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Abstract—Discovering causal relationships is the ultimate goal
of many scientific explorations. Causal relationships can be
identified with controlled experiments, but such experiments are
often very expensive and sometimes impossible to conduct. On
the other hand, the collection of observational data has increased
dramatically in recent decades. Therefore it is desirable to find
causal relationships from the data directly. Significant progress
has been made in the field of discovering causal relationships
using the Causal Bayesian Network (CBN) theory. The appli-
cations of CBNs, however, are greatly limited due to the high
computational complexity. In another direction, association rule
mining has been shown to be an efficient data mining means
for relationship discovery. However, although causal relationships
imply associations, the reverse does not always hold. In this paper
we study how to use an efficient association mining approach to
discover potential causal rules in observational data. We make use
of the idea of retrospective cohort studies, a widely used approach
in medical and social research, to detect causal association rules.
In comparison with the constraint-based methods within the CBN
paradigm, the proposed approach is faster and is capable of
finding a cause consisting of combined variables.

Keywords—causal discovery; association rules; cohort study;
odds ratio

I. INTRODUCTION

The widely collected data in various areas has enabled us
to discover relationships among different variables in observa-
tional data. Associations are the mostly studied relationships
and they have broad applications [14]. For example, the
association of dietary habits and a certain disease identified
in a large survey may be used to infer a potential cause of the
disease. Basket data analysis [1] may find the associated items
purchased by customers, which may help with the sales of
supermarkets. However, associations do not necessarily mean
causality. For instance, buying two products together (e.g.
formula and nappies) does not indicate that buying one is the
cause of buying the other.

Causal relationships do not only indicate that the variables
are related (associated) in general, more importantly they show
how the variations of one variable cause the changes of the
other variable. Therefore causality is more useful for prediction
and reasoning.

A commonly accepted definition of causal relationships
is based on the manipulation of variable values in controlled
experiments. With two binary variables A and B, if the value
of A is manipulated to change, the value of B changes too, then
we say that A is a cause of B. However, it is often impossible
to discover causality based on the manipulation, as it is an
action to force a variable to take a value, e.g. forcing a non-
drinker to drink, which is different from observing someone

(who has chosen to drink) drinking. There are legal, ethical
and practical limitations that prevent us from manipulating a
population in many studies. For example, it is unethical to ask
a non-drinker to drink for the sake of studying the effects of
alcohol consumption.

Then the question is how to identify causal relationships
in observational data.

Significant progress has been made in the area of graphical
causal modelling where causal relationships are represented
with Bayesian networks [24] or similar probabilistic graphical
models. The discussions of probabilistic causality started long
time ago [27], [28], [12], [31]. In early 1990s, Pearl [25] and
other researchers began to explore the causal semantics of a
Bayesian network, a directed acyclic graph (DAG) representing
the conditional independence of a set of variables. A large
number of approaches have then been proposed for discovering
such causal structures from data, e.g. in [23], [15], [16], [33],
[22]. Though Bayesian network learning is a sound approach
for causal relationship discovery, the computational costs for
leaning Bayesian networks is very high [8] and the methods
only handle low dimensional data sets.

Some constraint based approaches do not search for a
complete Bayesian network, so they can be more efficient for
casual relationship discovery. Several such algorithms have
shown promising results [9], [29], [21], [26], [3]. Based
on observational data, these methods determine conditional
independence of variables and learn local causal structures.
As these approaches are only capable of discovering the causal
relationships represented with some fixed structures in a DAG,
e.g. CCC [9], CCU [29] and the Y structures [21], they do
not identify causal relationships that cannot be represented
with these structures. Additionally these methods are not for
identifying combined cause factors. However, in practice, it is
possible that when individual variables each does not cause the
changes of the values of a response variable, the combination
of two or more variables may do.

Association rule mining [1] has proven to be an effective
and versatile means for discovering relationships in data [14].
We are interested in taking the advantage of association rule
mining for causality discoveries.

However, statistically reliable associations do not indicate
causal relationships although causality is mostly observed as
associations in data. Therefore in this paper we propose causal
association rules. Before discussing how to discover causal
association rules, we use the following example to show the
motivation of our research.

Example 1. Suppose that we have generated an association



rule: “Gender = m” → “Salary = low” from a data set. The
statistics of the data set is summarised as the following.

Salary = l Salary = h
Gender = m 185 120
Gender = f 65 60

The ratio of low salary earners to high salary earners in the
male group is 1.54:1 while the ratio in the female group is
1.08:1. In other words, the odds for a male worker receiving a
low salary is 1.54 and the odds for a female worker receiving a
low salary is 1.08. The odds ratio of male and female groups
receiving low salaries is 1.43. An odds ratio equaling to 1
indicates that an event has an equal probability to occur in
both groups. An odds ratio deviating from 1 indicates that the
probabilities of an event are unequal in two groups. The odds
ratio of 1.43 indicates a positive association between “Gender
= m” and “Salary = low”.

Is this association valid? Let us do further analysis by
stratifying the samples by the Education attribute. Assume that
the statistics of the stratified data sets are as the following.

Salary = l Salary = h
Gender = m & College = y 5 20
Gender = f & College = y 15 40

and

Salary = l Salary = h
Gender = m & College = n 180 100
Gender = f & College = n 50 20

The above two tables indicate a negative association be-
tween “Gender = m” and “Salary = low” because the odds
ratio in the College education group is 0.67 and odds ratio in
the non-College education group is 0.72. Both contradict the
association rule “Gender = m” → “Salary = low”.

We obtain two conflicting results here. This means that an
association may be volatile in a sub data set or a super data set.
This is a phenomenon of the famous Simpson Paradox [24],
indicating that associations may not imply causal relationships.

Causal relationships have to be analysed by taking all
the variables under consideration into account [24], [30].
Such analysis is normally very difficult when the number of
variables is large. On the other hand, as mentioned earlier
association rule mining has been shown to be an efficient
method for exploring relationships in large data sets. The
question is whether we can use association rule mining to
discover causal rules.

In this paper, we propose an approach which “manipulates”
observational data (instead of manipulating the populations as
in controlled experiments), in a similar way as a retrospective
cohort study does [11], [10], and we design the test to identify
causal association rules based on the manipulated data.

The contributions of this work are listed in the following.

Firstly, we integrate association rule mining with a tra-
ditional observational study method, cohort study [11], for

statistically sound and computational efficient causal discovery.
Cohort studies have been used for hypothesis tests in statistics
for a long time, mostly with human interactions [10], but they
have not been applied to large-scale data exploration for causal
relationship discovery. A large number of spurious association
rules is a major hurdle for association rule applications and
a lot of work has been done to tackle the problem [35],
[34], [32], [18]. However, causality is the ultimate goal for
most applications but a causal measure has not been used
for removing spurious association rules. The framework for
combining cohort studies with association rule mining makes
it possible to automatically generate causal hypotheses and test
the hypotheses in a discovery process with large data sets.

Secondly, the proposed algorithm is capable of finding
causes consisting of combined variables, which are impossible
to be detected by a method in causal Bayesian network
scheme [23], [16], [33], [9], [29], [3]. Note that a Bayesian
network approach is possible to find two or more individual
causes of an effect, such as rain causes wet road and sprinkler
causes wet road too. The combined cause that we study in
this paper is the interaction of two or more variables. Each
individual variable is not a cause (even is not associated
with the response variable), but their combination is a cause.
A challenge is the exponential increase of the number of
combined variables. The anti-monotone properties developed
in association rule mining can handle this problem well.

II. PROBLEM DEFINITIONS

A. Notations and definitions

Let us consider a data set, D, for a set of binary variables
(X1, X2, . . . , Xm, Z), where X1, X2, . . . , Xm are predictive
variables and Z is a response variable. Values of Z are of
user’s interest, such as having a disease or being normal. Note
that using a binary data set does not lose the generality of
a data set that contains attributes of multiple discrete values.
For example, a multi-valued data set (Gender, Age, . . . ) is
equivalent to a binary data set (Male, Female, 0-19, 20-39,
40-69, . . . ). Both the Male and Female variables are kept
in this case since this allows us to have combined variables
that involve them separately, for example, (Female, 40-59,
Diabetes) and (Male, 40-59, Smoking). A binary data set
makes the conceptual discussions in the paper easier.

Let P be a combined variable consisting of multiple
variables X1, . . . , Xn where n ≥ 1, and P = 1 when
(X1 = 1, . . . , Xn = 1) and P = 0 otherwise. A rule is in
the form of (P = 1) → (Z = 1), or p → z where z stands
for Z = 1 and p for P = 1. Our ultimate goal is to final out
whether p→ z is a causal rule.

With our approach, we first consider the association be-
tween P and Z since an association is necessary for a
causal relationship. Odds ratio is a widely used measure for
associations in retrospective studies [11], and we define the
odds ratio of a rule as follows.

Definition 1 (Odds ratio of a rule) The contingency table
of a rule, p → z, is listed as the following, where supp(x)
indicates the support of pattern X , the count of value x in the
given data set, D.



z(Z = 1) ¬z(Z = 0)
p(P = 1) supp(pz) supp(p¬z)
¬p(P = 0) supp(¬pz) supp(¬p¬z)

We have supp(p) = supp(pz) + supp(p¬z), supp(z) =
supp(pz) + supp(¬pz), and supp(pz) + supp(p¬z) +
supp(¬pz) + supp(¬p¬z) = n, where n is the number of
records in the data set.

The odds ratio of the rule p→ z on data set D is defined
as the following.

oddsratioD(p→ z) =
supp(pz) ∗ supp(¬p¬z)
supp(p¬z) ∗ supp(¬pz)

This is the ratio of the odds of value z occurring in group
P = 1 to the odds of value z occurring in group P = 0, so
an odds ratio of 1 means that z has an equal chance to occur
in both groups, and an odds ratio deviating from 1 indicates
an association (positive or negative) between Z and P .

Definition 2 (Association rule) Using the notations in Def-
inition 1, the support of a rule p → z is defined as
supp(p → z) = supp(pz). Given a data set D, let min supp
and min oratio be the minimum support and odds ratio
respectively, p → z is an association rule if supp(p →
z) > min supp and oddsratioD(p→ z) > min oratio, and
LHS(p→ z) = p and RHS(p→ z) = z.

Traditional association rules are defined by support and
confidence [1]. An association rule in the support and confi-
dence scheme may not show a real association between the
LHS and the RHS of a rule [7]. In the above definition, an
association rule indicates an association between its LHS and
the RHS since a high odds ratio indicates a real association.
In our algorithm, the minimum odds ratio will be replaced
by a significance test that oddsratioD(p → z) > 1. (See
Section III-B for details.)

In the definition, we consider z as the RHS of a rule.
An association rule that has ¬z (Z = 0) as its RHS can be
defined in the same way. These association rules (p → z and
p→ ¬z) are class association rules [20] where the confidence
(prob(z|p)) is replaced by the odds ratio.

We note that the distribution of the values of the response
variable can be skewed and a uniform minimum support may
lead to too many rules for the frequent values and few rules
for the infrequent values. In the implementation, we use the
local support that is relative to the frequency of a value in the
response variable, i.e. lsupp(p → z) = supp(pz)

supp(z) . The local
support is a ratio and can be set the same, say 5%, for rules
that have z or ¬z as the RHS.

B. Causal association rules

As Example 1 shows, associations may not indicate causal
relationships, therefore our idea is to conduct a retrospective
cohort study to detect true causal relationships from identified
association rules.

1) Cohort study: In medical and social research, when ran-
domised controlled trials are practically impossible, a cohort
study is often used to infer risk factors [11], [10]. A cohort
study is a type of observational studies. It follows two groups
of individuals, called cohorts, who share common character-
istics but differ with respect to a certain factor of interest,
to determine how the factor causes an outcome. It normally
gives highly generalisable results. There are two types of
cohort studies: prospective and retrospective cohort studies.
In a perspective cohort study, researchers follow cohorts over
time to observe their development of a certain outcome. In the
retrospective study, researchers look back at events that already
occurred.

A retrospective cohort study selects individuals who have
exposed and have not exposed to a suspected risk factor but
are alike within many other aspects. For example, middle aged
male labours who have been smoking and who have not been
smoking for a certain time period are selected for studying the
effect of smoking on lung cancer. Here smoking is the risk
factor or exposure variable. Middle aged males indicate the
common characteristics shared by the cohorts. A significant
difference in the value of the outcome or response variable
(say having lung cancer or not) of the two cohorts indicates a
possible causal relationship between the exposure variable and
the response variable.

In the rest of the paper, with a binary exposure variable,
we call the cohort where the exposure variable takes value 1
the exposure group, the cohort where the exposure variable
takes value 0 the non-exposure group, and the set of variables
determining the common characteristics of the two groups the
controlled variable set.

From the above description, the core requirement for a
cohort study is that the distribution of controlled variable
set of the two groups should be same (or very similar).
For example, in a cohort study to test whether gender is a
cause of salary difference, the exposure variable is gender.
The controlled variable set consists of variables: Education,
Profession, Experience and Location. From a given data set, we
will need to select samples for the exposure and non-exposure
groups so that the two groups have the same distribution
regarding the controlled variables. Then if there is a significant
difference in salary between the two groups, we can conclude
that gender is a cause of salary difference.

2) Identifying causal association rules: Given an associ-
ation rule as a hypothesis that its LHS causes its RHS. The
variable for the LHS is an exposure variable and the variable
for the RHS is the response variable. Let all other variables be
included the controlled variable set initially. We will discuss
how to refine this controlled variable set in the next section.

Given a data set D, for an exposure variable, we use the
following process to select samples for the exposure and non-
exposure groups (while the RHS outcome is blinded). We
firstly pick up a record ti containing the LHS factor (P = 1),
and then pick up another record tj of which P = 0, and both
ti and tj have the same values for all the controlled variables.
Then ti is added to the exposure group, tj is added to the non-
exposure group, and both are removed from the original data
set. This process repeats until there are no matched pairs can be
found. As a result, the distributions of the controlled variables



in the exposure and non-exposure groups are identical.

We formulate the above discussions as the following.

Definition 3 (Matched record pair) Given an association
rule p → z and a set of controlled variables C, a pair of
records match if one contains value p, the other does not, and
both have the same value for C.

For example, assume that C = (A,B,D) is the controlled
variable set for association rule p → z, then records (P =
1, A = 1, B = 0, D = 1) and (P = 0, A = 1, B = 0, D = 1)
form a matched pair.

Definition 4 (Fair data set for a rule) Given an association
rule p → z that has been identified from a data set D and a
set of controlled variables C, the fair data set Df for the rule
is the maximum sub data set of D that contains only matched
record pairs from D.

In the above definition, the requirement of the maximum
sub data set of D is for the best utilisation of the data set.
However, even with this requirement, the number of records
in a fair data set may not be sufficiently large, because in
order to obtain statistically significant results based on a fair
data set, a minimum number of matched pairs is required to
be contained in the set. More details on this will be provided
in Section III-B2.

Example 2. Given an association rule a→ z identified using
the following data set, and the controlled variable set C =
(M,F,H,B, P ), where M stands for Male, F for Female, H
for High school graduate, B for University graduate, and P
for postgraduate.

ID A M F H B P Z
1 1 0 1 0 0 1 1
2 1 0 1 0 1 0 1
3 1 1 0 1 0 0 0
4 1 1 0 0 0 1 1
5 0 0 1 0 0 1 0
6 0 0 1 0 1 0 0
7 0 1 0 1 0 0 0
8 0 1 0 1 0 0 1

Records (#1, #5), (#2, #6) and (#3, #7) form three matched
pairs. A fair data set for a → z includes records (#1, #2, #3
#5, #6, #7).

Matches in a data set are not unique. A record possibly
matches more than one record, but we only choose one. For
example, (#3, #7) and (#3, #8) both are matched pairs (in
terms of record #3). When there are two or more possible
matches, a matched pair is selected randomly without knowing
z. In the experiments, we show that such random selection will
cause variance in the results (different causal rules validated
in different runs), but the variance is very small in a large set
(one rule difference in three runs). Even in a small data set,
more than 80% rules are consistent over different runs. We
pick frequently supported rules in multiple runs to reduce the
variance.

Since with a fair data set for a rule the exposure and
non-exposure groups are identical except for the value of the
exposure variable, if there is a significant difference in the
values of the response value between the two groups, it is
reasonable to assumes that the difference of the outcome is
caused by the difference of the values of the exposure variable.

Now, we discuss how to detect the statistical difference of
the values of the response variable between the exposure and
non-exposure groups, which will provide us the method for
testing whether an association rule is a causal rule or not.

When the values of the response variable are taken into
consideration, there are four combinations for a matched pair:
both records containing z, neither containing z, record (P =
1) containing z and record (P = 0) not; record (P = 0)
containing z and record (P = 1) not. The counts of the four
different types of matched pairs in the fair data set for rule
p→ z is listed as the following.

P = 0
P = 1 z ¬z
z n11 n12
¬z n21 n22

In this table n11 is the number of matched pairs containing
z in both the exposure and non-exposure group; n12 the
number of matched pairs containing z in the exposure group
and ¬z in the non-exposure group; n21 the number of matched
pairs containing ¬z in the exposure group and z in the
non-exposure group; and n22 the number of matched pairs
containing ¬z in both the exposure and the non-exposure
group. In Example 2, n11 = 1, n21 = 1, n12 = 0, and n22 = 0.
In our experiments, we replace zero count by 1 to avoid infinite
odds ratios.

Using the above notation, we can have the following
definition:

Definition 5 (Odds ratio of a rule on its fair data set)
The odds ratio of an association rule p → z on its fair data
set Df is:

oddsratioDf
(p→ z) =

n12
n21

This leads to the definition of a causal association rule:

Definition 6 (Causal association rule) An association rule
(p → z) indicates a causal relationship between P and Z
(the variables for its LHS and RHS) and thus is called a
causal association rule, if its odds ratio on its fair data set,
oddsratioDf

(p→ z), is significantly greater than 1.

We will discuss how to test if oddsratioDf
(p → z) is

significantly greater than 1 in Section III-B2.

Based on Definition 6, testing if an association rule is a
causal rule becomes the problem of finding the fair data set for
the rule. A fair data set simulates the controlled environment
for testing the causal hypothesis represented by an association
rule. When the odds ratio of an association rule on its fair data
set is significantly greater than 1, it means that a change of the
response variable is resulted from the change of the exposure



variable since in the fair data set, all controlled variables are
balanced between the two groups.

3) Selecting controlled variable set: Let X represent the
set of all predictive variables, and as before P is the exposure
variable and C is a set of controlled variables. Initially, let
C = X\P .

The set of controlled variables determines the size of a
fair data set. If the size of the controlled variable set is large,
the chance of finding a non-empty fair data set is small.
Therefore we need to find a proper controlled variable set,
without compromising the quality of the causal discovery. In
the following we discuss how to obtain such a controlled
variable set.

Definition 7 (Relevant and irrelevant variables) If a vari-
able is associated with the response variable, it is relevant.
Otherwise, it is irrelevant.

We do not control irrelevant variables, hence C =
X\(P, I) where I stands for a set of irrelevant variables. The
major purpose for controlling is to eliminate the effects of
other possible causal factors on the response variable. Other
variables that are randomised with respect to the value of
the response variable can be considered as noises and need
not to be controlled. With Example 1, when we test the
association rule “Gender = m”→ “Salary = low” for finding a
causal relationship, we should control variables like education,
location, profession and working experience. However, we do
not control variables like blood type and eye colour, since they
are irrelevant to salary.

Definition 8 (Exclusive variables) Variables P and Q are
mutually exclusive if supp(pq) ≤ ε or supp(¬pq) ≤ ε where
ε is a small integer.

We do not control an exclusive variable of the exposure
variable P , i.e. we let C = X\(P, I,Q) where Q stands for
a set of exclusive variables of P . Let us have an operational
explanation firstly. Assume that ε = 0, if Q is in the controlled
variable set, the non-exposure group or the exposure group will
be empty since there is no record containing (P = 0, Q = 1)
or (P = 1, Q = 1). In other words, we are unable to do a
cohort study due to the exclusiveness of variables P and Q.

One reason Q being exclusive to P is the data set con-
straint. An example is when P is for high school graduate
and Q is for university graduate. They both belong to the
same domain in a relational data set. An individual has only
one highest education qualification. Therefore, P and Q are
exclusive. Semantically, Q should not be a controlled variable
of P .

Another reason for Q being exclusive to P is the negative
(or positive) association of P and Q. This is a complicated
issue in causality discovery. Let us explore possible causal
relationships between P , Q, and Z (response variable) when
we observe that both P and Q are relevant to Z, and P and Q
are associated. Assume that Z is not a cause of other variables
and there are no unobserved variables. The causal relationships
between P , Q and Z can be (1) Q→ P → Z; (2) P → Q→
Z; (3) (P → Z) ∧ (Q → Z); (4) (P → Q) ∧ (P → Z); and

(5) (Q → P ) ∧ (Q → Z). In Case (1) P is a direct cause of
Z. In Case (2) P is an indirect cause of Z intermediated by
Q. In Case (3) both P and Q are direct causes of Z. In Case
(4) P causes both P and Z. In Case (5) Q causes both P and
Z. If we do not control Q, it will lead to false positives like
in Cases (2) and (5). However, if we control Q, it will lead to
false negatives like in Cases (1), (3) and (4).

Leaving an exclusive variable uncontrolled may lead to
false discoveries, and controlling an exclusive variable will
lead to the miss of true discoveries. We trade some false
discoveries for more true discoveries. This is a limitation of
the proposed method. However, in the case that P and Q
are associated and they both are associated with Z, P and Q
are potential confounding variables. Other causality discovery
methods make an assumption that there are not confounding
variables [9], [29]. When this assumption is violated, they
produce false discoveries too.

The combination of multiple irrelevant variables can be
relevant. However, we do not consider combined variables in
controlled variable set. There will be many combined relevant
variables and the support of combined variables are normally
small. When they are included in the controlled variable set,
the chance for having non-empty exposure and non-exposure
groups is very small.

III. ALGORITHM

In this section we present the algorithm (Algorithm 1)
for causal association rule mining. The algorithm integrates
association rule mining with causal rule detection based on
fair data sets, as introduced in the previous section. In the
following, we firstly discuss the two anti-monotone properties
for efficient causal association rule identification, and then we
introduce the details of detecting causal rules from identified
association rules.

A. Anti-monotone properties

Anti-monotone properties are the core for efficient associ-
ation rule mining. For example a well known anti-monotone
property is that a superset of an infrequent pattern is infrequent,
and infrequent patterns are pruned before they are generated
(called forward pruning). We firstly discuss the anti-monotone
properties we will apply for causal association rule discovery.

In the following discussions, we say that rule px → z is
more specific than rule p → z, or p → z is more general
than px→ z. Furthermore, we use cov(p) to represent the set
of records in D containing value p, and we call cov(p) the
covering set of p. A rule is redundant if it is implied by one
of its more general rules. For example, if the more general rule
is a causal rule, the rule is a causal rule. If the more general
rule is not, the rule is not. A k-pattern is a pattern containing
k values.

Observation 1 (Anti-monotone property 1) All more spe-
cific rules of a causal rule are redundant.

Proof: This observation is based on the persistence prop-
erty of a real causal relationship. Persistence means that a
causal relationship holds in any condition. When a rule is



specified, additional conditions are added to the LHS of the
rule, and the conditions do not change the causal relationship.
The more specific rules are implied by the general rule, and
hence are redundant.

For example, if rule “college graduate → high salary”
holds, then we know that both male college graduates and
female college graduates enjoy high salaries. It is therefore
redundant to have the rules “male college graduate → high
salary” and “female college graduate → high salary”.

Observation 2 (Anti-monotone property 2) If supp(px) =
supp(p), rule px → z and all more specific rules of px → z
are redundant.

Proof: If supp(px) = supp(p), then cov(px) = cov(p).
In other words, both rules p→ z and px→ z cover the same
set of records. There will be the same fair data set for both
rules. Therefore, if p → z is a causal rule, so it px → z. If
p → z is not a causal rule, nor is px → z. Rule px → z is
redundant.

Let rule pxy → z be a more specific rule of rule px→ z.
If supp(px) = supp(p), then supp(pxy) = supp(py). Using
the same reasoning above, we conclude that rule pxy → z is
redundant with respect to rule px→ z.

Since there are two anti-monotone properties in addition
to the anti-monotone property of support, it is efficient to use
a level wise algorithm like Apriori [2]. Both anti-monotone
properties 1 and 2 can be used in the same way as the anti-
monotone property of support. We make use of a prefix tree
structure for rule generation and pruning as in [6]. Due to page
limit, we omit the discussions of association rule generation
part including forward pruning by Observations 1 and 2.

B. Detecting causal rules

This process involves three steps, as discussed below.

1) Determining controlled variables: We firstly determine
the set of irrelevant variables, each of which is not associated
with the response variable. For a variable Y , its association
with the response variable Z can be determined by the odds
ratio of y → z.

Let ω be the odds ratio of the rule p → z on the given
data set D, i.e. oddsratioD(p → z) = ω The confidence
interval of ω is defined as

exp(lnω±z′
√

1
supp(pz) +

1
supp(p¬z) +

1
supp(¬pz) +

1
supp(¬p¬z) )

= [ω−, ω+], where z′ is a standard normal deviate
corresponding to the desired level of confidence (z′ = 1.96
for 95% confidence). ω− and ω+ are the lower and upper
bounds respectively of an odds ratio at a confidence level. If
ω− > 1, the odds ratio is significantly higher than 1, hence P
and Z are associated. Equivalently, p → z is an association
rule. Therefore, we do not use the minimum odds ratio in the
algorithm.

Another advantage of the above process is that it is
automatically adaptive to the size of a data set. For a large
data set, the confidence interval of an odds ratio is small and
hence a small odds ratio can be significantly higher than 1.
For a small data set, the confidence interval of an odds ratio is

Algorithm 1 Causal Association Rule discovery (CAR)
Input: Data set D, the minimal local support δ, the maximum
length of rules k0, and a z value for significance test
Output: A set of causal association
rules

1: let causal association rule set RC = ∅
2: add 1-pattern to a prefix tree T as the 1-st level nodes
3: count support of the 1-st level nodes with and without z
4: remove nodes whose local support is no more than δ
5: Let X be the set of attributes containing frequent 1-

patterns
6: find the set of irrelevant attributes I
7: let k = 1
8: while k ≤ k0 do
9: generate association rules at the k-th level of T

10: for each generated rule ri do
11: find exclusive variables E of LHS(ri)
12: let controlled variable set C = X\(I, E, LHS(ri))
13: find the fair data set for ri
14: if oddsratioDf

(ri) > 1 significantly then
15: move ri to RC

16: remove LHS(ri) from the k-th level of T
17: end if
18: end for
19: k = k + 1
20: generate k-th level nodes of T
21: count the support of the k-th level nodes with and

without z
22: remove nodes whose local support is no more than δ
23: remove nodes of patterns whose supports are the same

as those of their sub-patterns respectively
24: end while
25: output RC

large and hence a large odds ratio is needed to be significantly
higher than 1.

The above identified irrelevant variables are excluded from
the controlled variable set, so are attributes with infrequent
non-zero values.

Secondly we identify the exclusive variables of an exposure
variable, say P , according to Definition 8 where ε is set to the
same value as the minimum local support. We exclude the
identified exclusive variables from the controlled variable set.

The remaining variables then form the controlled variable
set. The controlled variable set can be viewed as multiple
patterns in association rule mining. For example, if male,
female, college and postgraduate form the controlled variable
set, the set includes the patterns {(male, college), (male,
postgraduate), (female, college), (female, postgraduate)}.

2) Creating fair data set: We select the samples from the
given data set D to get the fair data set for rule p → z,
following the procedure listed in Function 1. We firstly find the
covering set of c. Then the covering set of c is split into two
subsets: one containing value p, denoted by Dcp, and the other
containing value ¬p (or P = 0), denoted by Dc¬p. Assume
that |Dcp| ≤ |Dc¬p| (if not, we swap the order in the following
description). For each record in Dcp, find an identical record in
Dc¬p in terms of the controlled variable set. If there are more



Function 1 Sample a fair data set for rule p→ z
Input: Data set D, rule p→ z, and controlled variable set C
Output: a fair data set for rule p → z,
Df

1: find the covering set of c(C = 1), Dc

2: split Dc into Dcp and Dc¬p // Dcp contains value p and
Dc¬p does not

3: let Df = ∅
4: for each record ti in Dcp // assuming |Dcp| ≤ |Dc¬p|. If

not, swap Dcp and Dc¬p. do
5: for each record tj in Dc¬p do
6: if ti and tj have the identical value of C then
7: move ti and tj to Df

8: end if
9: end for

10: end for
11: output Df

than one such records, choose one randomly. Add the pair of
records to the fair data set. If there is no identical record in
Dc¬p, move to the next record.

3) Testing causal rules: To check if an association rule
is a causal association rule, we use the following means to
test the significance of the odds ratio of a rule on its fair
data set. Let oddsratioDp

(p → z) = ω′ in the fair data
set, the confidence interval of the odds ratio is defined as
exp(lnω′±z′

√
1

n12
+ 1

n21
) = [ω′−, ω

′
+] where z′ is a standard

normal deviate corresponding to the desired level of confidence
(z′ = 1.96 for 95% confidence) and ω′− is the lower bound of
oddsratioDf

(p → z) in the confidence level. If ω′− > 1, the
odds ratio is significantly higher than 1, then we conclude that
P is a cause of Z.

IV. EXPERIMENTS

A. Data and parameters

A number of frequently used public data sets [4] are
employed in our experiments, to test the effectiveness and
efficiency of the proposed causal rule discovery method. A
summary of the data sets is given in Table I. All variables
have the values of 1 or 0, indicating the presence or absence
of an attribute value correspondingly.

Hypothyroid and Sick are two medical data sets included in
the Thyroid Disease folder of the UCI repository [4] and they
are discretised by MLC++ discretise utility [17]. The Adult
data set is an extraction of the USA census database in 1994.

We also use a large data set, Census Income, to test the
scalability of our method with the size of data. We obtain
250K records by combining the training and test data sets.
Continuous attributes have been removed. The Harvard Lung
Cancer data set is used to test the scalability of our method
with the number of attributes.

The Harvard Lung Cancer data set is a microarray data
from [5]. The original data set contains 11657 genes. The
top 89 genes used in our experiments are obtained by feature
selection with the information gain ratio implementation of
Weka [13]. The gene expression values are discretised by using

TABLE I: A brief description of data sets used in experiments

Name #Records #Variables Distributions
Hypothyroid 3163 51 4.8% & 95.2%

Sick 2800 58 6.1% & 93.9%
Adult 48842 99 23.9% & 76.1%

Census income 250000 495 6.2% & 93.8%
Harvard 156 178 89.1 % & 10.9%

TABLE II: Comparison of the numbers of association rules
(AR), non-redundant rules (NRR), optimal rules (OR) and
causal association rules (CAR)

#AR #NRR #OR #CAR
Sick 33771 19506 2611 18
Hypothyroid 16939 7690 2422 22
Adult 3285 3017 1748 49
Census Income 77780 46796 13687 41

the medium as the cut point, and the values are categorised as
“up” and “down”.

In the experiments, the class attributes in the original data
sets are set as response variables, and values such as high/low
incomes and sick/normal are used as the RHS of a rule. The
default minimum local support is set to 0.05. We set the local
support to 0.01 for the Adult set in the comparison of its
results with those of the CCC [9] and CCU [29] methods.
The minimum local support for the Harvard Lung Cancer data
set is set to 0.35 since the size of the data set is small.

B. Causal association rules vs. association rules

An association does not mean a causal relationship. In fact,
the majority of association rules are not causal rules. We com-
pare causal association rules with various types of association
rules in Table II. The number of causal association rules is
significantly smaller than the number of other types of rules,
including association rules [2], non-redundant rules [36], and
optimal rules [19]. All these rules satisfy the same minimum
local support. Associations are measured by the odds ratio with
the same significance test as discussed in Section III-B. The
maximum length of the rules is 4.

The number of causal rules is very small. They may not be
enough for classification since not every record in the data is
covered by a causal association rule. However, they are reliable
relationships since each causal rule is tested by the cohort study
in data.

Most discovered causal rules (99%) are short and include
one or two variables. This makes the rules easily interpreted,
and also supports the application of association rule mining
to solve real world problems, where only short rules are
considered and used.

C. Causal association rules vs. constraint causal structures

We compare the causal association rules discovered using
our method (called CAR in the following) with the causal
relationships discovered by the constraint based methods,
CCC [9] and CCU [29].

The most widely used methods for causal discovery are
based on graphical causal modeling [23], [15], [24]. Based



TABLE III: Comparison of the numbers of causal association
rules, CCC rules, and CCU rules

CAR CCC CCU
Adult 49 53 46
Sick 18 13 3

on causal sufficiency and causal faithfulness assumptions,
an edge of a Bayesian network is interpreted as a causal
relationship [24]. However, learning Bayesian networks is
computational challenging. Constraint based approaches have
been proposed to learn causal structures directly without
learning a Bayesian network. CCC [9] and CCU [29] are
two efficient implementations. Both methods learn triplex
structures involving three variables with certain dependency
and independency relationships among them, and infer causal
relationships from the structures. Both assume that there are
not hidden and confounding variables in data sets.

The numbers of rules (relationships) discovered by CAR,
CCC and CCU are listed in Table III. CCC and CCU are
constrained to the Salary and Sick attributes only. When a
statistical significance test is involved, 95% confidence level
is used. Since there are small variations between causal
association rules discovered in different runs, due to the
random selection of matching pairs when a record has multiple
matches, in the experiments, we generated causal rules three
times and chose the rules occurring twice in the three runs.

When only looking at the number of rules produced from
the Adult data set, they are very similar. However, when we
look into the rules, they are quite different. We list the most
similar and dissimilar rule groups on the Adult data from the
three methods in Table IV.

Rules discovered by CAR, CCC and CCU are similar for
the variables related to the attributes Education and Workclass.
They are the major factors affecting incomes. We see that
people with higher education have a better chance for a high
salary, such as, doctorate, masters, bachelors, and professional
school (prof-School). In contrast, people with lower education
more likely receive a low salary, for example high school
graduate (HS-grad) and lower. The effects of Workclass on
salary are also intuitively right. Rules discovered by the three
methods on the variables are consistent.

Rules discovered by CAR, CCC and CCU are dissimilar
in variables related to the attributes Occupation and Native-
country. There are 12 rules discovered by CAR for variables
related to the attribute Occupation, only one rule is discovered
by CCC and CCU. CCC and CCU have missed some very
reasonable causal factors for high/low salary. For example,
“exec-managerial” and “prof-specialty” for high salary, and
“handlers-cleansers” and “adm-clerical” for low salary are
reasonable causal rules in the Occupation attribute, but they
have been missed by CCC and CCU. On the other hand, there
are 22 rules for variables related to the attribute Native Country
discovered by CCC, 17 rules by CCU and only 2 rules by
CAR. Intuitively, Native Country is not a factor for high/low
salary. This shows that the CAR method is able to discover
reasonable causal rules.

Another advantage of CAR is that it produces causal rules

TABLE IV: The most similar and dissimilar causal rule groups
discovered by CAR and CCC and CCU in the Adult data set

Causal rules CAR CCC CCU
Education=doctorate → > 50K

√ √ √

Education=masters → > 50K
√ √ √

Education=bachelors → > 50K
√ √ √

Education=prof-School → > 50K
√ √ √

Education=some-college → ≤ 50K
√ √ √

Education=HS-grad → ≤ 50K
√ √ √

Education=12th → ≤ 50K
√ √ √

Education=11th → ≤ 50K
√ √ √

Education=10th → ≤ 50K
√ √ √

Education=9th → ≤ 50K
√ √ √

Education=7-8th → ≤ 50K
√ √ √

Education=5-6th → ≤ 50K
√ √ √

Education=1-4th → ≤ 50K
√ √

Education=preschool → ≤ 50K
√

Occupation=exec-managerial → > 50K
√

Occupation=prof-specialty → > 50K
√

Occupation=protective serv → > 50K
√

Occupation=tech-support → > 50K
√ √ √

Occupation=sales → > 50K
√

Occupation=handlers-cleaners → ≤ 50K
√

Occupation=machine-op-inspct → ≤ 50K
√

Occupation=adm-clerical → ≤ 50K
√

Occupation=other-service → ≤ 50K
√

Occupation=farming-fishing → ≤ 50K
√

Occupation=transport-moving → ≤ 50K
√

Occupation=craft-repair → ≤ 50K
√

Workclass=sel-emp-inc → > 50K
√ √

Workclass=sel-emp-not-inc → > 50K
√ √ √

Workclass=federal-gov → > 50K
√ √ √

Workclass=state-gov → > 50K
√

Workclass=local-gov → > 50K
√ √ √

Workclass=private → ≤ 50K
√ √ √

Native Country=USA > 50K
√ √ √

Native Country=various countries 1 22 17

TABLE V: Causal rules discovered by CAR, CCC and CCU
related to the Age attribute in the Sick data set

Causal rules CAR CCC CCU
Age>71.5 → disease

√ √

Age ≤ 43.5 → negative
√ √ √

Age∈(43.5,71.5] &
T4U < 0.895 → disease

√

Age∈(43.5,71.5] &
On Thyroxine = false &
TSH measured = true → disease

√

of combined variables while CCC and CCA do not. Rules
discovered in the Sick data set with variables related to the
Age attribute is shown in Table V. It is clear that old age is a
factor for disease and young age is a factor for negative, and
the three methods have the similar discoveries for the causal
relationship. However, for the age in between, the findings are
different by the three methods. CCC and CCA do not find
any rules related to the age in between. CAR considers the
combined variables and provides some insights for the age in
between cases. CAR is able to provide more insights in data
than CCC and CCU.

We should be aware that CAR, CCC and CCU do their
work under certain assumptions, which are most likely vio-
lated. For example CCC and CCU assume that there are no
hidden variables and no confounding variables. CAR assumes
that all other causal factors are controlled. They will be
violated in real world applications and we should be aware
of their limitations.



TABLE VI: The numbers of causal rules of different runs and
the frequent causal rules in two results.

fair data set 1 2 3 frequent
Adult 49 48 49 49
Sick 17 21 19 18

D. Stability

The selection of the fair data set is subject to selection bias.
Normally, the data distribution is skewed for two conditions:
exposure and non-exposure. Usually there are significantly
more exposed cases than non-exposed cases. When we choose
pairs of matched records to form a fair data set, we pick up
one record from the exposure group and find a matched record
from the non-exposure group. In this process, the values of the
response variable are blinded. When there are more than one
matched record to choose from, we randomly choose one. It is
possible that the value distribution of the response variable in a
fair data set is affected by the random selection. This will cause
misses or false discoveries of causal rules. This situation is the
same as the real world sample process, which is subjected to
sampling bias.

To reduce the impact of selection bias, we run the method
on a data set multiple times and select consistent rules in
multiple causal rule sets as the final causal rules. The variance
is not big and the casual discovery is quite stable. The numbers
of causal rules from different runs and the rules supported by
two causal rule sets are listed in Table VI. On a large data
set, such as the Adult data set, the change of rules between
different runs is very small. Only 1 rule changes in three runs.
Even in a small data set, such as the Sick data set, 80% rules
are consistent over three runs.

E. Efficiency

To compare the time efficiency of different methods, we
modify the CCC and CCU algorithms to find causal relation-
ships with the response variable. The original CCU and CCC
do not assume a fixed response variable. There is no minimum
support pruning for CCC and CCU. For a fair comparison, we
use the same number of variables after the support pruning
as the input for CCC and CCU in the following experiments.
For our method, we constrain the length of rules as 1, which
is comparable with CCC and CCU, and the length of rules
as 2 for combined causal rules, denoted as CAR1 and CAR2
respectively. CAR1 and CAR2 were implemented in Java and
CCC and CCU were implemented in Matlab. The comparisons
were carried out using the same desktop computer.

The comparison of the execution time of CAR1, CAR2,
CCC and CCU with increasing data size is shown in Figure 1
(the top diagram). CAR1 is faster than CCC and CCU con-
sistently. CAR2 is similar to CCC and CCU in the small data
size end and slower than CCC and CCU in the large data
size end. The additional time taken by CAR2 is resulted from
forming fair data sets. When increasing the data set size, more
rules are accepted as association rules since the confidence
interval of an odds ratio becomes narrow (see Section III-B2
for explanation). The increased number of association rules
adds additional time for testing causal rules.

Fig. 1: Scalability with data size and the number of attributes

The comparison of the execution time of CAR1, CAR2,
CCC and CCU with increasing number of variables is shown in
Figure 1 (the bottom diagram). The relative speeds of different
methods are similar to the results above. For CAR1 and CAR2,
the number of association rules increases significantly with the
increase of the number of variables. The increased number of
association rules adds additional time for testing causal rules.

To summarise, for discovering causal rules of single (cause)
variables, our method is faster than CCC and CCU. CCC and
CCU do not find combined causal factors, and our method
does with very competitive efficiency.

V. CONCLUSION

In this paper, we have proposed a method to find causal
association rules from observational data, by integrating asso-
ciation rule mining with retrospective cohort study. We have
shown that the method is faster than two efficient constraint
based causal relationship discovery methods. Our method is
capable of finding causes consisting of combined variables,
which are not possible to be uncovered by the other existing
methods in the causal Bayesian network scheme. The proposed
method is an efficient alternative for causal discovery to the
causal Bayesian network approach. It is promising for causal
discovery in large and high dimensional data sets. In the
proposed method, the selection of controlled variable set is a
key for discovering quality causal rules. The validation of the
controlled variable set in real world applications will ensure
the quality of causal rules discovered. The causal association
mining method and constraint based causal discovery methods
approach the problem of casual discovery from different di-
rections. They each have their own strengths and limitations.
Our future work will study how they complement each other



and explore integrated methods for efficient and quality causal
relationship discovery.
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