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Randomised controlled trials (RCTs) are the most effective approach to causal discovery, but in many cir-
cumstances it is impossible to conduct RCTs. Therefore observational studies based on passively observed
data are widely accepted as an alternative to RCTs. However, in observational studies, prior knowledge is
required to generate the hypotheses about the cause-effect relationships to be tested, hence they can only
be applied to problems with available domain knowledge and a handful of variables. In practice, many data
sets are of high dimensionality, which leaves observational studies out of the opportunities for causal dis-
covery from such a wealth of data sources. In another direction, many efficient data mining methods have
been developed to identify associations among variables in large data sets. The problem is, causal relation-
ships imply associations, but the reverse is not always true. However we can see the synergy between the
two paradigms here. Specifically, association rule mining can be used to deal with the high-dimensionality
problem while observational studies can be utilised to eliminate non-causal associations. In this paper we
propose the concept of causal rules (CRs) and develop an algorithm for mining CRs in large data sets. We
use the idea of retrospective cohort studies to detect CRs based on the results of association rule mining. Ex-
periments with both synthetic and real world data sets have demonstrated the effectiveness and efficiency
of CR mining. In comparison with the commonly used causal discovery methods, the proposed approach in
general is faster and has better or competitive performance in finding correct or sensible causes. It is also
capable of finding a cause consisting of multiple variables, a feature that other causal discovery methods do
not possess.
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1. INTRODUCTION
Causal discovery aims to infer the cause-effect relationships between variables. Such
relationships imply the mechanism of outcome variables taking their values and how
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the change of cause variables would lead to the change of the outcome variables
[Spirtes 2010]. In other words, causality provides the basis for explaining how things
have happened and for predicting how the outcomes would be when their causes have
changed. Therefore apart from being a fundamental philosophical topic, causality has
been studied and utilised in almost all disciplines, e.g. medicine, epidemiology, biology,
economics, physics, social science, as a basic and effective tool for explanation, pre-
diction and decision making [Guyon et al. 2010; Kleinberg and Hripcsak 2011]. Some
specific examples include the applications in medicine for developing new treatments
or drugs for a disease; and in economics for forecasting the results of a particular fi-
nancial policy and in turn to assist decision and/or policy making.

Randomised controlled trials (RCTs) are recognised as the gold standard for testing
the effects of interventions [Shadish et al. 2002; Stolberg et al. 2004]. However, it is
also widely acknowledged that in many cases it is impossible to conduct RCTs due to
cost and/or ethical concerns. For example, to find out the causal effect of alcohol con-
sumption on heart diseases, it will be unethical to require an experiment participant
to drink. Sometimes it is totally forbidden to manipulate a possible cause factor, for
example, in a life-threatening situation.

Under these circumstances, observational studies [Rosenbaum 2010; Concato et al.
2000] are considered as the best alternatives to RCTs, and it has been shown that
well-designed observational studies can achieve comparative results as RCTs [Concato
et al. 2000]. As suggested by the name, observational studies are based on passively
observed data, and they do not require manipulation of an exposure (i.e. a potential
cause factor). There are two main types of observational studies for causal discovery,
cohort studies and case-control studies [Song and Chung 2010; Blackmore and Cum-
mings 2004; Euser et al. 2009]. In a cohort study, based on the status of being exposed
to a potential cause factor (e.g. certain radiation), an exposure group of subjects and a
non-exposure or control group of subjects are selected, and then followed to observe the
occurrence of the outcome (e.g. cancer). In a case-control study, subjects are selected
based on the status of the outcome, i.e. the case group consisting of subjects with the
outcome and a control group of subjects without the outcome are identified, and then
their status of exposure to the potential cause factor is examined. In both types of stud-
ies, the effect of an exposure on the outcome is determined by comparing the difference
between the exposed/case group and control group. In order to achieve convincing re-
sult, an observational study must try to replicate a RCT as much as possible, i.e. the
covariate distributions of the two contrasting groups should be as close as possible.

Although observational studies provide an effective approach to causal discovery,
they work in the fashion of hypothesis testing, that is, at the commencement of a
study, a cause-effect relationship needs to be hypothesised. Then data are collected or
retrieved from databases for testing the hypothesis. This requires the prior knowledge
or anticipation of the exposures and outcomes, which may not always be available,
especially when the number of variables under study is large and the purpose is to
explore possible cause-effect relationships, instead of validating an assumed causal
relationship. For example, in the study of gene regulation, we may have a clear idea of
the possible genetic diseases (outcomes), but which genes could be the possible genetic
causes of the diseases may not be known at all. Given the huge number of genes (tens
of thousands), it is infeasible to test each gene to find the causes. Therefore to exploit
the wealth information in observational data using the well-established methodology
of observational studies, we firstly need some efficient ways to generate the hypotheses
with high confidence.

Another challenge with observational studies (as well as RCTs) is that even with
domain knowledge, it is difficult to foresee a combined cause. For example, multiple

ACM Transactions on Intelligent Systems and Technology, Vol. 00, No. 00, Article 00, Publication date: 2015.



From Observational Studies to Causal Rule Mining 00:3

genes may work together to cause a disease, which is normally hard to identify with
domain knowledge only.

This is where we can take the advantage of the outcome of data mining research. In
the last two decades, huge efforts have been made on association rule mining [Agrawal
et al. 1993] and many efficient algorithms have been developed to discover associ-
ation rules from large data sets [Han and Kamber 2005]. An association rule rep-
resents interesting associations among variables, for example, pizza → garlic bread;
{strong wind, high temperature} → falling trees. Although statistical associations do
not necessarily mean causality (for instance, buying garlic bread and pizza together
does not indicate that buying one is the cause of buying the other. Mostly likely this is
a consequence of a meal deal), it is commonly accepted that associations are necessary
for causality.

Our idea is thus to utilise the synergy of observational studies and association rule
mining to develop an efficient method for automated discovery of causal relationships
in large data sets. We firstly use association rule mining to find out the hypothesised
cause-effect relationships (represented as association rules) regarding an outcome.
Then for each of the hypotheses, we conduct an observational study (e.g. a cohort study)
to test if the exposure is a real cause, i.e. to identify if the association rule is a causal
rule.

As the LHS (left-hand-side or antecedent) of an association rule can comprise multi-
ple attributes, a favourable consequence of using association rule mining here is that
it can generate hypothesised causal relationships with compound exposure, such as
the rule shown above {strong wind, high temperature} → falling trees. In this case,
we consider the two attributes as one variable/exposure in our observational studies,
hence the validity of the combined cause can be tested.

In the rest of the paper, we will present the definition of causal rules and our ap-
proach to identifying CRs (Section 3), the algorithm for mining CRs (Section 4), and
the experiment results demonstrating the effectiveness and efficiency of the algorithm
(Section 5). Before the presentation, in Section 2, we firstly outline the related work
and show the contribution of this paper.

2. RELATED WORK AND CONTRIBUTION
Observational studies [Rosenbaum 2010; Concato et al. 2000] have had a very long
history, and there has been a great deal of research on observational studies, by both
statisticians and practitioners in medicine and other application areas. The main focus
of the research is on how to design good observational studies, including selection of
subjects or records, methods for identifying exposed and non-exposed groups to repli-
cate RCTs as closely as possible, and the ways for analysing the data. However, as
far as we know, there is little work done on using observational studies for automated
causal discovery in large, especially high-dimensional data.

In the field of computer science, causal discovery from observational data has at-
tracted enormous research efforts in the past three decades. Currently Bayesian net-
work techniques are at the core of the methodologies for causal discovery in computer
science [Spirtes 2010]. Bayesian networks provide a graphical representation of con-
ditional independence among a set of variables. Under certain causal assumptions,
a directed edge between two nodes (variables) in a Bayesian network represents a
causal relationship between the two variables [Spirtes 2010; Spirtes et al. 2001]. Over
the years, many algorithms have been developed for learning Bayesian networks from
data [Neapolitan 2003; Spirtes 2010]. However, up to now it is only feasible to learn
a Bayesian network with dozens of variables, or hundreds if the network is sparse
[Spirtes 2010]. Therefore, in practice it is infeasible to identify causal relationships
using Bayesian network based approaches in most cases.
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Indeed the difficulties faced by these causal discovery approaches originate from
their goal, i.e. to discover a complete causal model of the domain under consideration.
Such a model indicates all pairwise causal relationships among the variables. This,
unfortunately, is essentially impossible to achieve when the domain contains a large
number of variables. It has been shown that in general learning a Bayesian network
is NP-hard [Chickering et al. 2004].

Some constraint based approaches do not search for a complete Bayesian network,
so they can be more efficient for causal relationship discovery. Several such algorithms
have shown promising results [Cooper 1997; Silverstein et al. 2000; Mani et al. 2006;
Pellet 2008; Aliferis et al. 2010]. Based on observational data, these methods deter-
mine conditional independence of variables and learn local causal structures. How-
ever some of the methods are only capable of discovering the causal relationships rep-
resented with some fixed structures, e.g. CCC [Cooper 1997], CCU [Silverstein et al.
2000] and the Y structures [Mani et al. 2006], and they do not identify causal rela-
tionships that cannot be represented with these structures. The complexity of other
methods for learning a partial Bayesian network in general is still exponential to the
number of variables, unless accuracy and/or completeness are traded with efficiency
[Aliferis et al. 2010].

Our method tackles the problem of causal discovery from a different perspective. It
integrates two well-established methodologies in two different fields for relationship
discoveries. The main contribution of this paper is to propose a statistically sound and
computational efficient causal discovery method for causal relationship exploration.
Cohort studies have been widely accepted for identifying causal links in health, med-
ical and social studies, so the use of cohort studies to uncover causal relationships is
methodologically sound. In this paper, the theoretical validity of the proposed method
has also been justified by its connection with a well-known causal inference framework
– the potential outcome model [Pearl 2000; Morgan and Winship 2007]. Our goal is to
automate causal relationship discovery in data, making it possible to explore causal
relationships in both large and high dimensional data sets.

Our work also contributes to the area of association rule mining. Association rule
mining is a main data mining technique and has many applications in various fields,
but a major obstacle of association rule mining is that it produces too many rules and
many of them are uninteresting since they represent random associations in a data set
[Webb 2008; 2009; Tan et al. 2004; Lenca et al. 2008]. Cohort studies enable us to filter
out a large proportion of such uninteresting rules and keep the most interesting ones
for a broad range of applications since discovering causal relationships is the goal of
the majority of applications.

This paper is an extension of our preliminary work in [Li et al. 2013], with three
major developments: (1) A more explicit presentation of the motivation, goal and con-
tribution of the research in the newly written Sections 1 and 2; (2) A new section (Sec-
tion 3.5) for justifying the validity of the CR framework; (3) A new set of experiments
with a total of 13 synthetic data sets for evaluating the performance and scalability
of the proposed method , and new experiments on investigating the effect of different
matching methods (see Section 5).

3. CAUSAL RULES
3.1. Notations
Let D be a data set for a set of binary variables (X1, X2, . . . , Xm, Z), where
X1, X2, . . . , Xm are predictor variables and Z is a response variable. Values of Z are
of user’s interest, e.g. having a disease or being normal. Considering a binary data set
makes the conceptual discussions in the paper easier, and it does not lose the gener-
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ality of a data set that contains attributes of multiple discrete values. For example,
a multi-valued data set for the variables (Gender, Age, . . . ) is equivalent to a binary
data set for the variables (Male, Female, 0-19, 20-39, 40-69, . . . ). In this paper, both the
Male and Female variables are kept to allow us to have combined variables that involve
them separately, for example, (Female, 40-59, Diabetes) and (Male, 40-59, Smoking).
P is a combined variable if it consists of multiple variables X1, . . . , Xn where n ≥ 2,

and P = 1 when (X1 = 1, . . . , Xn = 1) and P = 0 otherwise.
A rule is in the form of (P = 1)→ (Z = 1), or p→ z where z stands for Z = 1 and p for

P = 1. p is also called a k-pattern where k is the length of P (the number of component
variables of P ). Our ultimate goal is to find out whether p→ z is a causal rule.

3.2. Association rules
With our approach, we first consider the association between P and Z since an associ-
ation is normally necessary for a causal relationship.

Odds ratio is a widely used measure for associations in retrospective studies [Fleiss
et al. 2003], and we define the odds ratio of a rule as follows.

Definition 3.1 (Odds ratio of a rule). Given the following contingency table of a
rule, p→ z,

z(Z = 1) ¬z(Z = 0)
p(P = 1) supp(pz) supp(p¬z)
¬p(P = 0) supp(¬pz) supp(¬p¬z)

where supp(x) indicates the support of patternX, the count of value x in the given data
set, D, and we have supp(p) = supp(pz) + supp(p¬z), supp(z) = supp(pz) + supp(¬pz),
and supp(pz) + supp(p¬z) + supp(¬pz) + supp(¬p¬z) = n, where n is the number of
records in the data set, then the odds ratio of the rule p→ z on D is defined as:

oddsratioD(p→ z) =
supp(pz) ∗ supp(¬p¬z)
supp(p¬z) ∗ supp(¬pz)

(1)

From the definition, the odds ratio of a rule is the ratio of the odds of value z occur-
ring in group P = 1 to the odds of value z occurring in group P = 0, so an odds ratio of 1
means that z has an equal chance to occur in both groups, and an odds ratio deviating
from 1 indicates an association (positive or negative) between Z and P .

Definition 3.2 (Association rule). Using the notations in Definition 3.1, the support
of a rule p → z is defined as supp(p → z) = supp(pz). Given a data set D, let min supp
and min oratio be the minimum support and odds ratio respectively, p → z is an as-
sociation rule if supp(p → z) > min supp and oddsratioD(p → z) > min oratio, and
LHS(p→ z) = p and RHS(p→ z) = z.

In the definition, we consider z as the RHS of a rule. An association rule that has ¬z
(Z = 0) as its RHS can be defined in the same way. These association rules (p→ z and
p→ ¬z) are class association rules [Liu et al. 1998] where the confidence (prob(z|p)) is
replaced by the odds ratio. Furthermore, only positive association between a predictor
variable and the response variable is considered in the above definition as in most
cased in practice, we are concerned about the occurrence of the predictor (i.e. P = 1)
leading to the occurrence of the response (i.e. Z = 1).

We note that the distribution of the values of the response variable can be skewed
and a uniform minimum support may lead to too many rules for the frequent val-
ues and few rules for the infrequent values. In the implementation, we use the lo-
cal support that is relative to the frequency of a value in the response variable, i.e.
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lsupp(p → z) = supp(pz)
supp(z) . The local support is a ratio and can be set the same, say 5%,

for rules that have z or ¬z as the RHS.
Traditional association rules are defined by support and confidence [Agrawal et al.

1993]. An association rule in the support and confidence scheme may not show a real
association between the LHS and RHS of a rule [Brin et al. 1997]. Therefore in the
above definition, we use odds ratio as the indicator of association. The minimum odds
ratio in the definition may be replaced by a significance test on oddsratioD(p → z) > 1
to ensure that an association rule indicates a significant association between the LHS
and RHS of the rule.

The test of significant association is determined as the following.
Let ω be the odds ratio of the rule p → z on the given data set D, i.e.

oddsratioD(p→ z) = ω. The confidence interval of ω, [ω−, ω+], is defined as [Fleiss et al.
2003]:

ω− = exp(lnω − z′
√

1

supp(pz)
+

1

supp(p¬z)
+

1

supp(¬pz)
+

1

supp(¬p¬z)
)

and

ω+ = exp(lnω + z′

√
1

supp(pz)
+

1

supp(p¬z)
+

1

supp(¬pz)
+

1

supp(¬p¬z)
)

where z′ is the critical value corresponding to a desired level of confidence (z′ = 1.96
for 95% confidence). ω− and ω+ are the lower and upper bounds respectively of an odds
ratio at a confidence level. If ω− > 1, the odds ratio is significantly higher than 1, hence
P and Z are associated. Equivalently, p→ z is an association rule.

An important advantage of the above process is that it is automatically adaptive to
the size of a data set. For a large data set, the confidence interval of an odds ratio is
small and hence a small odds ratio can be significantly higher than 1. For a small data
set, the confidence interval of an odds ratio is large and hence a large odds ratio is
needed to be significantly higher than 1.

However, statistically reliable associations do not always indicate causal relation-
ships although causality is mostly observed as associations in data, which can be illus-
trated by the following example.

Example 3.3. Suppose that we have generated an association rule: “Gender = m”
→ “Salary = low” from a data set with the following statistics:

Salary = low Salary = high
Gender = m 185 120
Gender = f 65 60

The ratio of low salary earners to high salary earners in the male group is 1.54:1 while
the ratio in the female group is 1.08:1. In other words, the odds for a male worker
receiving a low salary is 1.54 and the odds for a female worker receiving a low salary
is 1.08. The odds ratio of male and female groups receiving low salaries is 1.43, which
is greater than 1. Therefore as described previously, this odds ratio indicates a positive
association between “Gender = m” and “Salary = low”.

Is this association valid? Let us do further analysis by stratifying the samples by the
Education attribute. Assume that the statistics of the stratified data sets are:
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Salary = low Salary = high
Gender = m & College = y 5 20
Gender = f & College = y 15 40

and

Salary = low Salary = high
Gender = m & College = n 180 100
Gender = f & College = n 50 20

The above two tables indicate a negative association between “Gender = m” and
“Salary = low” because the odds ratio in the College education group is 0.67 and odds
ratio in the non-College education group is 0.72. Both contradict the association rule
“Gender = m”→ “Salary = low”.

We obtain two conflicting results here. This means that an association may be
volatile in a sub data set or a super data set. This is a phenomenon of the famous
Simpson Paradox [Pearl 2000], indicating that associations may not imply causal rela-
tionships.

Therefore our idea is to conduct a retrospective cohort study to detect true causal
relationships from identified association rules.

3.3. Cohort study
As discussed in Section 1, when randomised controlled trials are practically impos-
sible, observational studies are often used as the alternative approach to finding out
the possible cause-effect relationships. A major type of observational studies is cohort
studies, which can be conducted in either of the two ways, prospective and retrospec-
tive [Euser et al. 2009; Fleiss et al. 2003]. In a perspective cohort study, researchers
follow cohorts over time to observe their development of a certain outcome. In a retro-
spective study, researchers look back at events that already occurred. In a data mining
setting, as the data we have are historical records, we adopt the idea of a retrospective
cohort study in this paper.

A retrospective cohort study selects individuals who have exposed and have not ex-
posed to a suspected risk factor but are alike within many other aspects. For example,
middle aged male who have been smoking and who have not been smoking for a cer-
tain time period are selected for studying the effect of smoking on lung cancer. Here
smoking is the risk factor or exposure variable, and “middle aged” and “males” indicate
the common characteristics shared by the two cohorts. A significant difference in the
value of the outcome or response variable (lung cancer) of the two cohorts indicates a
possible causal relationship between the exposure variable and the response variable.

In the rest of the paper, with a binary exposure variable, we call the cohort where
the exposure variable takes value 1 the exposure group, the cohort where the exposure
variable takes value 0 the non-exposure group, and the set of variables determining
the common characteristics of the two groups the control variable set.

From the above description, the core requirement for a cohort study is to obtain the
matched exposure and non-exposure groups such that the distribution of control vari-
able set of the two groups are the same or very similar. For example, in a cohort study
to test whether gender is a cause of salary difference, the exposure variable is gender
and the control variable set consists of variables: education, profession, experience and
location. From a given data set, we will need to select samples for the exposure and
non-exposure groups so that the two groups have the same distribution regarding the
control variables. Then if there is a significant difference in salary between the two
groups, we can conclude that gender is a cause of salary difference.
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In the following, we will define causal rules using the idea of retrospective cohort
studies.

3.4. Causal rule definition
Given an association rule as a hypothesis that the LHS of the rule causes its RHS. The
variable of the LHS is an exposure variable and the variable of the RHS is the response
variable. Let all other variables be included in the control variable set initially. We will
discuss how to refine this control variable set in Section 4.2.

3.4.1. Fair data sets. Given a data set D, for an exposure variable, we use the following
process to select samples for the exposure and non-exposure groups (while the RHS
response is blinded). We firstly pick up a record ti containing the LHS factor (P =
1), and then pick up another record tj of which P = 0, and both ti and tj have the
“matched” values for all the control variables. Then ti is added to the exposure group,
tj is added to the non-exposure group, and both are removed from the original data
set. This process repeats until no more matched pairs can be found. As a result, the
distributions of the control variables in the exposure and non-exposure groups are
identical or similar to each other.

We formulate the above discussions as the following definition.

Definition 3.4 (Matched record pair). Given an association rule p → z and a set of
control variables C, a pair of records match if one contains value p, the other does not,
and both have the matched values for C according to certain similarity measure.

The simplest matching is the exact matching, in which we require a pair of
records have exactly the same values for control variables. For example, assume that
C = (A,B,E) is the control variable set for association rule p → z, then records
(P = 1, A = 1, B = 0, E = 1) and (P = 0, A = 1, B = 0, E = 1) form a matched pair.
Many other similarity measures can be used for finding matched pairs of records, e.g.
Euclidean distance, Jaccard distance [Han and Kamber 2005], Mahalanobis distance
and propensity score [Stuart 2010], each having its own merit and disadvantages. As
this paper is focused on developing and evaluating the idea of integrating association
rule mining and cohort studies for causal discovery, we do not conduct extensive inves-
tigation on the different matching methods, and in our experiments, we use the exact
matching and compare it with Jaccard distance matching.

Definition 3.5. [Fair data set for a rule] Given an association rule p → z that has
been identified from a data set D and a set of control variables C, the fair data set Df

for the rule is the maximum sub data set of D that contains only matched record pairs
from D.

Example 3.6. Given an association rule a → z identified using the following data
set, and the control variable set C = (M,F,H,U, P ), where M stands for Male, F for
Female, H for High school graduate, U for Undergraduate, and P for Postgraduate.

ID A M F H U P Z
1 1 0 1 0 0 1 1
2 1 0 1 0 1 0 1
3 1 1 0 1 0 0 0
4 1 1 0 0 0 1 1
5 0 0 1 0 0 1 0
6 0 0 1 0 1 0 0
7 0 1 0 1 0 0 0
8 0 1 0 1 0 0 1
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With exact matching, records (#1, #5), (#2, #6) and (#3, #7) form three matched pairs.
A fair data set for a→ z includes records (#1, #2, #3 #5, #6, #7).

In the above definition, the requirement of the maximum sub data set of D is for the
best utilisation of the data set.

Matches in a data set are not unique. A record may match more than one record. For
example, (#3, #7) and (#3, #8) both are matched pairs (in terms of record #3). When
there are two or more possible matches, we select a matched record randomly without
knowing the value of Z. In the experiments, we show that such a random selection will
cause variance in the results (different causal rules validated in different runs), so we
pick frequently supported rules in multiple runs to reduce the variance. However, the
experiments also show that the variance is small in large data sets (one to two rule
difference in three runs). Even in a small data set, more than 80% rules are consistent
over different runs.

Since with a fair data set for a rule the exposure and non-exposure groups are iden-
tical or similar except for the value of the exposure variable, if there is a significant
difference in the values of the response value between the two groups, it is reasonable
to assume that the difference of the outcome is caused by the difference of the values
of the exposure variable.

Next, we discuss how to detect the statistical difference of the values of the response
variable between the exposure and non-exposure groups, which will provide us the
method for testing whether an association rule is a causal rule or not.

3.4.2. Causal rules. When the values of the response variable are taken into consider-
ation, there are four possibilities for a matched pair: both records containing z, neither
containing z, record (P = 1) containing z and record (P = 0) not; record (P = 0) con-
taining z and record (P = 1) not. The counts of the four different types of matched
pairs in the fair data set for rule p→ z can be represented as the following:

P = 0
P = 1 z ¬z
z n11 n12
¬z n21 n22

In this table n11 is the number of matched pairs containing z in both the exposure
and non-exposure groups; n12 the number of matched pairs containing z in the expo-
sure group and ¬z in the non-exposure group; n21 the number of matched pairs con-
taining ¬z in the exposure group and z in the non-exposure group; and n22 the number
of matched pairs containing ¬z in both the exposure and non-exposure groups. In Ex-
ample 3.6, n11 = 0, n12 = 2, n21 = 0, and n22 = 1.

Using the above notation, we can have the following definition [Fleiss et al. 2003]:

Definition 3.7 (Odds ratio of a rule on its fair data set). The odds ratio of an asso-
ciation rule p→ z on its fair data set Df is:

oddsratioDf
(p→ z) =

n12
n21

(2)

In our experiments, we replace zero count by 1 to avoid infinite odds ratios.
The above definition leads to the definition of a causal rule:

Definition 3.8 (Causal rule). An association rule (p → z) indicates a causal rela-
tionship between P and Z (the variables for its LHS and RHS) and thus is called a
causal rule, if its odds ratio on its fair data set, oddsratioDf

(p → z) > min oratio,
where min oratio is the minimum odds ratio.
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Alternatively, to check if an association rule is a causal rule, we can use the signif-
icance test on the odds ratio of the rule on its fair data set with matched pairs. Let
oddsratioDf

(p → z) = ω′ in the fair data set, the confidence interval of the odds ratio
for matched pairs is defined as [Fleiss et al. 2003]:

ω− = exp(lnω − z′
√

1

n12
+

1

n21
)

and

ω+ = exp(lnω + z′
√

1

n12
+

1

n21
)

where z′ is the critical value corresponding to a desired level of confidence (z′ = 1.96
for 95% confidence) and ω′− is the lower bound of oddsratioDf

(p → z) in the confidence
level. If ω′− > 1, the odds ratio is significantly higher than 1, then we conclude that P
is a cause of Z.

Based on Definition 3.8, testing if an association rule is a causal rule becomes the
problem of finding the fair data set for the rule. A fair data set simulates the con-
trolled environment for testing the causal hypothesis represented by an association
rule. When the odds ratio of an association rule on its fair data set is significantly
greater than 1, it means that a change of the response variable is resulted from the
change of the exposure variable. We provide further justifications in the following sec-
tion.

3.5. Justifications for the definition of causal rules
The potential outcome or counterfactual model [Pearl 2000; Morgan and Winship 2007]
is a major framework for causal inference and it is widely used in social science, health
and medical research. In this section, we will demonstrate that the causal rules defined
over a fair data set is consistent with the causal relationships modelled under the
potential outcome framework.

In the potential outcome model, each individual i in a population has two potential
outcomes with respect to a treatment: when taking the treatment (Ti = 1), the poten-
tial outcome is Z1

i ; and when not taking the treatment (Ti = 0), the potential outcome
is Z0

i , where Z1
i and Z0

i are random variables taking values in {0, 1}. Zj
i = 1 (j ∈ {0, 1})

stands for an outcome of interest, such as a recovery.
In practice, we are only able to observe one potential outcome (Z1

i or Z0
i ) since an

individual can only be placed in either the treatment group (Ti = 1) or the control group
(Ti = 0), and the other potential outcome will need to be estimated. For example, if we
know that Jack did not take Panadol (i.e. Ti = 0 considering Panadol is the treatment),
and now he gets a high temperature (i.e. Z0

i = 1 assuming high temperature is an
outcome), the question that we are asking is, what the outcome would be if Jack had
taken Panadol, i.e. we want to know the potential outcome Z1

i . So the potential outcome
model is also called counterfactual model.

Let us assume that we have both Z1
i and Z0

i of an individual i. With the potential
outcome model, the causal effect of the treatment on i is defined as:

δi = Z1
i − Z0

i (3)

We often aggregate the causal effects on individuals in the population (or samples)
and obtain the average causal effect as the following, where E[.] is the expectation of a
random variable.

E[δi] = E[Z1
i ]− E[Z0

i ] (4)
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In the above equation i is kept as in other work on the counterfactual framework, to in-
dicate individual level heterogeneity of potential outcomes and causal effects [Morgan
and Winship 2007].

To link the above discussion to our definition of causal rules, treatment T and Zj
i

(j ∈ {0, 1}) are the exposure variable P and the response variable Z respectively in
the causal rule definition. In the following, we keep using the notation of the potential
outcome framework.

Since we are only able to observe one of the two potential outcomes for each individ-
ual i, the causal effect in equation (4) cannot be estimated from any data set directly.
However, it can be estimated under a perfect stratification of the data [Morgan and
Winship 2007], where for a stratum samples within treatment and control groups are
collectively indistinguishable from each other on the values of the stratifying variables
and the samples are only different on the observed treatment status. Furthermore the
outcome status of a sample is purely random. In this case, we can assume that:

E[Z1
i | Ti = 0, Dps] = E[Z1

i | Ti = 1, Dps] (5)

E[Z0
i | Ti = 1, Dps] = E[Z0

i | Ti = 0, Dps] (6)

where S represents that the data set is perfectly stratified using the stratifying vari-
ables.

The above equations indicate that the potential outcome of an individual taking a
treatment (in fact she/he has not) can be estimated by the ‘real’ outcome of the matched
individual who has taken the treatment. Similarly, the potential outcome of an indi-
vidual not taking a treatment (in fact she/he has taken) can be estimated by the ‘real’
outcome of the matched individual who has not taken the treatment.

Samples in a fair data set in fact are perfectly stratified, as samples in the exposure
and non-exposure groups have the same distribution in terms of the values of control
variables, and the value of the response variable of a sample in the exposure or in the
non-exposure group is random. Therefore according to equations (5) and (6), for a fair
data set Df , we have:

E[Z1
i | Ti = 0, Df ] = E[Z1

i | Ti = 1, Df ] (7)

E[Z0
i | Ti = 1, Df ] = E[Z0

i | Ti = 0, Df ] (8)

Let us now show how to estimate the causal effect, E[δi] with a fair data set. In a
fair data set, the number of individuals being treated is the same as the number of
individuals not being treated. Therefore the average causal effect can be represented
as the following:

E[δi]Df
=

1

2
(E[Z1

i | Ti =1,Df ]−E[Z0
i | Ti =1,Df ])+

1

2
(E[Z1

i | Ti =0,Df ]−E[Z0
i | Ti =0,Df ])

(9)
In the above formula, based on equations (7) and (8), we substitute E[Z0

i | Ti = 0, Df ]
and E[Z1

i | Ti = 1, Df ] for E[Z0
i | Ti = 1, Df ] and E[Z1

i | Ti = 0, Df ] respectively. As a
result, the average causal effect in the fair data set is estimated as the following:

E[δi]Df
= E[Z1

i | Ti = 1, Df ]− E[Z0
i | Ti = 0, Df ] (10)

where both outcomes are observable. So when there is no sample bias, we can remove
the superscripts and subscripts and obtain the average causal effect of the samples (or
a population) as the following:

∆ = E[Z | T = 1, Df ]− E[Z | T = 0, Df ] (11)
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This formula suggests that following the potential outcome model, the causal effect
is the difference of the outcomes in the treatment (exposure) group and the control
(non-exposure) group in a fair data set. In our definition of a causal rule, we also use
the difference of outcomes in different groups to identify causal rules, except that we
use the odds ratio to represent the difference as a cohort study does instead of the
above arithmetic difference. Therefore, the definition of a causal rule over a fair data
set is correct, in the sense that it is consistent with the approach under the potential
outcome framework.

4. ALGORITHM
In this section we present the algorithm (Algorithm 1) for causal rule mining (called
CR-CS in the rest of this paper). The algorithm integrates association rule mining with
causal relationship test based on cohort studies. In the following, we firstly discuss
two anti-monotone properties for efficient generation of candidate causal rules, and
we then discuss the selection of control variables for building a fair data set. Finally,
we introduce the details of detecting causal rules from the candidate causal rules.

ALGORITHM 1: Causal Rule mining with Cohort Study (CR-CS)
Input: Data set D with the response variable Z, the minimal local support δ, the maximum
length of rules k0, and the minimum odds ratio α.
Output: A set of causal rules
1: let causal rule set RC = ∅
2: add 1-patterns to a prefix tree T (see Section 4.3) as the 1st level nodes
3: count support of the 1st level nodes with and without response z
4: remove nodes whose local support is no more than δ // Support pruning
5: Let X be the set of attributes containing frequent 1-patterns
6: find the set of irrelevant attributes I
7: let k = 1
8: while k ≤ k0 do
9: generate association rules at the k-th level of T
10: for each generated rule ri do
11: find exclusive variables E of LHS(ri)
12: let control variable set C = X\(I, E, LHS(ri))
13: create a fair data set for ri // Function 1
14: if oddsratioDf (ri) > α then
15: move ri to RC

16: remove LHS(ri) from the k-th level of T // Observation 1
17: end if
18: end for
19: k = k + 1
20: generate k-th level nodes of T
21: count the support of the k-th level nodes with and without response z
22: remove nodes whose local support is no more than δ // Support pruning
23: remove nodes of patterns whose supports are the same as those of their sub-patterns

respectively // Observation 2
24: end while
25: output RC

4.1. Anti-monotone properties
Anti-monotone properties are at the core for efficient association rule mining. For ex-
ample a well known anti-monotone property is that a super set of an infrequent pattern
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is infrequent, and infrequent patterns are pruned before they are generated (called for-
ward pruning). We firstly discuss the anti-monotone properties that we will apply to
candidate causal rule pruning.

In the following discussions, we say that rule px→ z is more specific than rule p→ z,
or p→ z is more general than px→ z. Furthermore, we use cov(p) to represent the set
of records in D containing value p, and we call cov(p) the covering set of p. A rule is
redundant if it is implied by one of its more general rules.

OBSERVATION 1 (ANTI-MONOTONE PROPERTY 1). All more specific rules of a
causal rule are redundant.

PROOF. This observation is based on the persistence property of a real causal re-
lationship. Persistence means that a causal relationship holds in any condition. This
implies that when a rule is specified, although additional conditions are added to the
LHS of the rule, the conditions do not change the causal relationship. Therefore for the
purpose of discovering causal rules/relationships, more specific candidate causal rules
are implied by the general rule, and hence are redundant.

For example, if rule “college graduate→ high salary” holds, then we know that both
male college graduates and female college graduates enjoy high salaries. It is therefore
redundant to have the rules “male college graduate→ high salary” and “female college
graduate→ high salary”.

OBSERVATION 2 (ANTI-MONOTONE PROPERTY 2). If supp(px) = supp(p), rule
px→ z and all more specific rules of px→ z are redundant.

PROOF. If supp(px) = supp(p), then cov(px) = cov(p). In other words, both p → z
and px→ z cover the same set of records. There will be the same fair data set for both
rules. Therefore, if p→ z is a causal rule, so is px→ z. If p→ z is not a causal rule, nor
is px→ z. Hence rule px→ z is redundant.

Let rule pxy → z be a more specific rule of rule px → z. If supp(px) = supp(p), then
supp(pxy) = supp(py). Using the same reasoning above, we conclude that rule pxy → z
is redundant with respect to rule px→ z.

Since there are two anti-monotone properties in addition to the anti-monotone prop-
erty of support, it is efficient to use a level wise algorithm like Apriori [Agrawal et al.
1996]. Both anti-monotone properties 1 and 2 can be used in the same way as the
anti-monotone property of support.

4.2. Control variables
The set of control variables determines the size of a fair data set. If the control variable
set is large, the chance of finding a non-empty fair data set is small. Therefore we need
to find a proper control variable set, without compromising the quality of the causal
discovery. In the following we discuss how to obtain such a control variable set.

Let X represent the set of all predictor variables, and as before P is the exposure
variable and C is a set of control variables. Initially, let C = X\P .

Definition 4.1 (Relevant and irrelevant variables). If a variable is associated with
the response variable, it is relevant. Otherwise, it is irrelevant.

We do not control irrelevant variables, hence C = X\(P, I) where I stands for a set
of irrelevant variables.

The major purpose for controlling is to eliminate the effects of other possible causal
factors on the response variable. Other variables that are random with respect to the
value of the response variable can be considered as noises and need not to be controlled.
With Example 3.3, when we test the association rule “Gender = m” → “Salary = low”
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for finding a causal relationship, we should control variables like education, location,
profession and working experience. However, we do not control variables like blood
type and eye colour, since they are irrelevant to salary.

The combination of multiple irrelevant variables can be relevant. However, we do
not consider combined variables in the control variable set. There will be many com-
bined relevant variables and the support of combined variables are normally small.
Therefore when they are included in the control variable set, it is very likely to have
empty exposure or non-exposure groups.

Definition 4.2 (Exclusive variables). Variables P and Q are mutually exclusive if
supp(pq) ≤ ε or supp(¬pq) ≤ ε where ε is a small integer.

We do not control an exclusive variable of the exposure variable P , i.e. we let C =
X\(P, I,Q) where Q stands for a set of exclusive variables of P . Because if an exclusive
variable is controlled, the exposure group or the non-exposure group may be empty,
thus we are unable to do a cohort study. Let us take ε = 0 as an example. When
supp(pq) = 0, we will have samples with (P = 1, Q = 0), (P = 0, Q = 1) and (P = 0, Q =
0), but not (P = 1, Q = 1). In this case, for a record in the non-exposure group with
(P = 0, Q = 1), no match can be found in the exposure group with (P = 1, Q = 1).
When supp(¬pq) = 0, we will have samples with (P = 1, Q = 1), (P = 1, Q = 0) and
(P = 0, Q = 0), but not (P = 0, Q = 1), then for a record in the exposure group with
(P = 1, Q = 1), it is impossible to find a match with (P = 0, Q = 1).

A main type of exclusive variables are those caused by database constraints. For
example, P represents the highest qualification being high school andQ represents the
highest qualification being university degree. As they both belong to the same domain
in a relational data set, and an individual has only one highest qualification, P and Q
are mutually exclusive (supp(pq) = 0). In this case, it is not necessary to control Q as it
does not affect the finding about whether P is a cause of the response variable.

Another type of exclusive variables are redundant attributes. Let us assume that
two variables have the identical values but different names. e.g. P and Q. They are
mutually exclusive since supp(¬pq) ≤ ε. We do not need to test both separately to see
if they are causes of the response variable since one test is enough. However, if we
include Q in the control variable set, we will not be able to test P since the fair data
set is empty.

Exclusive variables can be confounding variables, for example P = thunder and
Q = storm may be mutually exclusive in a data set since supp(¬pq) ≤ ε. Let us assume
that they jointly cause the response. If we control Q, P will not be tested as a cause.
When we remove Q from the control variable set, we will be able to find P as a cause.
It is not difficult to find out that Q is a confounder of P in post processing since they
are strongly associated.

4.3. Candidate causal rule generation
This algorithm makes use of branch and bound search similar to Apriori [Agrawal
et al. 1996] for association rule mining. The algorithm employs support pruning plus
the two pruning criteria (Observations 1 and 2) presented in Section 4.1, and therefore
searches much smaller search space than Apriori. The algorithm is based on a prefix
tree structure for candidate generation, storage and counting. The prefix tree struc-
ture has been shown to support efficient implementation for branch and bound search
[Borgelt 2003].

A prefix tree is an ordered tree to store ordered sets (see Figure 1 for an example). In
our algorithm, each node stores a set of nonzero variable values (or a potential LHS of
a rule). We assume that nonzero variable values are coded and ordered, and this is to
prevent generating duplicate candidate causal rules. A node stores the prefix set of the
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Fig. 1: An example prefix tree. a, b, c, d stand for nonzero values of variables A,B,C
and D.

sets stored in its child nodes, and a child node is labeled by the different value between
its stored set and the set of its parent. The root of the prefix tree stores an empty set.

The set of labels along the path from the root to a node is the set of values stored in
the node. This index makes the search, insert, and delete a node easy. This property
also makes the counting of supports of value sets efficient too. If a set stored in a parent
node is not in a record, all sets stored in its child nodes will not be in the record too.
This property avoids many unnecessary search in the counting process. In the counting
process, each node store two counts, for example, supp(pz) and supp(p¬z). As a result,
the contingency table of p→ z is determined.

All super sets with the same prefix stored under a parent node storing the prefix.
When the parent node is removed, so are all super sets. This suits the forward pruning
for candidate causal rule generation very well. For more efficient pruning, the back-
track links to other parent nodes in the prefix tree are also added. For example, in
Figure 1 node abc links to node bc, and such link will facilitate the pruning by Anti-
monotone property 2.

Referring to Algorithm 1, the code involved in the candidate generation includes
Lines 2-4, 9, and 20-23. They are self-explanatory based on the discussions in this and
the previous subsection.

4.4. Causal rule detection
This process involves three steps, as discussed below.

4.4.1. Determining control variables. We firstly determine the set of irrelevant variables,
each of which is not associated with the response variable. For a variable Y , its associ-
ation with the response variable Z can be determined by the odds ratio of y → z. The
above identified irrelevant variables are excluded from the control variable set. These
are implemented by Lines 6 and 12.

Secondly we identify the exclusive variables of an exposure variable, say P , accord-
ing to Definition 4.2 where ε is set to the same value as the minimum local support.
We exclude the identified exclusive variables from the control variable set. These are
implemented by Lines 11 and 12.

The remaining variables then form the control variable set. The control variable set
can be viewed as a set of patterns in association rule mining. For example, if male,
female, college and postgraduate form the control variable set, the set includes the
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Function 1 Create a fair data set for rule p→ z
Input: Data set D, rule p→ z, and control variable set C
Output: a fair data set for rule p→ z, Df

1: find the covering set of c(C = 1), Dc

2: split Dc into Dcp and Dc¬p // Dcp contains value p and Dc¬p does not
3: let Df = ∅
4: for each record ti in Dcp // assuming |Dcp| ≤ |Dc¬p|. If not, swap Dcp and Dc¬p. do
5: for each record tj in Dc¬p do
6: if ti and tj are matched w.r.t the values of C then
7: move ti and tj to Df

8: end if
9: end for
10: end for
11: output Df

patterns {(male, college), (male, postgraduate), (female, college), (female, postgradu-
ate)}.

4.4.2. Creating fair data set. We select the samples from the given data set D to get the
fair data set for rule p→ z, following the procedure listed in Function 1. We firstly find
the covering set of c. Then the covering set of c is split into two subsets: one containing
value p, denoted by Dcp, and the other containing value ¬p (or P = 0), denoted by Dc¬p.
Assume that |Dcp| ≤ |Dc¬p| (if not, we swap the order in the following description). For
each record in Dcp, find a matched record in Dc¬p with respect to the control variable
set. We have implemented exact matching and the matching using Jaccard distance. If
there are more than one matched records, choose one randomly. Add the pair of records
to the fair data set. If there is no matched record in Dc¬p, move to the next record.

4.4.3. Testing causal rules. To check if an association rule p → z is a causal rule, we
firstly follow Definition 3.7 to calculate the odds ratio of the rule on its fair data set cre-
ated in the previous step. Then according to Definition 3.8, if the odds ratio is greater
than the given minimum odds ratio, we can say that p → z is a causal rule. This has
been implemented by Line 14 in Algorithm 1. Alternatively, we can use the method
introduced in Section 3.4.2 to test the significance of the odds ratio of the rule on its
the fair data set. If the odds ratio is significantly higher than 1 for a given confidence
level, then we conclude that P is a cause of Z.

5. EXPERIMENTS
5.1. Data sets and parameters
To evaluate CR-CS, the proposed causal rule mining algorithm, twenty four synthetic
data sets and eight frequently used public data sets were employed in the experi-
ments. A summary of the data sets is given in Table I. The number of variables in the
table refers to the number of predictor variables in a data set. All predictor variables
and the response variable are binary variables, with values of 1 or 0 indicating the
presence or absence of an attribute correspondingly. The class variable in each of the
eight public data sets is set as the response variable in our experiments. The distribu-
tions refer to the percentages of the two different values of response variables in the
data sets. For the synthetic data sets, the ground truth column represents the num-
ber of true single causes and known combined causes each consisting of two predictor
variables.

The first fifteen synthetic data sets in Table I were used to evaluate the performance
of CR-CS in finding single causal rules in comparison with the Bayesian network based
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Table I: A summary of data sets used in experiments

Name #Records #Variables Distributions Ground Truth
V20-2K 2000 19 41.9% & 58.1% 7
V20-5K 5000 19 41.9% & 58.1% 7
V20-10K 10000 19 41.9% & 58.1% 7
V40-2K 2000 39 37.6% & 62.4% 7
V40-5K 5000 39 37.6% & 62.4% 7

V40-10K 10000 39 37.6% & 62.4% 7
V60-2K 2000 59 52.5% & 47.5% 7
V60-5K 5000 59 52.5% & 47.5% 7

V60-10K 10000 59 52.5% & 47.5% 7
V80-2K 2000 79 50.6% & 49.4% 8
V80-5K 5000 79 50.6% & 49.4% 8

V80-10K 10000 79 50.6% & 49.4% 8
V100-2K 2000 99 48.1% & 51.9% 6
V100-5K 5000 99 48.1% & 51.9% 6

V100-10K 10000 99 48.1% & 51.9% 6
V200-10K 10000 199 19.8% & 80.2% 20
V400-10K 10000 399 19.8% & 80.2% 40
V600-10K 10000 599 19.8% & 80.2% 60
V800-10K 10000 799 19.8% & 80.2% 80
V1000-10K 10000 999 19.8% & 80.2% 100

Name #Records #Variables Distributions Known combined rules
V8-2K 2000 7 45.1% & 54.9% 2

V12-2K 2000 11 72.1% & 27.9% 3
V16-2K 2000 15 45.2% & 54.8% 3

V20-2K-cmb 2000 19 55.6% & 44.4% 4
German 1000 60 30.0% & 70.0% -
Kr-vs-kp 3196 74 47.8% & 52.2% -

Mushroom 8124 215 48.2% & 51.8% -
Tic-tac 958 27 34.7% & 65.3% -
Adult 48842 99 23.9% & 76.1% -

Hypothyroid 3163 51 4.8% & 95.2% -
Sick 2800 58 6.1% & 93.9% -

Census income 299285 495 6.2% & 93.8% -

methods, PC-Select, CCC, and CCU. Those synthetic data sets of random Bayesian net-
works were generated using the TETRAD software (http://www.phil.cmu.edu/tetrad/).
In TETRAD, we firstly generate randomly the structure of the BN using the “simulate
data from IM” template. The conditional probability table was also randomly assigned,
which will be used to simulate the data. The data sets were then generated using the
built-in Bayes Instantiated Model (Bayes IM). In the Bayes IM, the data of each binary
variable was randomly generated so that the distributions of all the variables satisfy
the constraints in the conditional probability tables. We selected a node in each of the
BNs as the fixed target for running the algorithms.

The next five synthetic data sets (V200-10K, ..., V1000-10K) were used to assess the
efficiency of the algorithms. To generate those large data sets with a fixed propotion of
nodes being the parents of the target node (which is not practical with TETRAD), we
firstly draw simple BNs where some predictor variables are parents of the response
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variable, and some are not. We then use logistic regression to simulate the data sets
for those BNs. The total number of causes in each BN is given in Table I.

Meanwhile the four data sets, V8-2K, V12-2K, V16-2K, and V20-2K-cmb, are for
assessing the ability of CR-CS to discover combined causes. These four synthetic data
sets have been generated with the following procedure. We firstly generate a data
set for a random BN using TETRAD and choose a node as the target. To create a
known combined cause, we randomly select a parent variable, X, of the target in the
generated BN to split it into two new variables, Xa, Xb. The new variables must satisfy
two conditions: (1)X = Xa ∧Xb (i.e. X = 1 if and only if Xa = 1 and Xb = 1), and (2) Xa

and Xb are not associated with the response variable. The number of known combined
causes are shown in Table I. Note that we do not have a complete ground truth of all
combined causes, as there may be other combined causes in the data set due to the
combinations of non-causal single variables. In the experiments, we investigate the
performance of CR-CS in terms of the ability to recover known combined causes.

Among real world data sets, Hypothyroid and Sick are two medical data sets and
they were originally retrieved from the Thyroid Disease folder of the UCI Machine
Learning Repository [Bache and Lichman 2013] and then discretised by using the
MLC++ discretisation utility [Kohavi et al. 1996]. The Adult data set is an extrac-
tion of the USA census database in 1994 and it was also retrieved from the same
repository. In our experiments, all continuous attributes have been removed from the
original Adult data set. These three data sets were used in the experiments for testing
the effectiveness of CR-CS, in comparison with other methods (see Sections 5.2 and
5.3). They were also used for evaluating the stability (Section 5.4) of CR-CS and the
impact of different matching methods (Section 5.5).

The Census Income (KDD) data set was also sourced from the UCI Machine Learn-
ing Repository. We combined the training and test data sets and then sampled 50K,
100K, 150K, 200K and 250K records for the experiments. Continuous attributes have
been removed. The data set and the last five synthetic data sets (with 10K records)
were used to assess the efficiency of CR-CS (Section 5.6). Other real world data sets
are also from UCI Machine Learning Repository and are used to investigate the num-
ber of combined causes discovered by CR-CS.

In the experiments, while the default minimum local support (δ in Algorithm 1) was
0.05, we set it to 0.01 for the Adult data set in the comparison with the other three
methods, CCC [Cooper 1997], CCU [Silverstein et al. 2000] and PC-select [Colombo
et al. 2014]. The confidence level was set to 99% for calculating the confidence interval
(lower bounds and upper bounds) of the odds ratio for synthetic data sets, and 95% for
real world data sets considering the noises in the real world data sets.

5.2. Causal rules vs. association rules
Causal rules have advantages over association rules. An association rule may repre-
sent a spurious relationship between two variables as a statistical association does
not necessarily mean that the two variables are related or directly related (while a
causal rule indicates that the two variables have a direct relationship given the ob-
served variables). Those spurious association rules could not be removed by increasing
thresholds. They can only be identified by analysing the relationship by shielding the
effects of other variables.

To investigate the difference between association rule mining and causal rule min-
ing, we compared the results obtained by CR-CS with the results of various types of
association rule mining. From Table II, the number of causal rules is significantly
smaller than the numbers of other types of (association) rules, including association
rules [Agrawal et al. 1996], non-redundant rules [Zaki 2004], and optimal rules [Li
2006]. Associations are measured by the odds ratio defined in Definition 3.1, and their
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Table II: Comparison of the numbers of association rules (AR), non-redundant rules
(NRR), optimal rules (OR) and causal rules (CR). Many association and interesting
rules are not causal.

#AR #NRR #OR #CR
Adult 3108 2863 976 46
Hypothyroid 39476 17692 3237 30
Sick 56183 28698 3917 21

significance is tested using the method discussed in Section 3.2, and all the methods
used the same minimum local support. The maximum length of rules is 4.

The number of causal rules obtained from a data set is very small. They may not be
enough for classification since not every record in the data is covered by a causal rule.
However, they are more reliable relationships since each causal rule is tested by the
cohort study in data.

Most discovered causal rules (99%) are short and include one or two variables, which
makes it easy for these rules to be easily interpreted and applied to solve real world
problems where only short rules are preferred.

5.3. Causal rules vs. findings of other causal discovery methods
To evaluate the performance of CR-CS, we conducted a set of experiments with the first
15 synthetic data sets and 3 real world data sets, Adults, Hypothyroid and Sick, and
compared the performance of CR-CS with the constraint based methods, CCC [Cooper
1997], CCU [Silverstein et al. 2000], and PC-select [Colombo et al. 2014].

As mentioned in Section 2, CCC [Cooper 1997] and CCU [Silverstein et al. 2000] are
two efficient constraint based causal discovery methods. Both of them learn the simple
structures involving three variables with certain dependence/independence relation-
ships among them, and infer causal relationships from the structures. Both methods
assume no hidden and no confounding variables in data sets. PC-select [Colombo et al.
2014] is a local causal discovery method that finds all the parents and children of a
given node. It is similar to the well-known PC algorithm [Spirtes et al. 2001] for learn-
ing a Bayesian network, except that it only finds the local causal relationships around
a given response variable. The PC algorithm can return optimal result

In the experiments, CCC and CCU were restricted to identify the structures involv-
ing the response variables only. When a statistical significance test was involved, 95%
confidence level is used. With our method (CR-CS), since there are small variations in
the causal rules discovered in different runs due to random selection of matched pairs
when a record has multiple matches, in the experiments, with one data set, we gener-
ated causal rules (i.e. ran the algorithm) three times and chose the rules occurring at
least twice in the three runs.

5.3.1. Experiment results of synthetic data. Table III shows the precision (P ), recall (R),
and F1-measure (F1) of the four methods for the 15 synthetic data sets with different
number of variables and samples. As we can see from the table, PC-select and CR-CS
are significantly better than CCC and CCU in precision, recall, and F1 measure. CR-CS
and PC-select achieve good results with more than 70% in precision and F1 measure
for most of the synthetic data sets.

To investigate if a method performs better than the other, for each pair of methods,
we conduct the Wilcoxon test [Demšar 2006] of the F1-measures of the results obtained
by the pair of methods with the fifteen data sets. Table IV shows the pairwise test
results for the four methods. Overall, PC-select and CR-CS are significantly better
than CCC and CCU, but there is no evidence to conclude that CR-CS or PC-select is
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Table III: Performance of CCC, CCU, PC-select, and CR-CS in finding single rules with
synthetic data sets. P , R and F1 represent precision, recall and F1-measure, respec-
tively.

CCC CCU PC-select CR-CS
P R F1 P R F1 P R F1 P R F1

V20-2K 0.75 0.86 0.80 1.00 0.57 0.73 0.83 0.71 0.77 1.00 0.57 0.73
V20-5K 0.63 1.00 0.78 0.50 0.43 0.46 1.00 1.00 1.00 0.86 0.86 0.86

V20-10K 0.55 0.86 0.67 0.40 0.29 0.33 1.00 0.86 0.92 1.00 0.86 0.92
V40-2K 0.50 0.86 0.63 0.50 0.43 0.46 0.83 0.71 0.77 1.00 0.52 0.73
V40-5K 0.57 1.00 0.74 0.57 0.57 0.57 1.00 1.00 1.00 1.00 1.00 1.00

V40-10K 0.41 1.00 0.58 0.30 0.43 0.35 0.88 1.00 0.93 1.00 1.00 1.00
V60-2K 0.27 0.57 0.36 0.00 0.00 0.00 0.80 0.57 0.67 1.00 0.57 0.73
V60-5K 0.38 0.86 0.52 0.40 0.29 0.33 0.86 0.86 0.86 1.00 0.86 0.92

V60-10K 0.30 0.86 0.44 0.33 0.57 0.42 0.86 0.86 0.86 0.83 0.71 0.77
V80-2K 0.75 0.75 0.75 1.00 0.38 0.55 1.00 0.75 0.86 1.00 0.63 0.77
V80-5K 0.55 0.75 0.63 1.00 0.50 0.67 1.00 0.75 0.86 1.00 0.75 0.86

V80-10K 0.66 0.88 0.74 0.67 0.25 0.36 0.88 0.88 0.88 1.00 0.88 0.93
V100-2K 0.43 1.00 0.60 0.25 0.33 0.29 0.75 1.00 0.86 0.80 0.67 0.73
V100-5K 0.29 0.83 0.44 0.17 0.17 0.17 0.63 0.83 0.71 0.80 0.67 0.73

V100-10K 0.35 1.00 0.52 0.57 0.67 0.62 1.00 0.83 0.91 0.71 0.83 0.77

better than the other. However, note that PC-select is only suitable for data sets with
small number of nodes or sparse data sets with small number of causes of the target.
It took more than two hours for PC-select to complete when it was applied to the
synthetic data set with 100 nodes and 20 causes of the target, and it failed to return
results for the data set with 120 nodes with 26 causes of the target within 24 hours.

Table IV: Wilcoxon signed ranks test results for the four methods with F1 measure
listed in Table III

p-value CR-CS PC-select CCC CCU
CR-CS - 0.769 3.74E-04 2.51E-06

PC-select 0.244 - 2.49E-05 2.63E-06
CCC 1.000 1.000 - 0.002
CCU 1.000 1.000 0.998 -

To evaluate the ability of CR-CS in recovering combined causal rules, we use syn-
thetic data sets with known combined rules as described in section 5.1. We applied
CR-CS to the four data sets, V8-2K, V12-2K, V16-2K, and V20-2K-cmb to discover
level 2 rules with the 99% confidence level. The experiment results have shown that
CR-CS can recover all known combined rules, including 2 rules in V8-2K, 3 rules in
V12-2K, 3 rules in V16-2K, and 4 rules in V20-2K. There are also 5, 3, 16, and 15 extra
combined rules discovered by CR-CS in the four data sets, respectively. We do not have
a means to test if extras are real combined causes. However, the results show that the
method is able to uncover known combined causes.

5.3.2. Experiment results of real world data. With the Adult data set, as shown in Table
V, CR-CS, CCC and CCU discovered similar number of rules, while PC-select found a
relatively small number of rules.

When we look into the rules discovered by these methods, they are quite different.
We list in Table VI the most similar and dissimilar rule groups found in the Adult
data set using CR-CS and the other methods. We can see that overall CR-CS and PC-
select obtained similar results, while only for the variables related to the Education
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Table V: Number of causal rules/relationships discovered by CR-CS, CCC, CCU and
PC-select with real world data sets

CR-CS CCC CCU PC-select
Adult 46 53 46 19
Hypothyroid 30 14 10 4
Sick 21 13 3 5

attribute, rules discovered by CR-CS and PC-select are similar to those discovered by
CCC and CCU.

Intuitively, Education is the major factor affecting incomes. We see that people with
higher education have a better chance for a high salary, such as, doctorate, masters,
bachelors, and professional school (prof-School). In contrast, people with lower edu-
cation more likely receive a low salary, for example some college but no degree and
lower.

Rules discovered by CR-CS and PC-select are dissimilar to those found by CCC and
CCU in relation to the Occupation, Workclass and Native-country attributes. There
are 11 rules discovered by CR-CS with respect to the Occupation attributes, but only
one rule is discovered by CCC and CCU in this group. CCC and CCU have missed some
very reasonable causal factors for high/low salary. For example, “exec-managerial” and
“prof-specialty” for high salary, and “handlers-cleansers” and “adm-clerical” for low
salary are reasonable causal rules, but they have been missed by CCC and CCU. PC-
select, although found fewer number of rules in this group (Occupation), the rules
found by it are reasonable. On the other hand, 22 rules related to the Native Country
attributes are discovered by CCC, 17 rules by CCU, but only 1 rule by CR-CS in this
group. PC-select found two rules in this group, again performing more consistently
with CR-CS. Intuitively, Native Country should not a factor for high/low salary. This
shows that CR-CS is able to discover more reasonable causal rules.

The combined causal rule discovered by CR-CS is also reasonable. As shown in Ta-
ble VI, people with some-college education but without any degree and working in a
private sector would have low salaries. CR-CS did not discover that people with some-
college or with private work-class would have low income at the single rule level as
found by CCC and CCU, but it provides more details with the combined causal rule.

To investigate the number of combined causal rules in real world cases, we run CR-
CS for eight real world data sets with up to level 4 rules. Table VII shows the number
of single and combined causal rules discovered by CR-CS with the 95% confidence
level. We can see that the combined causal rules at level 3 and 4 are rare, but CR-
CS found a number of combined causal rules at the second level. Although we do not
have a ground truth to validate all of the combined rules, some rules are reasonable
based on common knowledge. For example, with the Mushroom data set, we can see
from Table VIII that poisonous mushrooms are pink and have either evanescent ring
type or white spore print. Our common understanding is that poisonous mushrooms
are normally in bright color, but not all brightly colored mushrooms are poisonous.
These combined causal rules provide more detail on the poisonous mushrooms than
just based on their colors, and therefore they are useful in practice. Similarly, CR-CS
discovers that mushrooms without bright color and odor are edible, and these rules are
also reasonable.

5.4. Stability
The creation of a fair data set is subject to selection bias. Usually there are significantly
more exposed cases than non-exposed cases so the data distribution is often skewed for
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Table VI: The similar and dissimilar causal rule groups discovered by CR-CS and the
other methods in the Adult data set. (some-college: Some college but no degree; exec-
managerial: Executive admin and managerial; prof-specialty: Professional specialty;
handlers-cleaners: Handlers equip cleaners etc.; machine-op-inspct: Machine opera-
tors assemblers & inspectors; adm-clerical: Admin support including clerical; other-
service: Other services; farming-fishing: Farming forestry and fishing. sel-emp-inc:
Self-employed-incorporated; sel-emp-not-inc: Self-employed-not incorporated.)

Causal rules CR-CS CCC CCU PC-select
Education=doctorate→ > 50K

√ √ √ √

Education=masters→ > 50K
√ √ √ √

Education=bachelors→ > 50K
√ √ √ √

Education=prof-School→ > 50K
√ √ √ √

Education=some-college→ ≤ 50K
√ √

Education=HS-grad→ ≤ 50K
√ √ √

Education=12th→ ≤ 50K
√ √ √

Education=11th→ ≤ 50K
√ √ √ √

Education=10th→ ≤ 50K
√ √ √ √

Education=9th→ ≤ 50K
√ √ √ √

Education=7-8th→ ≤ 50K
√ √ √ √

Education=5-6th→ ≤ 50K
√ √ √

Education=1-4th→ ≤ 50K
√ √

Education=preschool→ ≤ 50K
√

Occupation=exec-managerial→ > 50K
√ √

Occupation=prof-specialty→ > 50K
√

Occupation=tech-support→ > 50K
√ √ √

Occupation=sales→ > 50K
√

Occupation=handlers-cleaners→ ≤ 50K
√ √

Occupation=machine-op-inspct→ ≤ 50K
√

Occupation=adm-clerical→ ≤ 50K
√

Occupation=other-service→ ≤ 50K
√ √

Occupation=farming-fishing→ ≤ 50K
√ √

Occupation=transport-moving→ ≤ 50K
√

Occupation=craft-repair→ ≤ 50K
√

Workclass=sel-emp-inc→ > 50K
√ √ √

Workclass=sel-emp-not-inc→ > 50K
√ √

Workclass=federal-gov→ > 50K
√ √ √ √

Workclass=state-gov→ > 50K
√

Workclass=local-gov→ > 50K
√ √ √

Workclass=private→ ≤ 50K
√ √

Native Country=USA > 50K
√ √ √

Native Country=various countries 1 22 17 2
Education=Some-college
& Workclass=Private→ ≤ 50K

√

the exposure and non-exposure conditions. When we choose pairs of matched records to
form a fair data set, we pick up one record from the exposure group and find a matched
record from the non-exposure group. In this process, the values of the response vari-
able are blinded. When there are more than one matched record to choose from, we
randomly choose one. It is possible that the value distribution of the response variable
in a fair data set is affected by the random selection. This will cause misses or false
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Table VII: Number of combined causal rules discovered by CR-CS in real world data
sets

1st Level 2nd Level 3rd Level 4th Level
Adult 45 1 0 0

Census income 77 6 0 0
Germand 8 38 12 5

Hypothyroid 20 7 3 0
Kr-vs-kp 3 15 0 0
Mushrom 26 61 0 1

Sick 13 7 1 0
Tic-tac 8 30 3 0

Table VIII: Some combined causal rules in the Mushrooms data set.
Combined causal rules

Stalk-color-below-ring = pink & Ring-type = evanescent→ poisoners
Stalk-color-below-ring = pink & Spore-print-color = white→ poisoners

Odor = none & Stalk-shape = tapering→ edible
Cap-color = gray & Odor = none→ edible

discoveries of causal rules. This situation is the same as the real world sample process,
which is subjected to sampling bias.

To reduce the impact of selection bias, we run the method on a data set multiple
times and select consistent rules in multiple causal rule sets as the final causal rules.
The variance is not big and the causal discovery is quite stable. The numbers of causal
rules from different runs and the rules supported by two causal rule sets are listed in
Table IX. On a large data set, such as the Adult data set, the change of rules between
different runs is very small. Only one rule difference in the three runs. Even in a small
data set, such as the Sick data set, nearly 90% rules are consistent over three runs.

Table IX: The numbers of causal rules of different runs and the frequent causal rules
fair data set 1 2 3 frequent
Adult 46 46 45 46
Hypothyroid 31 30 30 30
Sick 21 20 21 21

5.5. Results obtained using different matching methods
As described in Section 3.4 (Definition 3.4), when creating a fair data set, different
similarity measures can be used for finding matched pairs of records. In the experi-
ments described so far, exact matching has been used. In order to gain some insights
into the impact of different similarity measures, we also experimented on our method
when Jaccard distance is used in matching a pair of records. Jaccard distance [Han
and Kamber 2005] is a commonly used measure of the similarity between records with
binary attributes. From Table X, we see that the numbers of rules discovered are very
similar across the three data sets with exact matching and the matching using Jaccard
distance.
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Table X: Results of CR-CS using different matching methods
Data set Exact matching Jaccard distance
Adult 46 46
Hypothyroid 30 31
Sick 21 22

5.6. Efficiency
To test the time efficiency of CR-CS, we applied it to the Census Income (KDD) data
set and the last five synthetic data sets (with 10K records), to observe its scalabil-
ity in terms of the number of records and the number of attributes respectively. The
experiments were also done in comparison with the other three methods.

As the original CCC and CCU algorithms do not assume a fixed response variable,
we ran them with the restriction of only looking for the triplets that contain the re-
sponse variable. For our method, we ran it in two different versions: CR-CS1 and
CR-CS2 respectively. With CR-CS1, we constrained the length of rules to 1, making
it comparable with CCC, CCU and PC-select. With CR-CS2, the length of rules was
restricted to 2 to allow the discovery of combined causes. CR-CS1 and CR-CS2 were
implemented in Java, CCC and CCU were implemented in Matlab, and for PC-select,
we used the pcSelect() function of the R package pcalg [Colombo et al. 2014; Kalisch
et al. 2012]. The comparisons were carried out using the same desktop computer (Quad
core CPU 3.4 GHz and 16 GB of memory).

The execution time (in seconds) of CR-CS1, CR-CS2, CCC and CCU with respect to
the number of records in the Census Income (KDD) data is shown in Figure 2. The
execution time of PC-select is not included as it did not return results on any data
set after two hours of execution. From the figure, we can see that CR-CS1 was much
faster than CCC and CCU consistently for different record sizes, and even CR-CS2
was also faster than the other methods. The main reason is that our method employs
association rule mining to remove non-eligible rules and thus to reduce the search
space significantly.

The execution time of CR-CS1, CR-CS2, CCC, CCU and PC-select with respect to the
number of attributes is shown in Figure 3 (only the results returned within 6 hours
are shown). Similarly, CR-CS1 is more scalable than CCC and CCU, while CR-CS2 is
much slower when the number of attributes became big as the number of association
rules increased significantly with the increase of the number of attributes, leading to
additional time for testing causal rules. Although PC-select can achieve high quality
of causal discovery (see Table III), from the Figure 3, we can see that PC-select is
inefficient or even infeasible, especially when the number of variables is large.

6. CONCLUSION AND FUTURE WORK
In this paper, we have proposed the concept of causal rules and have developed a
method to find causal rules from observational data by integrating association rule
mining with retrospective cohort studies. Through the integration, our method has
been able to take the advantage of the high efficiency of association rule mining to pro-
duce candidate causal relationships from large data sets, and then to utilise the idea
of cohort studies to obtain reliable causal rules based on the candidates. The validity
of the definition of causal rules has been justified to be consistent with the potential
outcome model. Experiments results have shown that the proposed method is able to
find more reasonable causal relationships comparing to the existing causal discovery
methods. Moreover, our method was able to find causes consisting of combined vari-
ables, which are not possible to be uncovered by the other existing methods. We have
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Fig. 2: Scalability with respect to number of records (note:PC-select is not included
since it did not return results after two hours of execution)
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Fig. 3: Scalability with respect to number of attributes

shown that the method is faster than the efficient constraint based causal relation-
ship discovery methods. Hence our method can be used as a promising alternative for
causal discovery in large and high dimensional data sets. With the proposed method,
the selection of control variable set is a key to discovering quality causal rules. The
validation of the control variable set in real world applications will ensure the quality
of causal rules discovered.
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The proposed causal rule mining method and the constraint based causal discov-
ery approaches tackle the problem of causal discovery from different directions. They
each have their own strengths and limitations. Our future work will be studying how
they complement each other and exploring integrated methods for efficient and quality
causal relationship discovery.
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