitting and averaging scheme for Bayesian
structure learning to discover up- and down-regulatory
mechanisms of miRNAs. In addition, small sample size is
a problem for reliable discoveries. We use bootstrapping
and a statistical model to obtain reliable probability esti-
mation of interactions discovered by SA-BNs.

Bootstrapping alleviates the overfitting problem which is
common for machine learning on small size of data sets.
The false discovery is well controlled by bootstrapping
and the constraint of miRNA-target prediction.

The proposed method finds many regulatory mechanisms
that have been supported by previous research. For exam-
ple, the discovery of the miR-200 family targeting ZEB1
and ZEB2 for EMT has experimentally validated in previ-
ous research [28,29,46]. Other discoveries are also very
promising. For instance, the results of SA-BNs show LOX
widely interacts with the miR-200 family for EMT. It is
consistent with previous research which suggests LOX reg-
ulates EMT [47]. In addition, the significant number of
identified mRNAs have biological functions in EMT, espe-
cially the marker functions of EMT like migration, inva-
sion, and scattering. It suggests that SA-BNs have captured
many mRNAs and their interactive miRNAs participating
in EMT. Furthermore, many molecular networks partici-
pated in by identified mRNAs are highly relevant to EMT,

EMT relevant cellular functions SA-BNs Normal BNs

#Molecules p-value #Molecules p-value
Cellular Movement 14 4.62 x 10-4-2.86 x 10-2 7 9.83 x 10-4-3.92 x 102
Cell Morphology 17 2.49 x 104-2.86 x 102 10 1.74 x 10-4-4.47 x 102
migration™® 6 4.62 x 10-4-2.86 x 102 6 6.93 x 10-3-3.59 x 102
invasion* 6 1.53 x [0-3-2.46 x |02 | 3.76 x 102
scattering® 2 1.27 x 103 | 1.74 x 103

The number of mMRNA uniquely discovered by SA-BNs is more than that of the normal BNs in terms of EMT relevant functions, including the EMT

functional markers denoted by *.
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suggesting that the pathways of identified mRNAs may
also be regulated by the miR-200 family.

The regulatory networks from our method reveal more
mRNAs co-regulated by multiple miRNAs than a normal
Bayesian network does. Multiple interactions are consist-
ent with the current view of complex regulatory mecha-
nism of miRNAs. Though there is no direct evidence to
support the discovered up-regulatory and mix- regulatory
mechanisms for EMT from previous research, this work
indicates that there are many of such interactions sup-
ported by data at statistically significant levels. One reason
is that little research has been conducted on this new area
yet. These differentially regulatory mechanisms among
different conditions are of great interest. We expect they
can be validated by biological experiments in the near
future.

Conclusions

In this study, we have proposed a method to explore the
complex miRNA-mRNA interactions with Bayesian net-
works by a splitting-averaging strategy. It is designed to
discover both strong and subtle interactions from expres-
sion profiles of miRNAs and mRNAs under the constraints
of a putative targeting database. Several issues of BNs have
been addressed, including integration of heterogeneous
data, constraints of the BNs structures with prior knowl-
edge, overfitting, and model integration with splitting and
averaging. The analysis of EMT data sets shows that SA-
BNs discover more biologically relevant miRNA-mRNA
interactions compared to normal BNs. Some discoveries
have been validated by previous research. Some are con-
sistent with the literature. Some are statistically significant
interactions that are novel and worthy of validation by
biological experiments in the near future.
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