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Abstract—With more and more decisions made by learnt
algorithms from data, algorithmic discriminations have become a
risk for civil rights. The detection of discrimination is a process of
counterfactual reasoning. This paper proposes a general detection
framework by combining a data mining method with a well estab-
lished counterfactual reasoning method, potential outcome model.
The potential outcome model supports operational definitions of
global and local discriminations and discriminations by combined
factors, while a data mining method makes the detection efficient.
The proposed method, instantiated by association rule mining
with potential outcome model based causal effect estimation, is
evaluated with four real world data sets and is compared with
a Bayesian network (BN) based detection method. It is able to
detect not only global discriminations that are detected by the
BN based method, but also local and combined discriminations
that the BN based method cannot find. The proposed method is
efficient, and scales well with the data set size and the number
of attributes.

Index Terms—Discrimination detection; potential outcomes;
association rules; causal effect;

I. INTRODUCTION

While big data technologies have transformed every aspect
of our society, data driven technologies potentially cause social
harms [1]. More and more decisions, such as those in health
care, employment, housing, insurance, and education, have
been made by computer models learnt from data to maximise
a utility measure. The decisions made by these models may be
discriminatory. We use an example to illustrate this. Assume
that in a call centre, the queue for the service (e.g, for internet
connection) is maintained by an algorithm learnt from historic
data to prioritise the most profitable customers, and that one of
the rules embedded in the algorithm is that the customers with
phone numbers starting with a certain pattern (e.g. 833*) are
the least profitable. When a customer with a phone number
starting with 833 calls the centre for help, he/she will be
predicted least profitable by the algorithm and his/her request
will be pushed down in the queue so other more profitable
callers will be served first. As a result, the customer may not
receive a service if the centre receives a large number of calls
on the day. The deprival of the service from a less profitable
customer by the algorithm is discriminatory.

Some data mining methods for detecting discriminations
from data have been proposed. Most of them are correlation
based, such as, extended lift [2], selection and contrast lift [3],
olift [3], η-neutrality [4], balanced error rate [5], and a direct
use of contingency table [6]. However, legally acceptable evi-
dence of discrimination is based on counterfactual reasoning:

if the person had belonged to a different group, would the
outcome have changed? Answering the counterfactual question
is a process of causal inference. For example, when we assess
whether females are discriminated in their payment, we will
need to find out if being a female is a cause of a lower salary
by unbiasedly estimating the causal effect of gender on salary.

Causal methods for discrimination detection head toward a
right direction since they answer counterfactual questions. Cur-
rently emerging works using causal methods for discrimination
detection [7, 8, 9, 10] are Bayesian network based methods.
A causal Bayesian network is very good for visualising causal
relationships, and helps define various types of discrimination
cases.

A Bayesian network (BN) is structured as a directed
acyclic graph where nodes denote variables and edges denote
dependency relationships between nodes. A BN graphically
represents the joint distribution of variables under the Markov
assumption. When the causal sufficiency assumption and the
faithfulness assumption [11] are made, an edge of a BN is
potentially a causal relationship between two variables. A
fair decision system represented by a BN should not contain
an edge from a protected attributes (e.g. gender or age)
to the outcome variable. In the case where such an edge
exists, potential discrimination appears, and the degree of the
discrimination is evaluated by estimating the causal effect of
the edge [12, 13].

This BN based discrimination detection method has some
limitations although it is a major step forward in discrimination
detection.

Firstly, causal effect estimation using BNs has uncertainties
because of equivalent classes of BNs. As the same joint
distribution of a variable set can be represented by multiple
BNs of the same equivalent class [11], the causal effect of the
same pair of variables in different BNs is different. In addition,
because of the high complexity of Bayesian network learning,
many heuristics to improve efficiency for constructing BNs
also result in uncertainties in learnt BNs.

Secondly, the definition of local discrimination using BN
is not succinct and does not lead to efficient discovery. The
location discrimination in [9] is defined on a sub data set of
a context using a BN. In the discovery, constructing a BN
is difficult, and constructing a number of Bayesian networks
in context specific data sets is very difficult since a data set
often has many possible contexts. Authors do not show how to
find local discriminations in their work apart from presenting
a conceptual definition.



Thirdly, it is very inefficient to find combined causes in
a BN. Combined causes mean that two or more variables
jointly cause an outcome. Naively, combined causes can be
modelled directly by combining multiple variables to construct
a new variable in BN construction and detecting the causal
effect of the newly constructed variables on the outcome
variable. However this will increase the number of variables
exponentially, making constructing BNs impossible. Other
solutions presented in [14] are still quite expensive.

This is why we propose a combination of the potential out-
come model [15], a main model for causal effect estimation,
and a data mining method, i.e. an association rule mining
method in our instantiation, to discover discriminations in data.
Our contributions are outlined as the following.

1) We propose a sound method for discrimination detection.
It uses causal effect to measure discrimination. The method
provides unified and succinct operational definitions for global
and local discriminations by single or combined attributes.
There are no other causality based methods detecting local
discriminations or discriminations by combined attributes.

2) The method is efficient. The efficiency is from the
use of an association rule discovery algorithm for candidate
discrimination rules. The experimental results show that it is
multiple orders of magnitude faster than a BN based detection
method for high dimensional and large data sets.

II. PROBLEM DEFINITION

A. Notations

Given a data set R containing all historical decision records
of a system. Each record of the data set represents an
individual and contains three types of attributes, protected,
explanatory, and other attributes, in addition to the decision
attribute D. The set of protected attributes Pc = {P1, P2, . . .},
such as a Gender, Age, Race, Religion, and etc., are defined
by the law and they cannot be used in decision making.
The set of explanatory attributes Ec = {E1, E2, . . .} are
supposed to be used for making decisions. The other attributes
Oc = {O1, O2, . . .} = R−Pc−Ec−{D} are the remaining
attributes that are not protected and not used in decision
making. The explanatory attributes and other attributes are dis-
joint. Users know which attributes have been used for making
decisions. For example, home loan or insurance companies are
required to explain to the regulatory authority the information
used in decision making. For government organisations, policy
transparency also requires that the factors for decision making
are publicly known. Explanatory attributes may not be all
used in building a decision system as in supervised learning,
but they are claimed and legally allowed attributes used for
making decisions. We use P and O to mean subsets of Pc and
Oc respectively, including the empty set. PO is a shorthand
notation for {P ∪O}. The decision attribute D takes a value
of 1 or 0 where 1 means the unfavourable decision.

For the simplicity of presentation, we assume that all
attributes are binary. This assumption does not restrict the

generality of the proposed approach and the assumption af-
fects only the matching methods [15] used in causal effect
estimation of the potential outcome model [16].

B. Risk difference and bias in its estimation

Risk difference is a commonly used measure for discrim-
ination detection. Risk difference in a population or a sub
population is presented as the following: prob(D = 1|P =
1)− prob(D = 1|P = 0).

If a group of people with P = 1 have a higher chance
receiving an unfavourable decision than the other people in
the population, this group is discriminated. British legislation
for sex discrimination sets a threshold difference of 5% [17].

A major drawback of this criterion is the Simpson’s paradox.
When we observe a high risk difference in a group of people,
the same high risk difference may not be observed in its
subsets or supersets. For example, University of California,
Berkeley was accused of discrimination against females since
the admission rate of males was significantly higher than that
of females in 1973. However, when examining the admission
rates of all departments, the majority of departments showed a
bias in favour of females [18]. Which statistics should readers
believe?

We see that causal inference is a better way for detecting
discriminations. Causal effect will give a unbiased estimation
of the effect of a protected variable on the outcome. For
example, to estimate whether the females are discriminated in
their payment, a fair comparison should compare the payments
of females and males if they have the same education level,
the same type of positions, and the same experience in the
same location, and so on. This is in contrast to the risk
difference which is based on the whole population and may
compare payments of people with different education levels
and positions.

C. Definitions in the potential outcome framework

To detect discriminations in data, the fundamental question
to answer is whether the decision will be changed if the value
of a protected attribute changes. The average causal effect
estimated in Rubin’s potential outcome model [15] is a suitable
measure to provide a quantitative answer to this question. We
use a discrimination scenario to explain average causal effect.

Let P be a protected variable. Each individual has two
potential outcomes corresponding to the two values of P
(known as a treatment variable in the potential outcome
model.). Let Y 1

i be the potential outcome of individual i when
P = 1 and Y 0

i be the potential outcome of individual i when
P = 0. Y 1

i corresponds to our decision varaible Di. For
example, let P be the gender. Y 1

i is the outcome when the
individual is male, and Y 0

i is the outcome when the individual
is female. As a person cannot be both male and female, we
cannot get Y 1

i and Y 0
i at the same time.

Let us assume that we could observe both potential out-
comes, Y 0

i and Y 1
i . The causal effect of P on the decision of

individual i is quantified as CEi(P ) = Y 1
i − Y 0

i . If CEi(P )
is zero, this means that P does not cause a difference in the



decisions. If CEi(P ) is larger than 0, this means that P causes
a difference in the decisions and there is a potential discrimi-
nation since the same person receives different decisions just
because of the difference in P .

When we aggregate the causal effects of all individuals in
a target population, we obtain the average cause effect as the
following. Let E[.] be the expectation of a random variable.

ACE(P ) = E[Y 1|P = 1]− E[Y 0|P = 0]

The mean E() is over all individuals. However, if an
individual is a female, only Y 1|P = 1 is observable, not
Y 0|P = 0 as she cannot change to a male to be observed
at the same time. In the same way, if an individual is a male,
only Y 0|P = 0 is observable, not Y 1|P = 1. This leads to the
situation where the mean over all the individuals is impossible.
We resort some estimations for the non-observably values.

With the assumptions of E(Y 1|P = 1) = E(Y 1|P = 0)
and E(Y 0|P = 1) = E(Y 0|P = 0) for a given strata e of
all explanatory variables Ec, an unbiased estimation of the
average causal effect of P on D in e is the following [19].

ACEe(P ) = E(Y 1|P = 1,Ec = e)−E(Y 0|P = 0,Ec = e)

The causal effect of the whole population is the weighted
sum of the average causal effects of all strata.

ACE(P ) = E[ACEe(P )]

The above estimation is a standard and statistically sound
solution for estimating causal effect by perfect stratifica-
tion [19] or exact matching [16].

The above formulas use the decision values D = 1 and
D = 0 to derive causal effect. An alternative and equivalent
way is to use probabilities of decision values to derive causal
effect, i.e. prob(D = 1|P = 1,Ec = e) − prob(D = 1|P =
0,Ec = e). For example, to estimate whether the females are
discriminated in their payment, we estimate the causal effect
of gender on salary as ACE (Gender) = E(prob(salary =
low|female,Ec = e)− prob(salary = low|male,Ec = e))
where Ec = e represents the same education level, the same
profession, and the same experience in the same location, and
so on. If causal effect ACE (Gender) is nonzero, the difference
is caused by gender.

In a fair decision system, as long as the values for the
explanatory attributes are the same, the decision should be
the same regardless of the values of P . So, the expectation of
ACE(P ) is zero.

Definition 1 (Global discrimination) Attribute P is discrim-
inatory if |ACE(P )| > α where α is a discrimination
threshold.

The global discrimination is defined on all strata of all
explanatory variables. It is relatively easy to observe. In
contrast, many other discriminations are local and hidden. For
example, females in rural areas may be discriminated even
though overall females are not discriminated.

Let us define the context based causal effect as the follow-
ing.

ACE(P |O = o) = E[ACEe(P |O = o)], where

ACEe(P |O = o) = E[Y 1|P = 1, O = o,Ec = e]−
E[Y 0|P = 0, O = o,Ec = e]

Definition 2 (Local discrimination) Given a context O = o,
an attribute P is discriminatory if |ACE(P |O = o)| > α
where α is a discrimination threshold.

In the above discussions, discriminations are defined on
a single protected attribute. In some cases, the combined
protected attributes cause discriminations, for example, old
females are discriminated although either females or old
people are not discriminated.

We define a combined protected attribute P =
(P1, P2, . . . , Pl) to consistent of l attributes. Given p =
(p1, p2, . . . pl) where p1, p2, . . . pl are either 1 or 0, then the
value of P is defined as

P =
{ 1 if P1 = p1, P2 = p2, . . . Pl = pl

0 otherwise (1)

P is also called a l-pattern.

Definition 3 (Discrimination of a combined attribute)
Let P = (P1, P2, . . . Pl). The combined attribute P is
discriminatory if |ACE(P|O = o)| > α where α is a
discrimination threshold. When O = ∅, the discrimination is
global and otherwise local.

Note that, the context in Definitions 2 and 3 can be a
l-pattern O = (O1, O2, . . . Ol) = 1.

D. Causal effect adjustment

When there are more than one global discriminatory at-
tributes, there might be an interaction between the attributes.
For example, gender discrimination and race discrimination
occur frequently together. The causal effect of gender on the
decision may include some effect from race on the decision. It
is good to know how the change of a discriminatory attribute
P directly affects D.

In order to find direct causal effect of a single protected
attribute (or a combined attribute) P, we need to screen off the
causal effect from other discriminatory attributes. The set of
attributes for stratification in this case becomes E′ = Ec ∪P′

where P′ is the set of discriminatory attributes. The calculation
of adjusted causal effect ACE(P ) uses attribute set E′\{P}
for stratification and this estimation excludes the effects of
other discriminatory attributes. For the direct effect of a set P
of discriminatory attributes, the stratification set is E′\P.

The above discussed method for causal effect estimation
employs perfect stratification or exact matching of sam-
ples [16, 19]. Matching is to balance the distributions of co-
variates in the treatment group and control group in a data set



and to make them have similar distributions to reduce bias in
causal effect estimation. A number of measures are commonly
used for assessing the similarity of samples for matching.
Examples are exact matching (samples having exactly same
values for co-variates), Mahalanobis distance, and propensity
score. There are also different techniques or procedures for
matching samples based on the measures [16], and some
typical examples are k : 1-nearest neighbourhood matching
and subclassification (stratification).

III. ALGORITHM

The mathematical models in the previous section are not
complex. However, computing them is still challenging as the
possible combination of all sorts of attributes. In this section,
we describe our framework of solutions. Our framework for
discrimination detection from data consists of two steps.
Firstly for a given data set, an association rule mining method
is used to detect the signals of discriminations in it. Then the
causal effects of the detected signals are estimated using the
potential outcome model.

A. Candidate discriminatory rules

Definition 4 (Candidate discriminatory rules) PO = 1 →
D = 1 is a candidate discriminatory rule if corr(PO, D) > β
and prob(PO = 1, D = 1) > γ where β and γ are
user defined parameters, corr(PO, D) stands for correlation
between the combined attribute PO and attribute D, and
prob(PO = 1, D = 1) is called support of the association
rule.

We use odds ratio [20] as a measure for corr(PO, D). PO
is called a pattern, and a pattern is frequent if its support is
higher than γ. Note that a subset of PO is also a pattern.

For the candidate discriminatory rule PO = 1 → D = 1,
we test the following discriminatory cases.

1) When O = ∅, P is a global single (or combined)
discriminatory attribute if ACE(P) > α.

2) When O 6= ∅, P is a local single (or combined) discrim-
inatory attribute given O = 1 when ACE(P|O = 1) >
α.

Definition 5 (Redundant candidate discriminatory rules)
Candidate discriminatory rule P2Q2 = 1 → D = 1 is
redundant if P1Q1 = 1 → D = 1 is discriminatory, and
P1 ⊆ P2 and Q1 ⊆ Q2.

Redundancy means that the testing of P2Q2 = 1 → D = 1
is not necessary if P1Q1 = 1 → D = 1 is true. This is
true because of the nature of itemset supports. This property
will help prune the search space in a level-wise search and
evaluation process.

B. Forming strata

In Definition 2, exact matching [16] is used to unbiasely
estimate the average causal effect. The data set is firstly
stratified according to values of the explanatory attributes. That

is, the data records are sorted by the values of explanatory
attributes Ec. The average causal effect is calculated in each
stratum. The overall average causal effect is the weighted
average over all strata.

C. Algorithm – DDCR

Our proposed algorithm, called Discrimination Discovery
by Causal Rules (DDCR), is listed in Algorithm 1. It contains
mainly two modules, global discrimination discovery and local
discrimination discovery.

Lines 1 - 3 initiate variables, generate strata using explana-
tory variables by a quick sort algorithm in Line 3.

Lines 4 - 8 discover global discriminations for each pro-
tected attribute. It firstly tests the correlation between each
protected attribute P and the decision attribute D. If the
correlation is high enough, ACE is calculated. If the ACE
is high enough, the attribute is a discriminatory attributes.
∅ means that P ’s discrimination does not have a context
attribute.

Lines 9 - 18 discover combined discriminatory attributes
and local discriminations. Firstly, frequent patterns are gen-
erated from itemised attribute sets P′ (the discovered global
discriminatory attributes will be excluded) and Oc. An itemset
is like {P1 = p1, O1 = o1} where P1 and O1 are attributes
and p1 and o1 are respective values of the attributes. A pattern
is an itemset. FP-growth [21] is used for the discovery.

The frequent pattern set will be tested for local discrimina-
tions including those combined attributes from 2 patterns to
k0 patterns level by level. The test is based on Definition 4.
The candidates for redundant discriminatory attributes will be
removed before the test.

Lines 19- 21 calculate the causal effect of each discrimina-
tory attribute by removing the contribution from other discrim-
inatory attributes. The discriminatory attributes are organised
into the context. If each group has only one discriminatory
attribute, this can be skipped.

Line 22 outputs the discovered discriminatory attributes.

D. Analysis of the algorithm

The algorithm is correct. It follows the well established
potential outcome model to estimate causal effect as discussed
in Section 2 without a heuristic or approximation. The search
for combined discriminatory attributes and contexts of local
discriminations is exhaustive given a minimum support con-
straint. It does not miss any signals of discriminations in a
data set.

We analyse the complexity of the algorithm in three phases.
In Phase I (Lines 1 - 3), the complexity is that of quick
sort: O(n log n) where n is the number of records of a
data set. In Phrase II (Lines 4-8), the discovery of global
discriminatory attributes involves the calculation of correla-
tions and causal effects, and each calculation scans the data
set once to count respective contingency table. The overall
complexity is O(n). In Phase III (lines 12-18), the most
expensive part is finding the k0-frequent patterns. The time
complexity is O((|P|+ |O|)k0). The FP growth algorithm for



Algorithm 1 Discrimination Discovery by Causal Rules
(DDCR)
Input: Data set R with decision attribute D, protected at-
tributes Pc, explanatory attributes Ec, and other attribute Oc,
discrimination threshold α, minimum odds ratio β, minimum
support γ, maximum length of candidate rules k0.
Output: A set of discriminatory attributes (global and local,
and single and combined) Z

1: let discriminatory attribute set Z = ∅
2: let candidate attribute set C = Pc

3: sort data set by values of Ec to generate strata
4: for each protected attribute P ∈ C do
5: if OR(P,D) ≤ β: next attribute
6: if ACE(P ) > α:
7: add (P, ∅) to Z; remove P from C
8: end for
9: itemise Pc and Oc for pattern mining

10: find frequent l-patterns using the minimum support γ
which include at least one attribute in P where l ≤ k0.

11: let F contain the discovered patterns sorted from the
shortest to the longest

12: for each pattern PO in F (the shortest first) do
13: if PO is redundant:
14: remove PO and move to the next pattern
15: if OR(PO, D) ≤ β:
16: remove PO and move to the next pattern
17: if ACE(P|O) > α: add (P,O) to Z
18: end for
19: for each group of discriminations organised by the same

context do
20: recalculate ACE when there are more than one discrim-

inatory attribute as in Section II-D
21: end for
22: output Z

TABLE I
DATA SETS USED IN EXPERIMENTS

Name #Records #attrs Distributions
Adult 48842 14 23.9% & 76.1%

Census-income 299285 13 6.2% & 93.8%
Dutch census 60420 11 47.6% & 52.4%

Titanic 2201 6 32.3% & 67.7%

frequent pattern discovery scans the data set once. For each
pattern, there is a need to scan the data set once more to
work out correlation and the average causal effect. The overall
complexity in this process is O(n(|P|+ |O|)k0). This is also
the overall complexity of the complete algorithm since the
complexity of Phrases I + II is multiple orders of magnitude
smaller than this.

Child

Survived

Female

CrewFirstClassSecondClass ThirdClass

Fig. 1. Results of the causal BN based approach [9] on Titanic data set. Top:
the BN learnt from the data set. Edges between the modes in the same tier
are omitted for clarity. Bottom: data strata for causal effect estimation. Values
indicate risk differences in strata, and counts are represented as: strata size
(the number of protected individuals in the strata). Left for attribute Female.
Right for attribute Child.

IV. EXPERIMENTS

Discrimination detection is fundamentally a process of
counterfactual reasoning. Causality based approaches are prin-
cipled methods for this problem. In causal inference research,
causal Bayesian network [12, 13] and potential outcome
model [15, 22] have been widely used in various applications.
Therefore, we compare the proposed method which uses the
potential outcome model with a recent work based on causal
Bayesian network [9].

A. Data sets and settings

To evaluate DDCR, the proposed discrimination detection
method, we use three data sets used in previous discrimination
detection research: the Adult, the Census Income, Dutch
Census, and Titanic data sets. The Adult and the Census-
Income (KDD) data sets contain the USA census data in 1994
(both available at https://archive.ics.uci.edu/ml/datasets, UCI
Machine Learning Repository). The Dutch census contains the
Dutch census data in 2001 [9]. The easily understandable data
set, Titanic (https://www.kaggle.com/c/titanic/data), is used to
illustrate our comparisons. A summary of the data sets is given
in Table I. We leave interesting readers to read the attribute
description following the link to our software package web
page.

B. A case study on the Titanic data set

Discriminations are difficult to validate since we do not
have labeled data sets as for classification. We use a data
set that has known discriminations to show the power of our
algorithm. We know that in the last few hours on the Titanic
ship, females and children were preferably treated, and there
existed discriminations against males.

We firstly show the results of the Bayes network based
method [9]. The causal Bayesian network based method is a
counterfactual based approach to discovering discriminations.



Fig. 2. Results from DDCR on Titanic data set. Top: data strata for causal
effect estimation for attribute Female. Bottom: data strata for causal effect
estimation for attribute Child. Values indicate risk differences in strata, and
counts are represented as: strata size (the number of protected individuals in
the strata).

It takes two steps to identify discriminations. Firstly, it builds
a Bayesian network. A candidate discriminatory attribute must
be a parent node of the decision attribute. It then calculates
direct causal effect between the candidate discriminatory at-
tribute and the decision attribute. To find the direct causal ef-
fect, “path block” technique [13] has been employed to screen
off causal effect of other attributes. The work in [9] shows
that the set of all parents except the candidate discriminatory
attribute are sufficient to form a block set for estimating direct
causal effect. Then, the block set is used last for stratification,
and risk differences in the strata are examined to determine
discrimination.

The results of the Bayesian network approach [9] on the
Titanic data set is shown in Figure 1. (1) Both the Female
node and the Child node are candidates for discrimination
since they are both parents of the survival node. Another
parent node is First class node. (2) To test whether adults
are discriminated, the data records are stratified by the First
class and Child attributes. They form four strata and their risk
differences are listed in Figure 1 (lesft). The first two strata
show that the adults are discriminated. (3) To test whether
males are discriminated, the data records are stratified by the
First class and Female attributes. They form four strata and
their risk differences are listed in Figure 1 (right). The first
two strata show that males are discriminated. (4) Note that in
the last two strata where Female is true, the risk differences
are very close to zero and this is understandable since children
and females have the same priority.

With DDCR, to test whether males are discriminated, the
data records are stratified by cabin classes and crew status
for causal effect estimation. The causal effect is estimated
as 0.546. Similarly, the average causal effect of Child on
survival is estimated as 0.287. Since both protected attributes
are discriminatory, we rectify the causal effect of Female on
Survival by adding the Child attribute into the stratification

attribute set. The rectified causal effect is 0.537. The rectified
causal effect of Child on Survival is 0.272. To compare with
Bayesian network based approach, we list the strata after the
correction and their risk differences in Figure 2. Both methods
give the same conclusions.

The causal effects estimated by DDCR are higher than the
causal effects by the Bayesian network based approach. In this
data set, we believe that our estimation is more accurate. The
cabin classes and crew status are all possible information for
situation that we can use for the detection and we have used
them all. Note that the risk differences in the first, second
and fourth strata in the upper table of Figure 2 have quite
different causal effects. In the causal Bayesian network based
approach, the causal effect is estimated in a single stratum (the
second stratum in the bottom left table in Figure 1). When
a stratum contains such heterogeneous subgroups, its average
causal effect estimation likely contains a bias. This is a reason
that we assert that our estimation is more accurate.

C. Compare the Bayesian network approach and DDCR
We continue comparing the DDCR method with the

Bayesian network method [9] on the Adult, the Census income
and the Dutch data sets.

The Bayesian networks are learned from the three data sets,
where both protected attributes Gender and Race (or Marital
status in Dutch data set) are candidates for discrimination since
they have edges into the decision nodes. To test whether a
candidate protected attribute is discriminatory, the set of other
parent nodes of the decision node is used as a block set for
calculate causal effect.

Both methods detect the same discriminatory attributes. The
block sets for stratification in the BN approach are different
from the explanatory attribute sets in DDCR. Even with the
differences, the causal effects obtained from both methods
are quite similar as shown in Figure 3. Gender in data sets
Adult and Dutch is discriminatory, and other attributes are not
dsicrminatory.

It is interesting to observe the close similarity of causal
effect estimation of both methods although the stratification
attributes are different. This makes DDCR practical since
the explanatory attributes do not have to be precise. One
exception is that any effect attribute of the decision attribute
should not be included in the explanatory attribute set (and a
block set). Such an inclusion will incur bias in causal effect
estimation. We will have to rely on domain experts to sift
effect attributes from causal attributes. Note that a Bayesian
network could not separate causal and effect attributes either
since edge orientation based on data is largely impossible.
In our experiments, when we do not set tier for attributes in
Bayesian network learning, most edges are undirected or bi-
directed. This means that we do not know whether a node is
a parent or a child of the decision node either.

D. Local discrimination and discrimination by combined at-
tributes

DDCR can find local discriminations and discriminations
by combined attributes. In Census data set, females are not



Fig. 3. Results from causal BN approach and DDCR. Left Two: results by the
BN approach. Right two: results by DDCR. From the top to the bottom, Adult
data set, Census income data set, and Dutch data set. Each block indicates a
stratum, with a darker shade standing for a larger risk difference. The overall
causal effect estimations of both methods are quite consistent.

discriminated globally since the average causal effect is 0.061.
However, in private sector (context: work.Private=1), females
are discriminated since the causal effect is 0.092, close to
0.1. Since we have only two protected attributes in each data
set, we did not find discriminations of combined attributes.
However, the following discovery shows the potential for such
a finding. In the Dutch data set, Gender=1 and Marital status=2
have a significant higher causal effect than that of either
Gender or Marital Status alone.

E. Efficiency

We compare the scalability of DDCR and the BN based
approach with data set size and the number of attributes.
We randomly sampled the Census Income data set into 50K,
100K, 150K, 200K and 250K for scalability study on data set
size. We use the original Census Income data set, and take

each value as a binary attribute and obtain data set with 495
attributes. We randomly sampled 100K records, and 15, 20, 40,
60, 80 and 100 attributes including Gender attribute. Gender
is the protected attribute for both methods. For DDCR, 10
randomly selected attributes are set as explanatory attributes.
The comparisons were carried out using a desktop computer
(Quad core CPU 3.4 GHz and 16 GB of memory).

DDCR is significantly faster than the BN based approach
and is up to multiple orders of magnitude faster as shown in
the left figure of Figure 4. This observation is consistent to
their computational complexities.

BN based approach does not scale well with the number of
attributes while DDCR does as shown in the middle figure of
Figure 4. When the number of variables is 40, the BN based
approach did not return results in two hours. The complexity of
learning a Bayesian network is exponential to the number of
attributes. Although some works reported building Bayesian
networks with hundreds of variables, the networks are very
sparse. DDCR scales well with the number of attributes.

DDCR scales well with the minimum support as shown in
the right diagram of Figure 4.

V. CONCLUSION

Discrimination detection is crucial to advance civil rights
in big data era. The detection of discriminations is a process
of counterfactual reasoning. Bayesian network (BN) based
methods have been proposed for the detection by counter-
factual reasoning, but they are inefficient and not effective
for local and combined discriminatory detection. This paper
proposes a detection method by combining association rule
mining with potential outcome model. The potential outcome
model supports unified and succinct operational definitions
for global and local discriminations and discrimination by
combined attributes. The proposed method, DDCR, detects
global discriminations as effectively as a BN based method
and is also able to discover local and combined discriminations
that a BN based method could not find. The method is very
fast, and scales well with the data size and the number of
attributes.

REFERENCES

[1] Whitehouse, “Big data: seizing opportunities, preserving
values,” https://www.whitehouse.gov/sites/default/files/
docs/big data privacy report may 1 2014.pdf, 2014.

[2] D. Pedreschi, S. Ruggieri, and F. Turini, “Discrimination-
aware data mining,” ACM SIGKDD Intl. Conf. on Knowl.
Disc. and Data Mining (KDD), 2008.

[3] ——, “Measuring discrimination in socially-sensitive de-
cision records,” SIAM Intl. Conf. on Data Mining (SDM),
2009.

[4] K. Fukuchi, J. Sakuma, and T. Kamishima, “Prediction
with model-based neutrality,” Euro. Conf. on Machine
Learning and Knowledge Discovery in Databases - Vol-
ume 8189, pp. 499–514, 2013.



0

20

40

60

80

100

120

140

160

50 100 150 200 250 300

Ti
m

e 
(s

)

Data Size (K)

Census Income Data Set

BN

DDCR

0

50

100

150

200

250

15 20 40 60 80 100

Ti
m

e 
(s

)

Attributes

Census Income 100K

BN

DDCR

0

1

2

3

4

5

6

7

0.01 0.05 0.1 0.15 0.2

Ti
m

e 
(s

)

minSupport

Census Income Data Set

Fig. 4. Running time of DDCR with the data set size, the number of attributes and the minimum supports. The first two are compared with Bayesian network
based approach.

[5] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger,
and S. Venkatasubramanian, “Certifying and removing
disparate impact,” ACM SIGKDD Intl. Conf. on Knowl-
edge Discovery and Data Mining, pp. 259–268, 2015.

[6] S. Ruggieri, S. Hajian, F. Kamiran, and X. Zhang, “Anti-
discrimination analysis using privacy attack strategies,”
Euro. Conf. Machine Learning and Knowledge Discovery
in Databases ECML PKDD, Part II, pp. 694–710, 2014.

[7] K. Mancuhan and C. Clifton, “Combating discrimina-
tion using bayesian networks,” Artificial Intelligence and
Law, vol. 22, no. 2, pp. 211–238, 2014.

[8] L. Zhang, Y. Wu, and X. Wu, “Situation testing-based
discrimination discovery: A causal inference approach,”
Intl. Joint Conf. on Artificial Intelligence, p. 2718, 2016.

[9] ——, “On discrimination discovery using causal net-
works,” Intl. Conf. on Social Computing, Behavioral-
Cultural Modeling, Prediction and Behavior Represen-
tation in Modeling and Simulation, 2016.

[10] F. Bonchi, S. Hajian, B. Mishra, and D. Ramazzotti,
“Exposing the probabilistic causal structure of discrimi-
nation,” https://arxiv.org/abs/1510.00552, 2015.

[11] P. Spirtes, “Introduction to causal inference,” Journal of
Machine Learning Research, vol. 11, no. May, pp. 1643–
1662, 2010.

[12] J. Pearl, Causality Models, Reasoning, and Inference
(2nd Edition). Cambridge University Press, 2009.

[13] ——, “An introduction to causal inference,” Intl. Jnl. of
Biostatistics, vol. 6, no. 2, 2010.

[14] S. Ma, J. Li, L. Liu, and T. D. Le, “Mining combined
causes in large data sets,” Knowl.-Based Syst, vol. 92,
pp. 104–111, 2016.

[15] D. B. Rubin, “Causal inference using potential outcomes:
Design, modeling, decisions,” Journal of American Sta-
tistical Association, vol. 100, no. 469, pp. 322–331, 2005.

[16] E. A. Stuart, “Matching methods for causal inference: A
review and a look forward,” Statistical Science, vol. 25,
no. 1, pp. 1–21, 2010.

[17] P. o. t. U. Kingdom, “Sex discrimination act 1975,”
http://www.legislation.gov.uk/ukpga/1975/65/
pdfs/ukpga 19750065 en.pdf, 1975.

[18] P. J. Bickel, E. A. Hammel, and J. W. O’connell, “Sex
bias in graduate admissions: data from berkeley.” Sci-

ence, vol. 187, no. 4175, pp. 398–404, 1975.
[19] S. L. Morgan and D. J. Harding, “Matching estimators

of causal effects: Prospects and pitfalls in theory and
practice,” Sociological Methods & Research, vol. 35,
no. 1, pp. 3–60, 2006.

[20] J. L. Fleiss, B. Levin, and M. C. Paik, Statistical Methods
for Rates and Proportions, 3rd ed. Wiley, 2003.

[21] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent
patterns without candidate generation: A frequent-pattern
tree approach,” Data Mining and Knowledge Discovery,
vol. 8, pp. 53–87, 2004.

[22] P. R. Rosenbaum and D. B. Rubin, “The central role of
the propensity score in observational studies for causal
effects,” Biometrika, vol. 70, no. 1, pp. 41–55, 1983.


