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Causal Decision Trees
Jiuyong Li, Saisai Ma, Thuc Le, Lin Liu, and Jixue Liu

Abstract—Uncovering causal relationships in data is a major objective of data analytics. Currently there is a need for scalable and
automated methods for causal relationship exploration in data. Classification methods are fast and they could be practical substitutes
for finding causal signals in data. However, classification methods are not designed for causal discovery and a classification method
may find false causal signals and miss the true ones. In this paper, we develop a causal decision tree (CDT) where nodes have causal
interpretations. Our method follows a well established causal inference framework and makes use of a classic statistical test to
establish the causal relationship between a predictor variable and the outcome variable. At the same time, by taking the advantages of
normal decision trees, a CDT provides a compact graphical representation of the causal relationships, and the construction of a CDT is
fast as a result of the divide and conquer strategy employed, making CDTs practical for representing and finding causal signals in large
data sets. Experiment results demonstrate that CDTs can identify meaningful causal relationships and the CDT algorithm is scalable.

Index Terms—Decision tree, Causal relationship, Potential outcome model, Partial association
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1 INTRODUCTION

CAUSAL relationships can provide better insights into data, as
well as actionable knowledge for correct decision making

and timely intervening in processes at risk, therefore detecting
causal relationships in data is an important data analytics task.

Randomised controlled trials (RCTs) are considered as the
gold standard for causal inference in many areas such as medicine
and social science [1]. However, it is often impossible to conduct
RCTs due to cost or ethical concerns. Causal relationships can
also be found by observational studies, such as cohort studies and
case control studies [2]. An observational study takes a causal
hypothesis and tests it using samples selected from historical data
or collected passively over the period of time when observing the
subjects of interest. Therefore observational studies need domain
experts’ knowledge and interactions in data selection or collection,
and the process is normally time consuming.

Currently there is a lack of scalable and automated methods
for causal relationship exploration in data. These methods should
be able to find causal signals in data without requiring domain
knowledge or any hypothesis established beforehand. The methods
must also be efficient to deal with the increasing amount of data.

Classification methods are fast and have the potential to
become practical substitutes for detecting causal signals in data
since finding causal relationships is a type of supervised learning
when the outcome variable is fixed. Decision trees [3] are a good
example of classification methods, and they have been widely used
in many areas, including social and medical data analyses.

However, classification methods are not designed with causal
discovery in mind. We use the following example to illustrate how
a perfect decision tree may not code causal relationships. Figure 1
shows a hypothesised data set and a decision tree built from the
data set. The decision tree perfectly classifies the outcome (i.e.
Y ) using attributes A and B. For example, the path (A= 1) !
(Y =1) with prob(Y =1|A=1)) = 1 correctly classifies more
than half of the records in the data set, but the path does not code
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Fig. 1. An example showing that a decision tree does not encode causal
relationships (a) An exemplar data set (b) A decision tree of the data set

a causal relationship between A and Y since, for example, given
C =1, prob(Y =1|A=1)�prob(Y =1|A=0) = 0. In other
words, when fixing the value of C (aiming to exclude the possible
effect of C on Y ), a change of A does not result in a change in
Y . Such a principle for causal inference is frequently used in our
everyday reasoning. For example, we do not conclude that female
employees are discriminated just based the observation that on
average the salaries of females are lower than those of males.
Instead, we need the evidence showing that salary differences can
be observed between female and male employees with the same
occupations, education levels and work experience (such that the
effects of other factors possibly affecting salaries are eliminated).
In this data set, there is not sufficient evidence to enable us to draw
a causal conclusion (we will give more detailed analysis on this
data set in Section 4).

Causal discovery methods [4], [5] have shown promise for
finding real and non-spurious relationships in data although it is
arguable whether real causes can be found in data. The major
difference between the causal relationship discovery methods and
other relationship discovery methods is that the former assesses the
relationship between a (potential) cause variable and an outcome
variable by removing the effects of ther covariates on the outcome
but the latter only considers the relationship between the potential
cause variable and the outcome in isolation.

In this paper, we design a causal decision tree (CDT) where
nodes have causal interpretations. The paths in a CDT are not in-
terpreted as ‘if-then’ first order logic rules as in a normal decision
tree. Each non-leaf node of a CDT has a causal relationship with
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the outcome variable.
A CDT is not about classification but interpretation. A normal

decision tree offering high classification accuracy may provide
wrong reasons, and the knowledge represented by it may not be
actionable since no real causes are given and thus we may not
prevent an outcome from happening. Note that a discriminative
feature contributing greatly to classification may not be a causal
factor of the outcome since the high correlation between the fea-
ture and the outcome may be due to, e.g. a common cause of them
or an intermediate variable. In contrast, a CDT tries to provide real
causes of an outcome although it is not optimised for classification
accuracy. The aim of CDTs is to provide interpretable and action-
able knowledge to reduce the effects of undesirable outcomes or
to promote the effects of desirable outcomes.

CDTs are developed to take the advantage of efficient
tree based search. Graphical causal models, particularly Causal
Bayesian networks [5] have achieved great success in causal dis-
covery in the past decades, but efficiency is still a major concern.
Our work is closely related to causal Bayesian networks. We will
detail the difference of our CDT from Bayesian networks and other
Bayesian network related tree representations in Section 7.1.

The potential outcome model [5], [6], [7] forms a base of our
causal inference for determining the causal relationship between
a predictor variable and the outcome variable when building a
CDT. Several causal models have been well established, such
as causal Bayesian networks, the potential outcome model and
the structural equation model [5]. These models take different
approaches for representing and inferring causal relationships, but
they have been shown to be complementary and closely related
with commonalities at the same time [8]. The potential outcome
model is widely accepted for causal inference in epidemiological
and social applications, but it has not been commonly applied to
large scale data mining for causal signals in an automated manner.
With the model, the causal effect of a treatment on the outcome
is estimated as the difference between the potential outcome with
the treatment and the potential outcome without the treatment. The
CDT method evaluates the causal effect of a predictor variable on
the outcome using a classic statistical test for partial associations,
the Mantel-Haenszel test [9], and considers that there exists a
causal relationship between the predictor variable and the outcome
if the causal effect is significant.

A number of assumptions are essential to support the claim
of a causal relationship. Two fundamental ones that are closely
related to our work are the causal sufficiency and faithfulness
assumptions [4], [10]. Causal sufficiency requires that all variables
are observed and measured and there are no hidden variables. This
is to ensure that no hidden cause results in a causal relationship.
The faithfulness assumption in our work is that a dependency
in data will be discovered by a CDT, and a causal relationship
identified by a CDT reflects a true dependency in data. In addition,
we also assume that the outcome variable is not a cause of any of
the predictor variables.

The main contributions of this paper are as follows:

• We systematically analyse the limitations of decision trees
for causal discovery and identify the underlying reasons.

• We propose the CDT method for effectively representing
and identifying interpretable causal relationships in data,
including context specific causal relationships.

2 RELATED WORK

Discovering causal relationships in passively observed data has
attracted enormous research efforts in the past decades, due to
the high cost, low efficiency and unknown feasibility of experi-
ment based approaches, as well as the increasing availability of
observational data. To the credit of the theoretical development
by a group of statisticians, philosophers and computer scientists,
including Pearl [5], Spirtes, Glymour [11] and others, we have
seen graphical causal models playing dominant role in causality
discovery. Among these graphical models, causal Bayesian net-
works (CBNs) [4] have been the most developed and used one.

Many algorithms have been developed for learning CBNs [4],
[12]. However in general learning a complete CBN is NP-hard
[13] and the methods are able to handle a CBN with only tens of
variables, or hundreds if the causal relationships are sparse [4].

Consequently, local causal relationship discovery around a
given target (outcome) variable has been actively explored recently
as in practice we are often more interested in knowing the direct
causes or effects of a variable, especially in the early stage of
investigations. The work presented in this paper is along the line
of local causal discovery.

Existing methods for local causal discovery around a given
target fall into two broad categories: (1) Methods that adapt the
algorithms or ideas for learning a complete CBN into local causal
discovery, such as PC-Simple [14], [15], a simplified version of the
well-known PC algorithm [11] for CBN learning; and HITON-
PC [16], which applies the basic idea of PC to find variables
strongly (and causally) related to a given target; (2) Methods
that are designed to exploit the high efficiency of popular data
mining approaches and the causal discovery ability of traditional
statistical methods, including the work in [17] and [18], both
using association rule mining for identifying causal rules; and the
decision tree based approach [19] for finding the Markov blanket
of a given variable.

The CDT proposed in this paper belongs to the second cate-
gory, as it takes advantage of decision tree induction and partial
association tests. Comparing to other methods in the category,
however, the proposed CDT approach is distinct because it is
aimed at finding a sequence of causal factors (variables along the
path from the root to a leaf of a CDT) where a preceding factor
is a context under which the following factors can have impact
on the target, while the other methods identify a set of causal
factors each being a cause or an effect of the given target, and they
only discover global causal relationships. However, in practice, a
variable may not be a cause of another variable globally, but under
certain context, it may affect other variables. A CDT provides
a way to identify such context specific causal relationships. Ad-
ditionally because a context specific causal relationship contains
information about the conditions in which a causal relationship
holds, such relationships are more prescriptive and actionable and
thus are more suitable for decision support and action planning.

In terms of using decision trees as a means for causality inves-
tigation, except from the above mentioned method for identifying
Markov blankets [19], most existing work takes decision trees
as a tool for causal relationship representation and/or inference,
assuming that the causal relationships are known in advance.
Examples include the CPT-trees [20] and causal explanation tree
[21] to be discussed in detail in Section 7.1, which are both
derived from a known causal Bayesian network. Recently there has
been an increasing interest in applying machine learning methods,
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including tree-based methods for estimating the heterogeneity of
causal effects in different sub-populations [22], [23], [24], [25].
For example, in [25], regression trees are used to partition the
population into subsets, and then in each sub-population the causal
effect of a known cause is estimated, so that the differences of the
effects across the sub-populations can be investigated. However,
these methods also assume a known cause, and their focus is
on finding the proper sub-populations or contexts so that valid
inference of the heterogeneous causal effects can be carried out
with respect to the contexts. Unlike all these trees, our CDT is
mainly used as a tool for detecting causal relationships in data,
without any assumption of known causal relationships.

3 CAUSE AND EFFECT IN THE POTENTIAL OUT-
COME FRAMEWORK

Let X be a predictor variable or attribute and Y the outcome
attribute where x2{0, 1} and y2R�0

. We aim to identify if there
is a causal relationship between X and Y . For easy discussion, we
consider that X = 1 is a treatment and Y = 1 the recovery. We
will establish if the treatment is effective for the recovery.

The potential outcome or counterfactual model [5], [6], [7]
is a well established framework for causal inference. Here we
introduce the basic concepts of the model and a principle for esti-
mating the average causal effect, mainly following the introduction
in [26].

With the potential outcome model, an individual i in a pop-
ulation has two potential outcomes for a treatment X: Y 1

i when
taking the treatment and Y 0

i when not taking the treatment. We
say that Y 1

i is the potential outcome in the treatment state and Y 0

i
is the potential outcome in the control state. Then we have the
following definition.

Definition 1 (Individual level causal effect (ICE)) The individ-
ual level causal effect is defined as the difference of two potential
outcomes of an individual, i.e. �i = Y 1

i � Y 0

i .

In practice we can only find out one outcome Y 1

i or Y 0

i since
one person can be placed in either the treatment group (X = 1) or
the control group (X = 0). One of the two potential outcomes
has to be estimated. So the potential outcome model is also
called counterfactual model. For example, we know that Mary
has a headache (the outcome) and she did not take aspirin (the
treatment), i.e. we know Y 0

i . The question is what the outcome
would be if Mary took aspirin one hour ago, i.e. we want to know
Y 1

i and to estimate the ICE of aspirin on Mary’s condition (having
headache or not).

If we had both Y 1

i and Y 0

i of an individual we would
aggregate the causal effects of individuals in a population to get
the average causal effect as defined below, where E[.] stands for
the expectation operator in probability theory.

Definition 2 (Average causal effect (ACE)) The average causal
effect of a population is the average of the individual level causal
effects in the population, i.e. E[�i] = E[Y 1

i ]� E[Y 0

i ].

Note that i is kept in the above formula as other work in the coun-
terfactual framework to indicate individual level heterogeneity of
potential outcomes and causal effects.

Assuming that ⇡ proportion of samples take the treatment and
(1�⇡) proportion do not, and the sample size is large so the error

caused by sampling is negligible, given a data set D, the ACE,
E[�i] can be estimated as:

ED[�i] = ⇡(ED[Y
1

i |Xi = 1]� ED[Y
0

i |Xi = 1]) +

(1� ⇡)(ED[Y
1

i |Xi = 0]� ED[Y
0

i |Xi = 0]) (1)
That is, the ACE of the population is the ACE in the treatment
group plus the ACE in the control group, where Xi = 1 indicates
that an individual takes the treatment, and the causal effect is
(Y 1

i |Xi = 1) � (Y 0

i |Xi = 1). Similarly, Xi = 0 indicates that
an individual does not take the treatment, and the causal effect is
(Y 1

i |Xi = 0)� (Y 0

i |Xi = 0).
In a data set, we can observe the potential outcomes in the

treatment state for those treated, (Y 1

i |Xi = 1), and the potential
outcomes in the control state for those not treated, (Y 0

i |Xi = 0).
However, we cannot observe the potential outcomes in the control
state for those treated, (Y 0

i |Xi = 1), or the potential outcomes in
the treatment state for those not treated, (Y 1

i |Xi = 0). We have to
estimate what the potential outcome, (Y 0

i |Xi = 1), would be if
an individual did not take the treatment (in fact she has); and what
potential outcome, (Y 1

i |Xi = 0), would be if an individual took
the treatment (in fact she has not).

With a data set D we can obtain the following ‘naı̈ve’ estima-
tion of the ACE:

Enaive
D [�i] = ED[Y

1

i |Xi = 1]� ED[Y
0

i |Xi = 0] (2)
The question is when the naı̈ve estimation (Equation (2)) will

approach the true estimation (Equation (1)).
If the assignment of individuals to the treatment and con-

trol groups is purely random, the estimation in Equation (2)
approaches the estimation in Equation (1). In an observational
data set, however, the random assignment is not possible. How
can we estimate the average causal effect? A solution is by perfect
stratification. Let the differences of individuals in a data set be
characterised by a set of attributes S (excluding X and Y ) and
let the data set be perfectly stratified by S. In each stratum,
apart from the fact of taking treatment or not, all individuals are
indistinguishable from each other. Under the perfect stratification
assumption, we have:

E[Y 1

i |Xi = 0, S = si] = E[Y 1

i |Xi = 1, S = si] (3)
E[Y 0

i |Xi = 1, S = si] = E[Y 0

i |Xi = 0, S = si] (4)
where S = si indicates a stratum of perfect stratification. Since
individuals are indistinguishable in the stratum, unobserved poten-
tial outcomes can be estimated by observed ones. Specifically, the
mean potential outcome in the treatment state for those untreated
is the same as that in the treatment state for those treated (Equation
(3)), and the mean potential outcome in the control state for those
treated is the same as that in the control state for those untreated
(Equation (4)). By replacing Equation (1) with Equations (3) and
(4), we have:

ED[�i|S = si]
= ⇡(ED[Y

1

i |Xi = 1, S = si]� ED[Y
0

i |Xi = 1, S = si]) +
(1�⇡)(ED[Y

1

i |Xi = 0, S = si]�ED[Y
0

i |Xi = 0, S = si])
= ⇡(ED[Y

1

i |Xi = 1, S = si]� ED[Y
0

i |Xi = 0, S = si]) +
(1�⇡)(ED[Y

1

i |Xi = 1, S = si]�ED[Y
0

i |Xi = 0, S = si])
= ED[Y

1

i |Xi = 1, S = si]� ED[Y
0

i |Xi = 0, S = si]
= Enaive

D [�i|S = si] (5)
As a result, the naı̈ve estimation approximates the true average

causal effect, and we have the following observation.
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Observation 1 [Principle for estimating average causal effect]
The average causal effect can be estimated by taking weighted
sum of naı̈ve estimators in stratified sub data sets.

This principle ensures that each comparison is between indi-
viduals with no observable differences, and hence the estimated
causal effect is not resulted from other factors than the studied
one. In the following, we will use this principle to estimate causal
effect in observational data sets.

4 FROM NORMAL DECISION TREES TO CAUSAL DE-
CISION TREES

Let X = {X
1

, X
2

, . . . , Xm} be a set of predictor attributes where
xi 2 {0, 1} for 1  i  m, and Y be an outcome attribute
where y 2 {0, 1}. Data set D contains n records taking various
assignments of values for X and Y , each of which represents the
record of an observation. Let us assume that X includes all the
attributes for characterising an individual, and the data set is large
and thus there is no bias in the sampling process.

4.1 Why a decision tree may not encode causal rela-
tionships?
Decision trees [3] are a popular classification model, with two
types of nodes: branching and leaf nodes. A branching node
represents a predictor attribute and each of its values denotes
a choice and leads to another branching node or a leaf node
representing a class.

The construction of a decision tree follows a divide and
conquer strategy. The most important decision to be made in
the construction is to select the branching nodes. Aiming at
minimising classification error, the basic idea of the selection is
as follows. After samples are split at X , it is desired that the
class distribution at X’s child nodes (in the obtained subsets of
samples) is more skewed than that at X before the splitting. That
is, the child nodes should be less impure than X regarding class
distribution [3]. When comparing Xi and Xj to decide on a better
branching attribute, the impurity at Xi and Xj (before splitting) is
the same, so the attribute whose child nodes have smaller impurity
is preferred.

A direct measure of a node’s impurity is the misclassification
error, based on which the impurity of a child node of X is defined
as 1�max(prob(Y=1|X), prob(Y=0|X)) [3], where prob(Y=
1|X) and prob(Y=0|X) are the fractions of positive and negative
samples respectively given X . In practice, other measures such as
entropy and Gini index are often used [3] as they provide smoother
curves than the misclassification error. In the following, for con-
ceptual discussions and easy comparison with the criterion based
on causal effects, we still use the misclassification error. Since
minimising the misclassification error is equivalent to maximising
the absolute value of (prob(Y =1|X) � prob(Y =0|X)), we
have the following conceptual definition of a discriminative or
branching attribute.

Definition 3 (Discriminative attribute) Given a data set D0, a
discriminative attribute is the attribute Xi such that | prob(Y =
1|Xi = 1)� prob(Y = 0|Xi = 1)| is maximised.

Note that D0 is a sub data set (of D) defined by the attribute
values in the prefix path of the current branching node under
consideration. It is a context specific data set (see Section 4.3
for details).

In the following, we will discuss why a decision tree may not
represent causal relationships.

Firstly, The objective of a discriminative attribute (maximising
prob(Y = 1|Xi = 1)�prob(Y = 0|Xi = 1)) is different from
that of a causal factor (having significant causal effect prob(Y =
1|Xi=1)�prob(Y =1|Xi=0)).

Secondly, the estimation of prob(Y =1|Xi =1)�prob(Y =
0|Xi =1) for choosing a discriminative attribute is based on the
data set D0, while the estimation of the causal effect of Xi on Y is
based on the stratified data set DS=si to avoid unfair comparison.
For example, let Xi be a treatment and Y the recovery, the
comparison between individuals with and without treatments have
to be in the same age and gender group and have similar medical
conditions. Otherwise, the comparison is meaningless. In other
words, when a comparison is within a stratum of a stratified data
set, the effect of other attributes on Y is eliminated and hence the
difference (prob(Y = 1|Xi = 1)�prob(Y = 1|Xi = 0)) reflects
the causal effect of Xi on Y .

Essentially the main limitation of a decision tree is that it does
not consider other attributes in determining a branching attribute.
The choice of a branching attribute does not rely on the causal
effect of the attribute on the outcome attribute.

Following Observation 1, the estimation of causal effect should
be based on stratified data where the difference of individuals in a
stratum is eliminated.

Now we analyse that the perfect classification decision tree in
Figure 1 does not code causal relationships.

Example 1 In Figure 1, the path (A= 1) ! (Y = 1), with the
difference in probabilities, (prob(Y =1|A = 1)�prob(Y =0|A=
1))=1, represents a top quality discriminative rule. Let us assume
that A = 1 is a treatment and Y represents the outcome. To derive
the average causal effect of A on Y , we need to stratify the data
set such that in each stratum the records are indistinguishable with
respect to the stratifying attributes. Here {B,C} are the stratifying
attributes. The data set in Figure 1 is stratified into four strata and
their summaries are as follows:

{B,C} Y
{0, 0} 1 0

A = 1 20 0
A = 0 0 0

{B,C} Y
{0, 1} 1 0

A = 1 10 0
A = 0 20 0

{B,C} Y
{1, 0} 1 0

A = 1 0 0
A = 0 0 20

{B,C} Y
{1, 1} 1 0

A = 1 10 0
A = 0 0 0

In the first stratum, all records have B = 0 and C = 0. There
are no records from the control group (A = 0), hence we cannot
estimate the average causal effect in this stratum. Similarly, we
cannot estimate causal effects from the third (B = 1, C = 0)
and fourth (B = 1, C = 1) strata. In the second stratum (B = 0,
C = 1), ED[Y

1|A = 1]�ED[Y
1|A = 0] = 1�1 = 0. All cases

regardless they are treated or not treated have the same outcome.
So the causal relationship between A and Y cannot be established.

For paths (A = 0, B = 1) ! (Y = 0) and (A = 0, B =
0) ! (Y = 1), let us try to establish a causal relationship
between B and Y in the sub data set where A = 0.

The two strata by attribute C are summarised as:

C Y
0 1 0

B = 1 0 20
B = 0 0 0

C Y
1 1 0

B = 1 0 0
B = 0 20 0
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In the two strata (C = 0 and C = 1) there are only cases in
either the treatment group (B=1) or the control group (B = 0).
There is no way to estimate the average causal effect, so we cannot
establish a causal relationship between B and Y .

In this example, we see that a perfect decision tree does not
indicate any causal relationship. In other words, in this data set,
there is not enough evidence to support causal relationships.

4.2 A measure for causal effect
Based on the previous discussion, to estimate the causal effect of
a predictor attribute Q on the outcome Y , we stratify a data set
using X\{Q} so that within each stratum there is no observable
difference among the records.

A measure of average causal effect should be able to quantify
the difference of outcomes in two groups (treatment and control).
For binary outcomes, odds ratio [27] is suitable for measuring the
difference of two outcomes. Let the following table summarise the
statistics of the k-th stratum, sk.

sk Y = 1 Y = 0 total
Q = 1 n

11k n
12k n

1k

Q = 0 n
21k n

22k n
2k

total n.1k n.2k n..k

The odds ratio (measuring the difference of Y between
groups Q = 1 and Q = 0) in the k-th the stratum is
(n

11kn22k)/(n12kn21k) or equivalently, ln(n
11k) + ln(n

22k)�
ln(n

12k)� ln(n
21k).

A question is how to get the aggregated difference over all
the strata of a data set. Partial association test [28] is a means to
achieve this. Over all the r strata of a data set, the difference can
be summarised as:

PAMH(Q, Y ) =
(|
Pr

k=1

n
11kn22k�n

21kn12k
n..k

|� 1

2

)2
Pr

k=1

n
1.kn2.kn.1kn.2k

n2

..k(n..k�1)

(6)

This is the test statistic of the Mantel-Haenszel test [9],
[28]. The test is used to find direct causal relationship between
two variables [28]. The test statistic has a Chi-square distri-
bution (degree of freedom=1). Given a significance level ↵, if
PAMH(Q, Y ) � �2

↵, the null hypothesis that Q and Y are
independent in all strata is rejected and the partial association
between Q and Y is significant. An example of Mantel-Haenszel
test is given in Example 2 in the next section.

4.3 Causal decision trees
Our aim is to build a causal decision tree (CDT) where a non-leaf
node represents a causal attribute, an edge denotes an assignment
of a value of a causal attribute, and a leaf represents an assignment
of a value of the outcome. A path from the root to a leaf represents
a series of assignments of values of the attributes and a highly
probable outcome value as the leaf.

A CDT differs from a normal decision tree in that each of
its non-leaf nodes has a causal interpretation with respect to the
outcome, i.e. a non-leaf node and the outcome attribute have a
context specific causal relationship as defined below.
Definition 4 (Context) Let P ⇢ X, then a value assignment of P,
P = p, is called a context and (D|P = p) is a context specific
data set where P = p holds for all records in D.

Definition 5 (context specific causal relationship) Let P = p
be a context and Q be a predictor attribute and P \ {Q} = ;.
Q and the outcome attribute Y have a context specific causal

relationship if PAMH(Q, Y ) is greater than a threshold in the
context specific data set (D|P = p).

A context specific causal relationship between the root node
and the outcome attribute of a CDT is global or context free, i.e.
the context attribute set P is empty, and a context specific causal
relationships between a non-root node A and the outcome Y is a
refinement of the causal relationship between A’s parent and Y .
For example, with the CDT in Figure 3, the causal relationship
between the root ‘age<30’ and the outcome ‘>50K’ is context
free, while the causal relationship ‘education-num>12’ having
with the outcome is in the context of ‘age<30’ being no, which
is a refinement of the causal relationship ‘age<30’ (parent of
‘education-num>12’) having with the outcome and is a more
specific relationship.

Definition 6 (Causal decision tree (CDT)) In a causal decision
tree, a non-leaf node Q represents a context specific causal
relationship between Q and the outcome Y where the context
is a series of value assignments of the attributes along the path
from the root and to the parent of Q. A leaf node represents a
value assignment of Y , which is the most probable value of Y in
the context specific data set where the context is a series of value
assignments of the attributes along the path from the root to the
leaf.

We use the following example to show that a CDT encodes
causal relationships.

Example 2 From the data set shown in Figure 2, for path (A =
1) ! (Y = 1) of the CDT, we have the following summaries of
the strata in terms of attributes {B,C}:

{B,C} Y
{0, 0} 1 0

A = 1 10 0
A = 0 10 0

{B,C} Y
{0, 1} 1 0

A = 1 0 5
A = 0 20 0

{B,C} Y
{1, 0} 1 0

A = 1 10 0
A = 0 0 10

{B,C} Y
{1, 1} 1 0

A = 1 15 0
A = 0 0 20

We now calculate the Mantel-Haenszel test statistic (Equation
(6)), PAMH(A, Y ). The first table above (for the stratum B = 0,
C = 0) does not contribute to the calculation of PAMH(A, Y )
since it has one column of zero values.

In the stratum B = 0 and C = 1,
n
11kn22k � n

21kn12k

n..k
=

0 ⇤ 0� 20 ⇤ 5
25

= �4

n
1.kn2.kn.1kn.2k

n2

..k(n..k � 1)
=

(20 ⇤ 5 ⇤ 5 ⇤ 20)
252(25� 1)

= 0.667

Similarly, we compute the intermediate results for strata (B =
1, C = 0) and (B = 1, C = 1), and obtain PAMH(A, Y ) =
17.5. For ↵ = 0.05 or �2

↵ = 3.84, since 17.5 > 3.84, A and Y
have a causal relationship based on the test.

In the context A = 0, we test if B and Y have a causal
relationship, based on the following summaries of the data set:

C Y
0 1 0

B = 1 0 10
B = 0 10 0

C Y
1 1 0

B = 1 0 20
B = 0 20 0

From the above tables, we have PAMH(B,Y )=49>3.84 in
the context specific data set for A=0. So we can conclude that B
and Y have a causal relationship in the context of A=0.
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A B C Y count
0 0 0 1 10
0 0 1 1 20
0 1 0 0 10
0 1 1 0 20
1 0 0 1 10
1 0 1 0 5
1 1 0 1 10
1 1 1 1 15

A

B

Y=1

1 0

1 0

Y=0

Y=1

(a) (b)
Fig. 2. An example showing that a CDT represents causal relationships
(a) An exemplar data set. (b) a CDT of the data

4.4 Dealing with high dimensional data
The key to causal effect estimation is to remove covariates’
effects on the outcome. In the previous section, we use perfect
stratification to remove the effect of other variables. However,
for a high-dimensional data set, perfect stratification will produce
too many strata, each of which has a small size. As a result, the
statistical power for detecting dependency in data is lost, and many
small strata will result in false negatives.

An alternative to perfect stratification is stratification or sub-
classification on propensity scores [29], [30], [31], which allocates
individuals (samples) to different strata based on their propensity
scores such that the propensity scores of the individuals in the
same stratum are similar. An individual’s propensity score rep-
resents the probability of the individual receiving the treatment
conditioning on the observed values of the covariates. Suppose
that X is a binary variable with values 1 or 0, representing an
individual receiving and not receiving the treatment respectively,
and C is the set of covariates, for an individual, given that C=c,
the individual’s propensity score, e(c) is defined as [29]:

e(c) = P (X = 1 | C = c)

Since within a stratum the probability of each individual receiving
the treatment is similar, we can still follow Observation 1 in
Section 3 to estimate the causal effect of a predictor on the
outcome by aggregating the causal effects across all the strata.
Specifically, for high dimensional data, we can also use Equation
(6) and the partial association test to detect a causal relationship,
where the strata are those obtained by stratification on propensity
scores, instead of those obtained by perfect stratification.

To apply stratification on propensity scores, we need solve two
problems: choosing a method to estimate propensity scores; and
deciding the granularity of the strata for the stratification.

Logistic regression is commonly used for estimating propen-
sity scores [29], [32]. For the regression, the treatment variable
is considered as the response variable and other variables as
independent variables, while the outcome variable is ignored.

Fine-grained subclassification will lead to a larger number of
smaller subgroups, resulting in a loss of the statistical power of
stratification, while coarse-grained stratification will lead to bias
in causal effect estimation. It has been shown that subclassification
with 5 subgroups can remove at least 90% of the bias due to all
the covariates in causal effect estimation [30], [33]. The use of 5
to 10 subgroups is a current convention [31].

4.5 Inference using causal decision trees
A causal decision tree represents context causal relationships and
each non-leaf node Q is considered as a cause of Y given P
denoting the precedent nodes of Q. Based on Equation (5), the

average causal effect of Q on Y given P can be calculated as the
following.

ACE(Q ! Y |P=p) =
X

k

nk

|(D|P=p)| (prob(Y =1|Q=1, S= sk)

� prob(Y = 1|Q = 0, S = sk))
where nk is the size of the k-th stratum sk in the context specific
data set (D|P = p).

5 THE CDT ALGORITHMS
Normal decision trees have the following advantages: (1) The
divide and conquer strategy of decision tree induction is very
efficient. A decision tree construction algorithm is scalable to
the data set size and the number of attributes. This is a major
advantage in exploring data; (2) Decision trees explore both global
and context specific relationships, and the latter provides refined
explanations for the former. They jointly provide comprehensive
explanations for a data set.

Therefore in this paper we exploit these advantages for explor-
ing causal relationships. However, the challenges for building a
CDT include: (1) The criterion for choosing a branching attribute
for a normal decision tree needs to be replaced by a causality based
criterion. Based on the potential outcome model, we estimate
the average causal effect of a treatment variable on the outcome
variable by aggregating the causal effects of the treatment in
all subgroups of the data set stratified based on the covariates.
Specifically, we use the Mantel-Haenszel test for aggregating the
causal effects in all the strata and for detecting significant causal
effect, thus to determine the causal relationship between the treat-
ment variable and the outcome variable. To obtain the stratified
data, perfect stratification can be used, but for high dimensional
data, (approximate) stratification on propensity scores should be
applied; (2) The time complexity for the Mantel-Haenszel test
using perfect stratification is quadratic to the size of a data set
since all strata must be found in the first place. We propose to use
quick sort to facilitate the stratification, which reduces the time
complexity greatly. When data records are sorted by the values
of relevant (control) variables, the records which have the same
values of the control variables will be put together, forming the
strata of the perfect stratification.

Based on the above discussions, in the following we present
the CDT algorithm in two versions: the first version does perfect
stratification (so it is called CDT-PS) and uses quick sort for
improving the efficiency, and the second one does stratification
on propensity scores (called CDT-SPS). The time complexity of
the two CDT algorithms are analysed at the end of this section.

5.1 CDT by perfect stratification
As shown in Algorithm 1, CD-PS takes 3 inputs: the data set D for
a set of predictor attributes X and one outcome attribute Y ; user
specified confidence level for Mantel-Haenszel test and correlation
test (to find relevant or stratifying attributes); and the maximum
height of the CDT. Having a maximum tree height makes the tree
more interpretable. If we do not restrict the tree height, we can get
a context which includes many attributes, and a causal relationship
in such a context only explains a very specific scenario and has
less interest to users.

Algorithm 1 firstly initiates the CDT (i.e. T), and sets the
count of the height of the tree (i.e. h) as zero in Line 1. Then the
functions TreeConstruct and TreePruning are called subsequently.
Finally, the CDT is returned.
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The treeConstruct function uses a recursive procedure to con-
struct a CDT and it takes 5 inputs: current node N to be expanded
or terminated; the set of attributes Z ✓ X to expand the current
subtree (whose root is N ) and Z contains only the attributes that
have not been used in the tree; the context specific data set D0,
where the context is the value assignments along the path from
the root to N (inclusive); h, current height of tree up to N ; and e,
label of the edge from N to the next node to be expanded.

Lines 1 to 4 of function treeConstruct terminate N if no
attribute is left in Z and/or the height of N reaches the maximum
tree height. N is terminated by attaching to it a pair of leaves with
edges of 1 and 0 respectively and labelling the leaves with the
most probable values in (D0|1) and (D0|0) respectively.

If N is not to be terminated, Line 5 finds a set of attributes
correlated with Y in the current context specific data D0. The
attributes found (called relevant attributes in this paper) are used to
stratify D0 for the Mantel-Haenszel test. The reason for choosing
correlated attributes for stratification is discussed in Section 7.2.

In Lines 6, 8 and 9, the partial association between Y and
each attribute in Z is tested. As shown in the algorithm, CD-PS
does perfect stratification based on the values of the remaining
correlated attributes (i.e. Z \Xi).

The attribute, W that has the most significant partial associa-
tion with Y (i.e. has the largest Mantel-Haenszel test statistic) is
selected in Line 11. If the partial association between W and Y
is insignificant, in Lines 12 to 15 we terminate N by attaching
a pair of leaves with edges of 1 and 0 respectively and labelling
the leaves with the most probable values in data sets (D0|1) and
(D0|0) correspondingly. If the partial association is significant, W
is a context specific cause of Y and W is added to the tree in one
of the following two ways. If e = null, W is set as the root of
tree T; otherwise, W is added as a child node of N and the edge
between N and W is labelled as e. Line 21 removes W from
Z so it will not be used in the subtree again. In Lines 22 to 24,
TreeConstruct is called recursively for W with the context specific
data sets (D0|W = w) where w 2 {0, 1}.

The TreePruning function prunes leaves that do not have
distinct labels. The function back traces the tree from the leaf
nodes. When two sibling leaves of a parent node share the same
label, their parent is converted to a leaf node and is labelled with
the same label as their children in Line 3 of the function. Both
leaves are then pruned in Line 4.

5.2 CDT by stratification on propensity scores

As can be seen from Algorithm 1, CDT-SPS essentially follows
the same steps as CDT-PS except that:

1) CDT-SPS requires the 4th input, r, the user specified
number of subgroups of the stratification. As discussed
previously, normally r is between 5 to 10.

2) While CDT-PS conducts perfection stratification, i.e.
directly groups samples with the same values of the
covariates (Z\{Xi}) into the same strata using QuickSort
(see Line 8 of Algorithm 1), CDT-SPS firstly calculates
the propensity scores of each sample (Line 7 of the
TreeConstruct function) and then stratifies the data set
into r subgroups based on the propensity scores of the
samples. The propensity score of a sample is estimated
by doing logistic regression of Xi using Z \ {Xi}.

Algorithm 1 CDT with Perfect Stratification (CDT-PS) and CDT
with Stratification on Propensity Scores (CDT-SPS)
Input: D, a data set for the set of predictor attributes X = {X

1

, X
2

, . . . , Xm}
and the outcome attribute Y ; h

max

, the maximum height the tree; ↵, signif-
icance level for the Mantel-Haenszel (partial association) test and correlation
test; and r, the number of subgroups for stratification on propensity scores (for
CDT-SPS only).
Output: T, causal decision tree

1: let T = ; and h = 0
2: TreeConstruct(T , X, D, h, null) // T is the root of T
3: TreePruning(T)
4: return T

TreeConstruct(N , Z, D0, h, e)
1: if Z == ; OR (+ + h) == h

max

then
2: add two leaf nodes to N with edges e 2 {1, 0} and label each with

the most probable value of Y in (D0|N = e)
3: return
4: end if
5: find a set of attributes in Z that are correlated with Y in D0

6: for each correlated attribute Xi do
7: calculate propensity scores for each sample of D0 given the stratifying

attributes, Z\{Xi} // for CDT-SPS only
8: Stratify samples via QuickSort and specific grouping criterion

// for CDT-PS grouping according to the values of Z\{Xi}; for CDT-
SPS, grouping according to propensity scores and the given number of
subgroups, r

9: compute PAMH(Xi, Y ) in stratified D0

10: end for
11: find attribute W with the highest partial association test value
12: if partial association between W with Y is insignificant then
13: add two leaf nodes to N with edges e 2 {1, 0} and label each with

the most probable value of Y in (D0|N = e)
14: return
15: end if
16: if e == null then
17: let node W be the root of T
18: else
19: add node W as a child node of N and label the edge between N and

W as e
20: end if
21: remove W from Z
22: for each w 2 {0, 1} do
23: call TreeConstruct(W , Z, (D0|W = w), h, w)
24: end for

TreePruning(T)
1: for each leaf in T do
2: if its sibling leaf has the same label of Y value as itself then
3: change their parent node as a leaf node and label itself with the

common label
4: remove both leaves
5: end if
6: end for

5.3 Time complexity

The time complexity of CDT-PS mainly attributes to 3 factors:
tree construction, forming perfect strata, and causal tests.

For tree construction, at each split, firstly, we test the cor-
relation of each (unused) attribute with Y , and the complexity is
O(mn) where m is the number of predictor attributes and n is the
number of samples in the given data set. Then Mantel-Haenszel
tests with Y are conducted for all (relevant) attributes, and this is
the most expensive part of the algorithm. For each test, the context
specific data set D0 is sorted and strata are found in the data set,
which has a complexity of O(n log n), and for all the tests at
a split, the complexity is O(mn log n). At most we have 2hmax

splits. When h
max

is not big, it is a small number and let it be a
constant ns. Therefore the time complexity for tree construction
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is O(mn log n). For tree pruning, the algorithm traverses the tree
once and merge the leaves with the same labels under a branching
node, which takes a constant time (proportional to ns).

Overall the time complexity for building a CDT using CDT-PS
is O(mn log n).

For CDT-SPS, calculating propensity scores is time consum-
ing. The time complexity for logistic regression is O(n↵) where
2<↵3 depending on different optimisers [34]. The overall time
complexity for CDT-SPS is O(mn log n+mn↵) = O(mn↵).

CDT-SPS does not scale well as CDT-PS does. The detailed
comparisons regarding scalability are given in Section 6.4. How-
ever, the efficiency of CDT-SPS can be improved based on the
research for fast estimation of propensity scores [35].

6 EXPERIMENTS
To evaluate the CDT algorithms, CDT-PS and CDT-SPS, firstly
in Section 6.1 we experiment with 2 real world and 1 synthetic
data sets to show that CDTs are able to identify more interpretable
relationships when comparing to normal decision trees.

The normal decision trees are built using the C4.5 algo-
rithm [3] implemented in Weka [36] with default parameters.
It is difficult to evaluate discovered causal relationships as for
most real world data sets we do not have the ground truths (true
causal relationships). It is also impossible to use a method for
evaluating classifiers to assess causal discovery results, because
a model containing no causal relationships may give accurate
classification. Thus we take a common sense approach to do the
evaluation by using two data sets from which the results could
make sense to ordinary people. We examine the results to see if
they are reasonable, and contrast the CDTs to normal decision
trees built based on the data.

In Section 6.2 experiments with synthetic data sets are done to
demonstrate the ability of CDT-PS and CDT-SPS in finding causal
relationships comparing to the PC algorithm [11], a commonly
used Bayesian network learning algorithm.

Another set of experiments with 8 real world data sets are
carried out in Section 6.3 to compare the classification accuracy
of the CDTs and C4.5 trees.

In Section 6.4 the scalability of CDT-PS and CDT-SPS is
evaluated and compared with the C4.5 and PC algorithms.

In all experiments the significance level for Mantel-Haenszel
tests and association tests is 0.05, the number of subgroups for
CDT-SPS is 5, and the maximum height of a CDT is 5 except in
Section 6.3 where the heights of the CDTs are not limited.

6.1 CDTs find meaningful causal relationships
We use three data sets to illustrate that CDTs are able to identify
meaningful causal relationships in data. We will focus our discus-
sions on the differences in the results obtained by the CDTs and
normal decision trees. We will see that due to the the different
criteria used by the two types of trees for choosing branching
attributes, the resulting CDTs and normal decision trees are
different, and the CDTs represent justifiable causal relationships
whereas the normal decision trees may not.

6.1.1 Adult data set - census income

The Adult data set (Table 1) was retrieved from the UCI Machine
Learning Repository [37] and it is an extraction of 1994 USA
census database. It is a well known classification data set used
in predicting whether a person earns over 50K or not in a year.

TABLE 1
Summary of Adult and Ultra Short Stay Unit data sets

The Adult data set
Attributes yes no comment
age < 30 14515 34327 young
age > 60 3606 45236 old
private 33906 14936 private company employer
self-emp 5557 43285 self employment
gov 6549 42293 government employer
education-num>12 12110 36732 Bachelor or higher
education-num<9 6408 42434 education years
Prof 23874 24968 professional occupation
white 41762 7080 race
male 32650 16192
hours > 50 5435 43407 weekly working hours
hours < 30 6151 42691 weekly working hours
US 43832 5010 nationality
>50K 11687 37155 annual income, outcome

The Ultra Short Stay Unit (USSU) data set
Attributes yes no comment
Triage Category 1 43 4269 most urgent
· · · · · · · · ·
Triage Category 5 42 4270 least urgent
Male 2158 2154
Sunday 634 3678
· · · · · · · · ·
Saturday 607 3705
Diabetes 251 4061
Asthma 174 4138
Cardiovascular 142 4170
Renal 185 4127
Recent visit 650 3662
Summer 2013 3289
· · · · · · · · ·
Spring 1225 3087
Live in the city 2691 1621
Age 0-16 301 4011
Age 17-35 2060 2252
Age 36-64 2453 2859
Age 65+ 498 3814
Hours in USSU > 18 924 3388
Hours in ED > 3 1309 3003
Admitted 799 3513 outcome

<=50K

age<30

education-num>12

Male <=50K

<=50K

<=50K

Prof

>50K

Y N

Y N

Y N

Y N

Fig. 3. CDTs of the Adult data set

We recoded the data set to make the causes for high/low income
more clearly and easily understandable. The objective is to find
the causal factors of high (or low) income.

CDT-PS and CDT-SPS obtain the same CDT (see Figure 3)
with the Adult data set, and the normal decision tree built using
the data is shown in Figure 4.

From Figure 4, a normal decision tree may be large for high
classification accuracy, but a large tree has low interpretability.
Although it is possible to reduce the size of a classification tree,
its accuracy is sacrificed. The objectives of causal discovery and
classification are not consistent. We should note that classification
accuracy is not an objective of CDTs. Instead a CDT is built for
better interpretation. Hence smaller CDTs are preferred.

The next observation is crucial to show the difference between
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education-num>12

age<30 <=50K

<=50K Male

hours<30 Prof

<=50K Prof

>50K gov

age>60 hours>50

<=50K >50K Self-emp <=50K

<=50K >50K

hours>50 <=50K

gov <=50K

white US

<=50K >50K >50K <=50K

Y N

Y N

Y N

Y N

Y N

Y N

Y N Y N

Y N

Y N

Y N

Y N

Y N Y N

Fig. 4. A C4.5 decision tree of Adult data set

CDTs and normal decision trees. Causality based and classifica-
tion based criteria do not make the same choice. The root (the
first branching attribute) of the normal decision tree is ‘education-
num>12’ and the root of the CDT is ‘age<30’. In the following,
we provide the justification for the choice by the CDT.

Firstly we look at the choice by the normal decision tree. A
summary of the class distributions when the data set is partitioned
respectively by ‘education-num>12’ and ‘age<30’ is given as:

counts > 50K  50K
education-num>12 5820 6290
education-num12 5867 30865

counts > 50K  50K
Age�30 10941 23386
Age<30 746 13769

The classification error rates with the two attributes are 24.9%
and 49.4% respectively, showing that ‘education-num> 12’ is a
better classification attribute than ‘age<30’, but they do not imply
that ‘education-num>12’ is a stronger causal factor of salary levels.

To make a causal conclusion, a fair comparison is required.
We should not compare the salaries of different occupations or
compare the salaries of part time workers with full time workers.
Following this idea, to justify the choice made by the CDT, we
stratify the data based on the values of the relevant attributes
except for the candidate cause. We evaluate Claim I: “people with
education-num>12 receive higher salary” (and Claim II “people
younger than 30 receive lower salary”) in these strata. Claim I
receives support from 57% of the strata and Claim II receives
support from 80% of the strata. So Claim II is more generally true
than Claim I when other factors affecting salaries are eliminated.
Therefore, ‘age < 30’ is a stronger causal factor than ‘education-
num > 12’, and it is chosen by the CDT as the first branching
attribute. This demonstrates that the criterion used by a CDT
captures an important characteristics of causality, persistency [10],
[38], which a classification criterion fails to capture.

A visual illustration of the above discussions is shown in
Figure 5. To minimise classification errors (indicated by the red
areas in Figure 5 (a), i.e. the portion of samples inconsistent with
the tree labels), ‘education-num > 12’ is chosen by C4.5 as
the first branching attribute since it incurs significant less errors
than ‘age < 30’ (much smaller red areas for ‘education-num
> 12’). However, from Figure 5 (b) the choice of ‘education-
num > 12’ leads to a significantly higher percentage of strata in
which the causal relationship between ‘education-num > 12’ and
the outcome is disagreed (14% as indicated by the dark red area

Age<30: 14515 
≤50k: 13769  >50k: 746  

Age≥30: 34327 
>50k: 10941   ≤ 50k: 23386

A: 80%
Age<30

N:12% D:8%

Edu>12: 12110 
>50k: 5820  | ≤50k: 6290  

Edu≤12: 36732 
≤50k: 30865 | >50k: 5867 

A: 57%

A: agree; N: neutral; D: disagree

N:29% D:14%
Edu>12

(a) Sample distribution (b) Strata distribution

Fig. 5. An illustration of the different choices of a splitting attribute
between a normal decision tree and a causal decision tree

in the bottom diagram) than the case when ‘age < 30’ is chosen
(8%), therefore ‘age < 30’ is preferred by CDT in order to achieve
a higher percentage of strata agreeing on the causal relationship.

The causal influence of age on income can be seen in our
real life too. Young workers normally receive low salaries in
nearly all occupations regardless of their education levels, simply
because their lack of experience. For older workers, their salaries
are dependent on their education, professional occupations and so
on as indicated by the CDT.

6.1.2 The ultra short stay unit (USSU) data set

The USSU (ultra short stay unit) data was collected from the
emergency department of a regional hospital in Australia [39].
The data set records the information of patients who have used
the USSUs of the emergency department. The objective here is
to understand doctors’ decisions for hospital admission following
patients’ stays in the USSUs. The CDT and normal decision tree
built with the data set are quite different. We display and discuss
the two trees up to level 3 to illustrate the difference between them.

Referring to Figure 6 (left), the CDT has captured the oper-
ational mechanisms of the emergency department. In justifying
the root node of the CDT, when a patient stays in a USSU for
18 hours or longer (the maximum hours for a USSU stay are
20), doctors will get a strong indication of the seriousness of
the patient’s situation and thus the need of hospital admission.
So the root node of the CDT reflects the possible logic behind
the doctors’ decision that longer stay in the USSUs leads to the
need of hospital admission. Monday is a busy day since some
patients should be discharged during the weekend are discharged
on Monday. So, some patients to be admitted to the hospital wait
longer than normal at the USSUs. As a result, it appears that
Monday is a cause for a higher admission rate to the hospital for
those having waited longer at the USSUs. ‘Hours in ED>3’ (time
in the emergency department) also indicates the seriousness of a
patient’s condition (which will affect doctors’ judgment), and is a
causal factor of a patient being admitted. The paths of the CDT
are associated with doctors reasoning, decisions, and practices,
and hence they have causal interpretations.

The normal decision tree (Figure 6, right) picks up cardio-
vascular disease as its root. Cardiovascular disease seems to be
related to hospital admission, but let us explain why it is not a
causal factor. Patients with cardiovascular disease are mostly in
the mature and senior groups (age 36-64 and 65+) and there are
very few (or no) instances in the two other age groups. In other
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Hours in 
USSU>18

Monday Hours in ED>3

Admitted=Y Admitted=N Admitted=Y

Y N

Y N Y N

Admitted=N

Cardiovascular

Autumn Admitted=N

Y N

Y N

Admitted=N Admitted=Y

Fig. 6. CDT (left) and C4.5 tree (right) of the USSU data. The labels of a
CDT leaf indicate the proportionally larger number of instances instead
of the majority of instances. The distribution of the classes is so skewed
and the majority of instances is “Admitted=N” since its domination

words, ‘Cardiovascular disease ! Admitted’ does not represent
a persistent relationship in the data set since it does not receive
support from younger age groups. Hospital admission is a complex
decision, and cardiovascular disease is a too simplistic indicator
and may be misleading. For example, those senior patients with
cardiovascular disease are very likely to suffer from other diseases,
such as diabetes and renal disease, so their hospitalisation is a
result of poor health due to a number of diseases. Given that a
patient may have other diseases, cardiovascular disease does not
necessarily result in a significant increase of the chance of hospital
admission, and this indicates that cardiovascular disease is not a
cause. On the other hand, ‘Hours in USSU > 18 ! Admitted’
does reflect the mechanism of the complex decisions made by
doctors. It does not give a simple predictor for hospital admission
as we wished, but it does show the fact that there is a need for
doctors to make complex decisions.

Another interesting observation in this and the previous exam-
ple is that a normal decision tree quickly leads to the tree nodes
with small numbers of instances. For example the tree leaves
of the normal decision tree in Figure 6 (right) have 23, 62, and
3428 instances respectively. In contrast, the leaves of the CDT in
Figure 6 (left) have 95, 592, 780, and 2046 instances respectively.
The leaves with small number of instances may lead to small
classification errors but do not result in strong relationships.

6.1.3 A random data set

A CDT and a normal decision can be totally different. To demon-
strate this point, we build a CDT and a normal decision tree with a
randomised data set where there is no relationship at all. Values in
each of 10 attributes are randomly drawn with 50% 1s and 50% 0s
in the data set. When we try to learn a CDT from the data, no tree
is returned and this is expected. However, C4.5 grows a decision
tree as in Figure 7.

This result shows that the relationships in a normal decision
tree may not be meaningful at all and a more interpretable decision
tree, like a CDT, is necessary.

6.2 CDT identifies causal relationships
6.2.1 Finding global causal relationships

To show that CDTs are competent in discovering causal rela-
tionships, we use 5 groups of synthetic data sets, each group
containing 10 data sets with the same number of attributes, to
compare the findings of CDT-PS, CDT-SPS and the PC algorithm
[11] from the data. In total 50 data sets are used, and each data
set contains 10k samples. The data sets are generated using the
TETRAD tool (http://www.phil.cmu.edu/tetrad/). To create a data
set, in TETRAD we firstly generate randomly a causal Bayesian
network structure with the specified number of attributes (20, 40,
60, 80, or 100), and randomly select a node with a specified
degree (i.e. number of parent and children nodes, which is in

Fig. 7. A C4.5 decision tree of a randomly generated data set

the range of 3 to 7) as the outcome attribute for the data set.
The conditional probability tables of the causal Bayesian network
are also randomly assigned. The data set is then generated using
the built-in Bayes Instantiated Model (Bayes IM) based on the
conditional probability tables. The ground truth of the data is the
set of nodes directly connected to the outcome attribute in the
causal Bayesian network structure.

We then apply CDT-PS, CDT-SPS and PC to each of the 50
data sets, and for each group of the data sets, the average recalls
of the algorithms are shown in Table 2 (Part A). We do not use
pruning for CDTs in this set of experiments. The data is generated
by dependency and dependency may not produce distinct leafs as
classification. To be consistent with the nature of the data and the
criteria used by the methods for the comparison, pruning of CDTs
is used and we set the maximum height of a CDT to 5.

It can be seen that in general both CDT-PS and CDT-SPS
can detect similar percentages of causal relationships as PC does,
indicating that both CDT algorithms have comparable ability and
have obtained consistent results in discovering causal relationships
as the commonly used approach. We are aware that the causal
relationships identified by the CDT algorithms are context specific
while those discovered by PC is global or context free. However, it
is reasonable to assume that if a causal relationship exists with no
context, it should appear in the context too, and these relationships
have been mostly picked up by the CDTs.

TABLE 2
Average recalls of CDT and PC (95% confidence interval)

Part A: Average recall of global causal relationships
Group #D #V CDT-PS CDT-SPS PC

1 10 20 90.24%±0.07 87.37%±0.07 74.67%±0.17
2 10 40 89.17%±0.09 89.16%±0.09 78.83%±0.15
3 10 60 89.29%±0.09 89.28%±0.09 77.62%±0.12
4 10 80 83.62%±0.09 81.95%±0.11 90.05%±0.07
5 10 100 100.00%±0.00 97.14%±0.06 94.00%±0.08

Part B: Average recall of context specific causal relationships
Group #D #V CDT-PS CDT-SPS PC

6 10 20 80.83%±0.1 80.83%±0.1 n/a
7 10 40 74.67%±0.15 76.67%±0.16 n/a
8 10 60 72.23%±0.13 71.11%±0.14 n/a
9 10 80 66.03%±0.07 67.42%±0.07 n/a
10 10 100 56.15%±0.11 59.26%±0.11 n/a

#D: number of data sets in a group
#V: number of attributes in one data set

6.2.2 Finding context specific causal relationships

In order to test the performance of CDT-PS and CDT-SPS in
finding context specific causal relationships, we also use 5 groups
of synthetic data sets, each group containing 10 data sets with the
same number of attributes (20, 40, 60, 80 or 100).
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To create a data set, e.g. with 20 binary attributes,
{v

1

, v
2

, . . . , v
20

}, we firstly create a causal Bayesian network
structure with only one edge, e.g. from v

1

to v
20

(all other nodes
are isolated). With this structure, we use logistic regression to
simulate the data set for the Bayesian network. One of the two
causally related variables, e.g. v

20

is chosen as the outcome, then
v
1

in this example is the ground truth of the global cause of v
20

.
However, we do not know any context specific causal relationships
around v

20

. Our solution is to use v
1

as the context variable, and
apply PC-select [15] (also known as PC-simple [14]) to the two
partitions of the data set respectively, one partition containing all
the samples with (v

1

= 0) and one containing all the samples
with (v

1

= 1) (while the v
1

column is excluded). In this way, we
identify the variables that are causally related to v

20

within each
of the two contexts, (v

1

= 0) and (v
1

= 1), and use the findings
as the ground truth of the context specific causal relationships
around v

20

. PC-select is a simplified version of the PC algorithm
for finding causal relationships around a given outcome variable.

We then apply CDT-PS and CDT-SPS to each of the 50 data
sets. The CDT built from such a data set always has the node
causally related to the output selected as its root, i.e. the CDT
correctly finds the global causal relationship. Moreover, each of
the CDTs also contains context specific causal relationships. We
do not prune CDT trees in these data sets since some randomly
generated data sets have skewed distribution, which makes the
pruning too aggressive. We will design a pruning strategy for
skewed data sets in future work.

Table 2 (Part B) summarises the average recalls of CDT-PS
and CDT-SPS in finding the context specific causal relationships.
From the table, both CDT-PS and CDT-SPS are able to discover
the majority of the context specific causal relationships. PC, in
contrast, does not find any context specific causal relationships in
the data sets since it is not design for the purpose. If we want to
use PC to find the context specific causal relationships, we have
to run PC in each context specific data set, which is impractical.
On the other hand, the CDT algorithms proposed in this paper can
find context specific causal relationships in the complete data sets.

6.3 CDTs for classification

CDTs are designed for discovering and representing causal rela-
tionships, so they are not optimised for classification. However,
as causal relationships imply the underlying mechanisms of the
outcome variable taking different values due to the changes of the
cause variables, it is expected that CDTs can be classifiers with
good interpretability.

To validate the expectation, apart from the Adult and USSU
data sets, we apply CDT-PS to another 8 commonly used UCI
data sets (see Table 3), and compare the classification accuracy of
the obtained CDTs with the normal decision trees built using the
C4.5 implementation in Weka. Note that the Hypothyroid and Sick
data sets are retrieved from the Thyroid Disease folder of the UCI
Machine Learning Repository, discretised with the discretisation
utility of MLC++ [40]. The Car Evaluation data set originally
has 4 classes: acc, good, vgood, and unacc. In our experiment,
samples of the acc, good and vgood classes are merged into one
class. For these 8 UCI data sets, the attributes are nominal and
they are converted to binary ones before being applied to CDT-
PS. Since one nominal attribute is converted to multiple binary
attributes, for the 8 data sets we increase the the maximum number
of the relevant attributes (i.e. stratifying attributes) from 10 (the

default value) to 15 when building the CDTs (see Section 7.2 for
the discussions about limiting the number of stratifying attributes
in practice). Moreover, we do not set height limit to the CDTs
to make them comparable to C4.5 trees. Table 3 summarises
the results of the comparison, where the accuracy is the average
classification accuracy of the CDTs or C4.5 trees over the 10 runs
of cross validation for a data set.

TABLE 3
A comparison of classification accuracy of CDTs and C4.5 trees

Accuracy Tree size
Data set C4.5 CDT C4.5 CDT
Adult 80.80% 80.64% 29 9
USSU 81.17% 81.05% 51 39
BCW (orginal) 94.71% 91.7% 31 35
Car Evaluation 92.36% 93.98% 182 59
Congressional Voting 95.17% 94.71% 16 3
German Credit 72.10% 70.50% 96 17
Hypothyroid 99.21% 96.05% 14 21
K-R vs. K-P 99.44% 97.72% 59 57
Mushroom 100.00% 89.56% 28 9
Sick 98.00% 94.25% 27 15
Average 91.30% 89.02% 53 26

As expected, from Table 3, we see that overall the CDTs have
achieved similar classification accuracy as the C4.5 trees, with
an average accuracy of 89.02%, closely following the average
accuracy of C4.5 trees (91.30%). At the same time, most of the
CDTs are significantly smaller than the corresponding C4.5 trees,
and on average the CDTs are half-sized of the decision trees.

Furthermore, given the causal semantic of CDTs, they have
the potential to provide insight into the causal mechanisms of
the occurrence and changes of the outcome, thus making more
useful predictions or explanations and benefiting understanding
and decision making.

6.4 Scalability of the CDT algorithms
We test the scalability of CDT-PS and CDT-SPS by comparing
them with the C4.5 implemented in Weka [36] and the PC
algorithm [11]. We use 12 synthetic data sets generated with the
same procedure as described in Section 6.2.1. To be fair across
the data sets, we choose the nodes with the same degree as the
outcome attributes. The experiments are done using the desktop
computer with a Quad core 3.4 GHz CPU and 16 GB of memory.

The comparison results are shown in Figure 8. The run time
of CDT-PS is almost linear to the size of the data sets and the
number of attributes. It is less efficient than C4.5 but more efficient
than PC. CDT-SPS has good performance in terms of the number
of attributes, while it does not scale well with the number of
samples. A main reason for this observation is that in CDT-SPS,
the logistic regressions are invoked to estimate propensity scores
and their time complexity is polynomial to the size of a data set.
The results have shown that CDT-PS is practical for both high
dimensional and large data sets, while CDT-SPS is suitable for
high dimensional but small or medium data sets.

7 DISCUSSIONS

7.1 Difference from other causal trees
In this section, we differentiate CDTs from the conditional prob-
ability table tree (CPT-tree) [20] and causal explanation tree [21],
the causal trees derived from causal Bayesian networks.
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Fig. 8. The scalability of CDT in comparison to C4.5 and PC

A causal Bayesian network (CBN) [4] consists of a causal
structure of a directed acyclic graph (DAG), with nodes and arcs
representing random variables and causal relationships between
the variables respectively, and a joint probability distribution of
the variables. Given the DAG of a CBN, the joint probability
distribution can be represented by a set of conditional probabilities
attached to the corresponding nodes (given their parents). A
CBN provides a graphical visualisation of causal relationships,
a reasoning machinery for deriving new knowledge (effects) when
evidence (changes of causes) is fed into the network; as well as a
method for learning causal relationships in data. In recent decades,
CBNs have emerged, especially in the area of machine learning,
as a core methodology for causal discovery and inference in data.

A CBN depicts the relationships of all attributes under con-
sideration, and it can be complex when the number of attributes
is more than just a few. For example, it takes some effort to
understand the CBN in Figure 9 learnt from the Adult data set,
even though there are only 14 attributes in the data set. A CBN
does not give a simple model to explain the causes of an outcome
as our CDT does.

The conditional probability table tree (CPT-tree) [20] is de-
signed to summarise the conditional probability tables of a CBN
for concise presentation and fast inference. An example of CPT-
trees is shown in Figure 10. The probabilistic dependence rela-
tionships among the outcome Y and its parent nodes X

1

, X
2

and
X

3

(causes of Y ) are specified by a conditional probability table
where the probabilities of Y given all value assignments of its
parents are listed. The size of a conditional probability table is
exponential to the number of parent nodes of Y and can be very
large. For example, for 20 parent nodes, the conditional probability
table will have 1,048,576 rows. This table will be difficult to
display and the inference based on the table is inefficient too.
Given a context, i.e. one or more parent nodes taking an assign-
ment of a value, the probability of Y may be constant (without
being affected by the values of other parents). So a conditional
probability table can be represented clearly with a tree structure,
called a conditional probability table tree (CPT-tree), as illustrated
in Figure 10. In the CPT-tree, the causal semantics is naturally
linked to the CBN where all parent nodes are direct causes of Y .

There are two major differences between a CPT-tree and a
CDT. Firstly, CPT-trees are built from CBNs and CDTs are built
from data sets directly. Before building the CPT-trees, we already
know the causal relationships, and a CPT tree specifies how the
assignments of some cause variables link to outcome values. This
is impractical in many real world applications since we do not
know the CBN or we could not build a CBN from a data set,
particularly a large data set, as existing algorithms for learning
CBNs cannot handle a large number of variables and they often
only present a partially oriented CBN. Secondly, in a CBN, the
parents of a node Y are all global causes of Y . As a CPT-tree
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Fig. 9. A causal Bayesian network of the Adult data set
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Fig. 10. An illustration of CPT-tree. (L): A Bayesian network; (M): Condi-
tional probability table of Y ; (R): CPT-tree.

is derived from a CBN, all the variables included in a CPT-
tree are all global causes. However, it is possible that under a
context, a variable becomes causally related to Y . So such causal
relationships will not be discovered or represented by a CBN and
thus not by the CPT-trees too, but they can be be revealed and
represented by our CDTs.

A causal explanation tree [21] aims at explaining the outcome
values using a series of value assignments of a subset of attributes
in a CBN. A series of value assignments of attributes form a path
of a causal explanation tree, and a path is determined by a causal
information flow. The assignment of a set of attributes along a
path represents an intervention in the causal inference in a CBN.
The causal interpretation is based on the causal information flow
criterion used for building a causal explanation tree. However
this method is impractical since we do not have a CBN in
most real world applications as explained previously. Similarly a
causal explanation tree cannot capture the context specific causal
relationships encoded in a CDT, because the explanation tree is
obtained from a CBN, which only encodes global causes.

7.2 Practical considerations
The causal interpretation of a CDT is ensured by the evaluation in
the stratified data set of the difference in the potential outcomes of
a possible causal attribute Xi. In each stratum, the individuals are
indistinguishable, or the effect of the attributes possibly affecting
the estimation of the causal effect of Xi on Y is eliminated.
Therefore, the causal effects estimated using the stratified data
sets approach the true causal effects.

An assumption here is that the differences of individuals
should be captured by the set of covariates used for stratification.
This assumption implies causal sufficiency that all causes are
measured and included in the data set. A naı̈ve choice is to select
all attributes other than the attribute being tested (Xi) and the
outcome (Y ), for stratification. However, this is not workable for
high dimensional data sets since for perfect stratification many
strata will contain very few or no samples when the number of
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attributes is large and the estimation of propensity scores will
become problematic if the number of samples is small [31].
As a result, the CDT algorithms may not find any causal rela-
tionship. For example, diverse information, such as demographic
information, education, hobbies and liked movies, is collected as
personal profile in a data set. However, if all the attributes are
used for stratification, they reduce the chance of finding sizable
or reliable strata for the causal discovery. In fact, it is unwise to
use any irrelevant attributes, such as hobbies and liked movies, for
stratification when the objective is to study, e.g. the causal effect
of a treatment on a disease.

A reasonable and practical choice of stratifying attributes is
the set of attributes that may affect the outcome, called relevant
attributes in this paper. Differences in irrelevant attributes that do
not affect the outcome should not impact the estimation of the
causal effect of the studied attribute on the outcome. Therefore,
only those relevant attributes should be used to stratify a data
set, and this is what we have done in the CDT algorithms. In
case there are many relevant variables, which may result in many
small strata for perfect stratification or inaccurate estimation of
propensity scores, we restrict the maximum number of relevant
attributes to ten according the strength of correlations. The purpose
of this work is to design a fast algorithm to find causal signals in
data automatically without user interactions. We do tolerate certain
false positives and expect that a real causal relationship will be
refined by a dedicated follow-up observational study.

We limit the maximum number of relevant attributes for prac-
tical considerations. In many real world studies, the stratification
may have to be based on a limited number of demographic
attributes, e.g. gender, age group and residential areas. Thinking
about a heath study, it is very difficult to recruit volunteers with
the same background (age, diet, education, etc.), and stratification
on more than a few attributes is just impractical. Nonetheless con-
sidering stratification with even only a small number of attributes
is better than not using stratification.

CDTs help practitioners with the discovery of causal rela-
tionships in the following ways although it may not confirm
causal relationships: (1) Because of stratification, many spurious
relationships that are definitely not causal will be excluded from
the resulting CDTs, so practitioners will have a smaller set of
quality hypotheses for further studying; (2) Context specific causal
relationships are more difficult to be observed than global causal
relationships. CDTs are useful for practitioners to find hidden
context specific causal hypotheses.

8 CONCLUSION

In this paper, we have proposed causal decision trees (CDTs), a
novel model for representing and discovering causal relationships
in data.

A CDT provides a compact and precise graphical representa-
tion of the causal relationships between a set of predictor attributes
and an outcome attribute. The context specific causal relationships
represented by a CDT are of great practical use and they are not
encoded by existing causal models.

The algorithms developed for constructing a CDT utilises the
divide and conquer strategy for building a normal decision tree
and thus is fast and scalable to large data sets. The criterion used
for selecting branching attributes of a CDT is based on the well
established potential outcome model and partial association tests,
ensuring the causal semantics of the tree.

Given the increasing availability of observational data, we
believe that the proposed CDT method will be a promising tool for
automated discovery of causal relationships in data, thus to support
better decision making and action planning in various areas.
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