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ABSTRACT
Motivation: microRNAs (miRNAs) are known to play an essential
role in the post-transcriptional gene regulation in plants and animals.
Currently, several computational approaches have been developed
with a shared aim to elucidate miRNA-mRNA regulatory relationships.
While these existing computational methods discover the statistical
relationships such as correlations and associations between
miRNAs and mRNAs at data level, such statistical relationships
are not necessarily the real causal regulatory relationships that
would ultimately provide useful insights into the causes of
gene regulations. The standard method for determining causal
relationships is randomised controlled perturbation experiments.
In practice, however, such experiments are expensive and time
consuming. Our motivation for this study is to discover the miRNA-
mRNA causal regulatory relationships from observational data.
Results: We present a causality discovery based method to uncover
the causal regulatory relationship between miRNAs and mRNAs
using expression profiles of miRNAs and mRNAs without taking into
consideration the prior target information. We apply this method
to the Epithelial to Mesenchymal Transition (EMT) datasets and
validate the computational discoveries by a controlled biological
experiment for the miR-200 family. A significant portion of the
regulatory relationships discovered in data is consistent with those
identified by experiments. In addition, the top genes that are causally
regulated by miRNAs are highly relevant to the biological conditions
of the datasets. The results indicate that the causal discovery method
effectively discovers miRNA regulatory relationships in data. Although
computational predictions may not completely replace intervention
experiments, the accurate and reliable discoveries in data are cost
effective for the design of miRNA experiments and the understanding
of miRNA-mRNA regulatory relationships.
Availability: The R scripts are in the Supplementary material.
Contact: thuc duy.le@mymail.unisa.edu.au; jiuyong.li@unisa.edu.au

∗to whom correspondence should be addressed

1 INTRODUCTION
miRNAs are short (∼22nt) endogenous non-coding RNAs that
regulate gene expression by promoting mRNA degradation and
repressing translation. They recognise target mRNAs by base
pairing to complementary sequences in the 3’-untranslated region
(3’UTR) of the target mRNA (Berezikov et al., 2006; Ambros,
2004; Bartel, 2004; Meister and Tuschl, 2004). miRNAs have
also been observed to target genes through sites in the 5’UTR
and sometimes in the open reading frames (ORFs) (Bartel, 2009).
It has been demonstrated in a body of literature that miRNAs
regulate a wide range of biological processes in proliferation (Chen
et al., 2006; Zhao et al., 2005), metabolism (Poy et al., 2004; Xu
et al., 2003), differentiation (Esquela-Kerscher and Slack, 2006),
development (Jin et al., 2004; Zhao et al., 2007), apoptosis (Xu
et al., 2007), cellular signaling (Cui et al., 2006) and even cancer
development and progression (Bartel, 2004; Kim and Nam, 2006;
Flynt and Lai, 2008).

Since the advent of microarray data on gene expression programs,
various statistical data mining methods have been devised in recent
years in an attempt to discover the miRNA-mRNA regulatory
relationships. This research into the regulatory relationships
between miRNAs and mRNAs can be recognised in two main
streams. In the first stream, researchers developed various methods
to identify a group of co-expressed miRNAs and mRNAs in data.
For instance, Huang et al. (Huang et al., 2007) applied Bayesian
network parameter learning, Joung et al. (Joung et al., 2007)
proposed a population-based probabilistic learning model, and Tran
et al. (Tran et al., 2008) used a rule based method. In the second
stream, attempts were made to predict the regulatory networks
of miRNAs and mRNAs for specific biological processes. Some
highlights in this direction include Joung and Fei (Joung and Fei,
2009) applying a probabilistic graphic model adopted from the
Author-Topic model in information retrieval; Liu et al. (Liu et al.,
2009) using Bayesian network learning, and Liu et al. (Liu et al.,
2010) proposing a graphical model inspired by the Correspondence
Latent Dirichlet Allocation.
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These methods, though varied, all identify only the statistical
relationships in the data. These relationships are either correlations
or associations between the two types of variables, miRNA and
mRNA. However, correlations or associations are not causality.
For instance, the expression values of a miRNA and a mRNA
may be strongly correlated across samples, but it is not sufficient
to conclude that the miRNA regulates the mRNA. The strong
correlation between the miRNA and the mRNA may be a result of
the mRNA regulating the miRNA, or a third molecule regulating
both the miRNA and the mRNA.

In this paper, our ultimate goal is to discover which miRNAs
causally regulate which mRNAs. A regulatory relationship between
a miRNA and a mRNA means that a change in the expression level
of the miRNA will result in a change in the expression level of the
mRNA. Associations or correlations are not the right tools to test the
causal hypothesis. Therefore, we aim to discover the causal effects
of a miRNA on mRNAs. We refer to this causal effect as miRNA
causal regulatory relationship to emphasise the difference between
causal discovery and statistical discovery.

The gold standard method for tackling this problem is randomised
control experiments. For example, we can use gene knock-down
experiments to knock down miRNAs one by one whilst measuring
changes (i.e. causal effects) in the expression level of mRNAs.
However, such experiments are time consuming, expensive, and
not necessarily definitive. Fortunately, with the foundation created
by Pearl (Pearl, 2000), the recent advances in causal discovery
research have opened the door to discovering causal relationships
from observational data.

Instead of conducting controlled experiments, we can use do-
calculus (Pearl, 2000) to estimate the causal effects of a variable
on other variables based on observational data. do-calculus requires
a causal structure of the variables to be given as a DAG (Directed
Acyclic Graph), however such a structure is often unknown in
reality. To bridge the gap, Maathuis et al. (Maathuis et al.,
2009, 2010) proposed a method to estimate causal effects from
observational data alone. The method is called Intervention calculus
when the DAG is Absent (IDA), and it includes two main phases:
(1) learn a causal structure from observational data; (2) apply
do-calculus to infer causal effects.

Our method is based on IDA. Given the observational data of
variables, IDA can capture the causal effects of the variables on
one single response variable. We extend the application of IDA and
build our model for multiple response variables, and then apply the
model to discover the miRNA causal regulatory relationships. In
our problem, miRNAs and mRNAs are nodes or variables in the
model, and observational data are the expression profiles of the
miRNAs and mRNAs. We can view genes as subjects and miRNAs
as analogous to “treatments”, which may have causal effects on
the “responses” (i.e. expression levels) of the genes. Our aim is to
measure the causal effect of each miRNA on mRNAs.

Applying this approach, we tackle two drawbacks of current
miRNA regulatory relationships research. Firstly, the method
discovers causal relationships between miRNAs and mRNAs, not
just the statistical relationships. Secondly, we assume that miRNAs
and mRNAs interact with each other in a complex system, for
instance, a miRNA can causally regulate mRNAs as well as other
miRNAs. This assumption is more reasonable than the commonly
used approach that considers only the bipartite of interactions
between miRNAs and mRNAs. For example, (Zisoulis et al., 2012)

shows that let-7 can regulate other non-coding RNAs including
miRNAs.

In this work, we firstly derive the solution to discover the causal
miRNA regulatory relationships based on the IDA approach. Then
we apply the method to the Epithelial to Mesenchymal Transition
(EMT) datasets. We implement a controlled experiment for the
miR-200 family to validate the results. The outcome shows that the
causal miRNA regulatory relationships discovered using our method
largely overlap the findings from the experiment, suggesting that the
causal relationships between miRNAs and mRNAs can be identified
from expression profiles.

2 METHODS

2.1 Notations
Let G = (V,E) be a graph consisting a set of vertices V and a set of
edges E ⊆ V×V. In our context, V = {X1, . . . , Xp} is a set of random
variables representing the expression levels of miRNAs and mRNAs, and the
edges represent relationships between these variables.

In G, Xj is a parent of Xi if there is a directed edge Xj → Xi. We use
pai(G) to represent the set of all parents ofXi.Xk is called a sibling ofXi

if there is an undirected edge Xi −Xk . We denote the set of all siblings of
Xi in G, sibi(G). When the graph G is clear from the context, we use pai
and sibi instead of pai(G) and sibi(G).

A v-structure is an ordered triple of vertices, (Xi, Xj , Xk), such that
in G there exist directed edges Xi → Xj and Xj ← Xk , and Xi and Xk

are not adjacent. Xj is then known as a collider in this v-structure.
Graph G is a Directed Acyclic Graph (DAG) if G contains only directed

edges and has no cycles. The skeleton of a DAG G is the undirected graph
obtained from G by substituting undirected edges for directed edges. An
equivalence class of DAGs is the set of DAGs which have the same skeleton
and the same v-structures.

An equivalence class of DAGs can be uniquely described by a completed
partially directed acyclic graph (CPDAG). A partially directed acyclic graph
(PDAG) is a graph where the edges are either directed or undirected and one
cannot trace a cycle by following the directions of the directed edges and
any directions of the undirected edges. A PDAG is completed if (1) every
directed edge exists also in every DAG belonging to the equivalence class;
(2) for every undirected edge,Xi−Xk , there exists a DAG withXi ← Xk

and a DAG with Xi → Xk in the equivalence class.

2.2 Method overview
Figure 1 illustrates the method used in our work. Details of the major steps,
causal structure learning and causal inference are presented in Sections 2.3
and 2.4 respectively. Section 2.5 summarises our method as an algorithm
with the steps of implementing the method with expression data.

2.3 Causal structure learning
Learning causal structures from data plays a critical role in causality
discovery. A popular method used to construct the structure from data is
probabilistic graphical models. These graphical models are used to analyse
and visualise conditional independence relationships between random
variables (Neapolitan, 2004). The structure of conditional independence
among the random variables is usually presented as a DAG of which vertices
represent random variables and edges encode conditional dependence of the
enclosing vertices.

Learning a DAG from data is highly challenging and complex as the
number of possible DAGs is super-exponential in the number of nodes
(Robinson, 1971). Nevertheless, a number of methods have been proposed
to learn DAGs from data. One approach is to restrict the search space to
trees such as the Maximum Weight Spanning Trees (Chow and Liu, 1968).
Another approach, Greedy Equivalent Search (Chickering, 2002), works
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Fig. 1. a) IDA. S1, ..., Sn are input data samples of the p + 1 variables,
X1, ..., Xp and the response variable Y . In a high-dimensional dataset, p�
n. In the first phase, the causal structure in the form of a CPDAG is learnt
from data, by applying the PC algorithm. In the second phase, do-calculus
is used to infer the causal effects between Xi and Y , i = 1, ..., p. Y is
the only response variable. b) Our method to infer miRNA causal regulatory
relationships. X1, ..., Xm represent the expression levels of miRNAs and
Y1, ..., Yn the expression levels of mRNAs. Nodes in the CPDAG are all
miRNAs and mRNAs in the dataset. Y1, ..., Yn are the response variables.
The results are the causal effects that each miRNA has on every mRNA.

for a moderate number of nodes. Adding to these methods are the highly
computation intensive Bayesian approaches for DAGs (Spiegelhalter et al.,
1993; Heckerman and Chickering, 1995).

An interesting alternative to those greedy or structurally restricted
approaches is the Inductive Causation (IC) algorithm proposed by (Verma
and Pearl, 1990). This algorithm is the base of causal structure learning
research, and the algorithm is outlined in three phases below:

Phase 1- Find the undirected structure: For each pair of Xi and Xj ,
search for a set SXiXj

such that (Xi ⊥⊥ Xj |SXiXj
). Add an undirected

edge between Xi and Xj if no set SXiXj
can be found .

Phase 2 - Determine the v-structures: For each connected triple Xi −
Xj − Xk , direct the edges and add a v-structure Xi → Xj ← Xk if
Xj /∈ SXiXk

, i.e., if and only if Xi and Xk are dependent given Xj .
Phase 3 - Direct the remaining edges: Follow different rules/constraints

to direct the remaining edges whenever possible, avoiding the creation of
new v-structures and cycles.

The IC algorithm, however, leaves the details of phases 1 and 3
unspecified, and opens the door to further research.

Spirtes and Glymour proposed the PC algorithm (Spirtes et al., 2000),
named after its inventors Peter Spirtes and Clark Glymour, to implement in
detail the IC algorithm. The PC algorithm starts from a complete, undirected
graph and deletes recursively edges based on conditional independence
decisions. This yields an undirected graph which can then be partially

directed and further extended to a completed partially directed acyclic
graphs (CPDAG).

With high-dimensional datasets, we need to select the most efficient
tool to implement the conditional independence test in the PC algorithm.
Lauritzen (Lauritzen, 1996) proved that when the distribution of variables is
multivariate normal, the partial correlation test can be used as a conditional
independence test as stated in the following theorem.

Theorem 1: (Lauritzen, 1996) Assume that the distribution P of the
random vector X = {X1, ..., Xp} is multivariate normal. For i 6= j, i, j ∈
{1, ..., p},k ⊆ {1, ..., p} \ {i, j}. ρi,j|k denotes the partial correlation
between Xi and Xj given {Xr; r ∈ k}. Then, ρi,j|k = 0 if and only if Xi

and Xj are conditionally independent given {Xr; r ∈ k}.

Recently, Kalisch and Buhlmann (Kalisch and Buhlmann, 2007) showed
that in the high-dimensional context, that is, the number of nodes p may be
much larger than the sample size n, the PC algorithm with partial correlation
test is uniformly consistent. This sheds light on the discovery of causal
structures for high-dimensional data such as gene expression datasets. In this
paper, we adapt the PC algorithm as a step of our algorithm in discovering
the CPDAG which includes miRNAs and mRNAs as nodes (see Figure 1 and
Step 2 of Section 2.5).

2.4 Causal inference
Our problem is to infer the causal effects (intervention or knock-down
effects) of each single miRNA on the regulations of every mRNA under
consideration, using only the observational data, the expression data of
miRNAs and mRNAs.

The causal effects can be computed using do-calculus (Pearl, 2000),
given a set of conditional dependencies from the expression data and a
corresponding DAG model. The intervention do(Xi = x′i) is a operation
to force Xi to receive the value x′i. The purpose is to observe how
the system reacts with this intervention, or in other words, how the
distribution of a variable may change after the intervention. Pearl (Pearl,
2000) formalised the definition of post-intervention distribution by the
pre-intervention distribution as shown in the following definition.

Definition 1: Let X = {X1, X2, ..., Xp+1} be a set of variables. The
distribution generated by an intervention do(Xi = x′i), i ∈ {1, ..., p+ 1}
on the set of variables is given by the truncated factorisation formula:

P (x1, ..., xp+1|do(Xi = x′i)) =

{∏
j 6=i P (xj |paj) xi = x′i,

0 xi 6= x′i
(1)

where paj is a set of parent nodes of Xj , and P (xj |paj) are the
pre-intervention conditional distributions.

To deal with high-dimensional datasets, we made some assumptions in
Theorem 1 and the PC algorithm in the causal structure learning phase.
The assumptions are that the distribution of the variables X are multivariate
normal, Markovian, and faithful to the true (unknown) causal DAG. With
the same assumptions, we can now calculate the intervention effects based
on the discussions in (Maathuis et al., 2009), which are formalised in the
following theorem.

Theorem 2: LetX1, ..., Xp, Xp+1 = Y be jointly Gaussian. The causal
effect of Xi on Y for i = 1, ..., p can be calculated as:

ef(Xi, Y ) = βi|pai
=

{
0 Y ∈ pai,
Coefficient of Xi in Y ∼ Xi + pai Y /∈ pai

(2)
in which pai is the set of parent nodes of Xi, and Y ∼ Xi + pai is the

shorthand for the linear regression of Y on Xi and pai.

At this point, we have had the tools, the PC algorithm, to learn the CPDAG
and Theorem 2 to estimate the causal effects for each DAG in the equivalence
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class CPDAG. For illustration, consider the CPDAG G in Figure 2, where
we are interested in ef(X1, Y ). We can firstly list all the DAGs in the
equivalence class, G1, ..., G4. The causal effect ef(X1, Y ) can then be
calculated in each DAG by applying Theorem 2.

Fig. 2. A CPDAG G with the DAGs G1, ..., G4 in its equivalence class
(Maathuis et al., 2009)

However, when the number of nodes in a CPDAG is large, the number of
DAGs grows very quickly. As the essence of the calculation of ef(Xi, Y )

is the sets of parent nodes of Xi, Maathuis et al (Maathuis et al., 2009)
suggests searching the CPDAG directly for all the valid parental sets of Xi

rather than identifying all the DAGs in the equivalence class for the parental
sets. We restate this suggestion by the following theorem.

Theorem 3: Let S ⊆ sibi(G). A set pai(G) ∪ S is a parental set of Xi

if and only if directing all edges between Xi and vertices in S toward Xi,
and all edges between Xi and vertices in sibi(G) \ S away from Xi will
not create any new v-structures.

In Figure 2, pa1(G) = ∅, sib1(G) = {X2, X4}. Therefore, the
candidate parental sets ofX1 are ∅, {X2}, {X4} and {X2, X4}. However,
the set {X2, X4} is not the parental set of X1, as directing edges between
{X2, X4} and X1 toward X1 will create a new v-structure. Therefore,
applying Theorem 2 to the three parental sets we have the multiset that
contains all the causal effects ofX1 on Y , E1 = {β1|∅, β1|X2

, β1|X4
}. A

multiset is a set in which elements are allowed to appear more than once.

2.5 Algorithm
Now we are able to present the algorithm for discovering miRNA causal
regulatory relationships in four steps as detailed below.

Step 1: Identify differentially expressed genes, i.e. those genes whose
expression values vary significantly across the conditions (categories) of the
samples. Firstly we divide the dataset as per the categories (e.g. normal
and cancer) and identify the differentially expressed genes across different
categories. We assume that those genes with little or zero change in
expression between the categories play a minimum role in the biological
processes, and are thus omitted. Let X1, ..., Xm and Y1, ..., Yn represent
respectively miRNAs and mRNAs that are identified to be differentially
expressed. Combining the expression profiles of the differentially expressed
miRNAs and mRNAs, we have a dataset for the (m+ n) variables.

Step 2: Use the PC algorithm to estimate the CPDAG G of the (m + n)

variables, and the conditional dependencies of the variables. We use partial
correlation as a conditional independence test for the PC algorithm, as the
partial correlations are easy to implement in a high-dimensional dataset. The
validity of this test has been shown by Theorem 1.

Step 3: Estimate the causal effects of each miRNA on each mRNA.
Naturally, we can identify all possible DAGs in the CPDAG, and then use
Theorem 2 to estimate the causal effects with each DAG. However, when the
number of nodes in the CPDAG is large, as described previously, we apply

Theorem 3 to reduce the search space of possible DAGs. The causal effects
of each miRNA on a mRNA can be achieved by applying Theorem 2 to each
of the parental sets of the miRNA.

Step 4: Output the miRNA causal effects. For each miRNA, the outcome
of Step 3 is an array of multisets, and each multiset contains all causal effects
of the miRNA on a mRNA (note that the causal effects of a miRNA on a
particular mRNA may have multiple values, as we estimated the effects from
its different parental sets). With each of the multisets, in this step, we select
the causal effect value with the smallest absolute value, and output it as the
causal effect of the miRNA on the mRNA.

3 RESULTS
In this section we present the results and analysis of applying our
algorithm to the NCI-60 dataset for Epithelial to Mesenchymal
Transition (EMT). The dataset includes the miRNA expression
profiles for the NCI-60 panel of 60 cancer cell lines from
Søkilde et al. (Søkilde et al., 2011). They are available
at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26375.
The mRNA expression profiles for NCI-60 were downloaded from
ArrayExpress http://www.ebi.ac.uk/arrayexpress, accession number
E-GEOD-5720. Cell lines categorised as epithelial (11 samples) and
mesenchymal (36 samples) are used for this work.

3.1 Implementation
In this section we describe how the algorithm in Section 2.5 is
applied to the NCI-60 dataset.

We divide the samples in the dataset into two groups based on
their conditions, Epithelia and Mesenchymal. The differentially
expressed gene analysis is performed using the limma package
of Bioconductor (Smyth, 2005), and 1635 mRNA probes and 43
miRNA probes are identified to be differentially expressed with p-
value<0.05 (adjusted p-value). Detailed results are provided in the
Supplementary Material.

The PC algorithm is then used to estimate the CPDAG G. The
input for the PC algorithm is a 47x1678 matrix of the 47 samples of
miRNA and mRNA expression values for the 1678 probes. The PC
algorithm uses partial correlation as the conditional independence
test. The significance level of this test, α, is the tuning parameter
for the PC algorithm. In this implementation, we use the R-package
called pcalg and set α = 0.01 (p-value <0.01).

Then the causal effect ef (miRNA, mRNA) is calculated using
Theorem 3 for each pair of miRNA and mRNA. As stated in Step
4 of the algorithm, we use the causal effect value whose absolute
value is the smallest of all in the obtained multiset as the result
for ef (miRNA, mRNA). For example, if ef (miRNA, mRNA)=
{0.4,−0.5, 0.4, 0.3} then we choose ef (miRNA, mNRA)= 0.3
as the result. This choice assures a consistent result, since if the
reported result of ef (miRNA, mRNA) is high, all the estimations
across different DAGs (parental sets) must be high.

To overcome the problem of small number of samples in
biological data, we bootstrap the data 100 times and take the median
of the 100 estimates for each pair of (miRNA, mRNA) as the final
results.

The final result is displayed in a tabular form (as the final table in
Figure 1b). The value in each cell of the table is the causal effect that
a miRNA has on a mRNA. It is worth noting that the causal effect
of each individual miRNA on each individual mRNA in the result
is not necessarily a consequence of the direct interaction between a
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miRNA and a mRNA. In fact, it indicates the total regulatory effect
that the miRNA has on the mRNA and the regulation pattern can be
direct, indirect, or both.

We can rank all the genes based on the absolute values of
the causal effects that a particular miRNA has on them. In this
paper, we rank the genes regulated by miR-200a and miR-200b
respectively, and extract the top 20, 50, and 100 genes in each
case based on the causal effects that the miRNA has on them for
experimental validation, which will be discussed in the next section.
The computational results that show the causal effects of miRNAs
on mRNAs can be found in the Supplementary material.

3.2 Validation by experiments
The most effective way to validate the results is by biological
experiments. In this paper, we design the follow-up controlled
experiment on the samples of MDA-MB-231.

We measure the gene expression level in the MDA-MB-231
samples transfected with the miR-200 family and in the MDA-MB-
231 samples without the miR-200 family (controls). Specifically,
we have 1 sample transfected with miR-200a, 2 samples transfected
with miR-200b, and 2 control samples. The reason for choosing
the miR-200 family for experimentation is that the miR-200 family
has been confirmed as a biomarker for EMT (Gregory et al.,
2008). The differentially expressed genes from the controled and
transfected samples are then used to validate the computational
results. With the experiment, 345 genes and 533 genes respectively
are identified as targets of miR-200a and miR-200b, with adjusted
p-value<0.05 (Benjamini & Hochberg correction method). The
detailed experimental results are in the Supplementary Material and
a summary of validation results is given below in term of the number
of genes confirmed by the experiments and the consistency in the
signs of regulations:

(1) A significant number of genes regulated by miR-200 family
being confirmed. There is significant overlap between the top genes
regulated by miR-200 that are discovered by our method and
the differentially expressed genes identified from the experiment.
For miR-200a and miR-200b, we extract respectively from the
computational results the top 20, 50, and 100 genes based on the
causal effects that the miRNA has on them, for validation. The
numbers of genes that have been confirmed by the experiment are
shown in Table 1. If we consider the results in Table 1 as precisions
for Top 20, 50, and 100, the corresponding recalls are 10/345,
22/345, 42/345 for miR-200a, and 14/533, 32/533, 53/533 for miR-
200b. As we select the top-k genes for validation, the recall rates
are improving when we increase the value of k and vice versa. In
practice, depending on the goal of the experiment, k can be adjusted
so that the results achieved will have better recall rates or better
precision rates.

(2) Consistency in the signs of regulations. In the results
discovered by our method, a positive/negative causal effect that
a miRNA has on a mRNA means that increasing the miRNA
expression level will result in an increasing/decreasing expression
level of the mRNA. Therefore, the signs of the causal effects, either
positive or negative, indicate up or down regulations in the context
of miRNA-mRNA interactions. In the experiments, in order to
identify the up/down regulations of miR-200a or miR-200b on a
mRNA, we compare the expression level of the mRNA between
the control samples and the samples transfected by miR-200a or

Table 1. Number of genes confirmed to be regulated by miR200 family

#confirmed genes p-value #confirmed genes p-value
for miR200a for miR200b

Top 20 10 0.0544 14 0.0339
Top 50 22 0.0313 32 0.0125
Top 100 42 0.0103 53 0.1442

p-value is calculated based on the probability of the result can occur by chance.

miR-200b. The greater level of the mRNA expression level in the
transfected samples implies the up regulation (positive causal effect)
and vice versa.

We compare the results of the experiments and our method
regarding the signs of the regulations of miR-200a and miR-200b
on the Top 20, 50 and 100 genes, respectively. With miR-200a,
for the Top 20 and Top 50 genes respectively, the signs discovered
using our method are 100% consistent with (the same as) those
identified by the experiments, and 95% of the regulations discovered
by our method on the Top 100 genes have the same signs as those
discovered by the experiments. With miR-200b, for the Top 20, 50
and 100 genes, the consistency of the signs are 100%, 94%, and
94%, respectively.

The significant number of genes that have been confirmed by
experiments together with the high level of consistency in the signs
of causal effects suggest that our method can be used as a new tool
to assist in the experimental design for discovering miRNA causal
regulatory relationships.

3.3 Functional validation of mRNAs for EMT
As the results are obtained based on the EMT datasets, we extract
the top 150 genes based on the total causal effects that all the
miRNAs have on them, and validate the genes against the literature
knowledge of pathways and functional biomarkers of EMT.

We use GeneGo Metacore from GeneGo Inc. to identify the
pathways previously discovered in the literature that involve the
genes in our top 150 list. The results in Table 2 show that the top
genes which receive the highest causal effects are highly relevant
to the regulation of EMT. For instance, pathways No. 6,7,8,
11 are direct pathways of the development of EMT, and others
are important pathways involved in the process of Epithelial to
Mesenchymal transition. An example of pathway No. 1 can be
found in the Supplementary material.

The pathway results suggest that the top genes causally regulated
by miRNAs are highly relevant to the biological condition (EMT)
of the datasets. Therefore, we can also use the method in this paper
for identifying functional miRNA regulatory modules for a specific
biological condition. This can be done by ranking all the miRNAs
that regulate the group of genes, e.g. the top 150 genes, and then
setting thresholds for the values of causal effects to extract the
miRNA-mRNA regulatory modules.

We also conduct enrichment analysis for the top 150 genes
to investigate the relevance between the gene functions and
the biological condition of the dataset. We use Ingenuity
Pathway Analysis (IPA, Ingenuity Systems, www.ingenuity.com),
a commercial application that calculates the association between
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Table 2. GeneGo mapped pathways for genes in the top 150 list.

Id Maps p-Value

1 Cytoskeleton remodeling Keratin filaments 5.941E-11
2 Cell adhesion Tight junctions 2.800E-09
3 Development WNT signaling pathway. Part 2 2.434E-05
4 Cell adhesion Gap junctions 9.945E-04
5 Cell adhesion Role of CDK5 in cell adhesion 1.516E-03
6 Development TGF-beta-dependent induction of 1.566E-03

EMT via SMADs
7 Development MicroRNA-dependent 1.887E-03

inhibition of EMT
8 Development TGF-beta-dependent induction of 3.667E-03

EMT via MAPK
9 Cell adhesion ECM remodeling 4.883E-03
10 Development WNT signaling pathway. Part 1. 6.902E-03

Degradation of beta-catenin
in the absence WNT signaling

11 Development Regulation of 8.703E-03
epithelial-to-mesenchymal transition (EMT)

12 Cell adhesion Cadherin-mediated cell adhesion 1.273E-02

The pathways are highly relevant to the regulation of EMT.

a particular gene set and known functions and pathways, for this
purpose. The top 150 genes are significantly enriched for several
biological functions. The top five functions listed by IPA are
known to be critical for EMT. They are cellular movement, cell-to-
cell signaling and interaction, cellular assembly and organisation,
cellular growth and proliferation, cell morphology. Especially,
there are several genes in the sub-categories of cellular movement,
invasion and migration, which have been identified as the functional
bio-markers of EMT (Zeisberg and Neilson, 2009). Table 3 shows
the genes in the top 150 list that are in the classes of invasion and
migration which are functional bio-markers for EMT .

4 CONCLUSIONS AND DISCUSSIONS
miRNAs have been regarded as one of the most important
regulators. Identifying their functions and regulatory mechanism is
critical in understanding biological processes of organisms. Both
biology and computational biology have seen great efforts made
to elucidate miRNA functions. However, the precise regulatory
relationships between miRNAs and mRNAs remain elusive. The
statistical relationships that most computational methods can
discover only reveal associations or correlations but not causality.

In this article, we present an alternative approach to revealing the
causal relationships between miRNAs and mRNAs. This method is
inspired by the recent advances in causality discovery research on
large scale datasets, especially the IDA method (Maathuis et al.,
2009, 2010). Based on this method, we derived the solution for
miRNA causal regulatory relationship discovery. Our method makes
use of the expression profiles of miRNAs and mRNAs and evaluates
the causal effects of miRNAs on mRNAs. Our assumption is that
miRNAs and mRNAs interact with each other in a complex system.
This is a more realistic assumption than those consider that the
interactions occur between miRNAs and mRNAs only.

Table 3. Genes in the top 150 list: sub-categories of cellular movement,
functional biomarkers of EMT

Functions mRNAs Number p-Value

Invasion CCDC88A, CDH1, ANPEP 21 9.1E-08 - 2.35E-02
JUP, CLDN4, BMP4, S100P
CHST10, MST1R, CLDN3,
ST14, CLDN7, ELF3, VIM,
EPCAM, EPN3, KLK6, ZEB1
ITGB4, SPARC, PLXNB1.

Migration VIM, KLF5, ANPEP, JUP 28 2.15E-04 - 2.36E-02
FERMT1, BMP4, CLDN7
CDH1, MCF2L, CCDC88A,
DDR1, CLDN4, SPACRC,
GRB7, KRT8, ZEB1, STAP2
MST1R, PIK3C2B, S100A14,
ARHGAP8/PRR5-ARHGAP8
RHOD, ITFB4, KLK6, F11R
PLXNB1, CXCL16, S100P

Genes in invasion and migration, sub-categories of cellular movement, are functional markers
of EMT. The results are generated from IPA. The last column is the range of p-values for all
genes in the group.

One promising aspect of our approach is that the causal effects we
get are similar to those from a randomised controlled experiment.
Results from the follow-up experiments have indicated that our
method can be utilised to effectively identify a set of genes
causally regulated by miRNAs. Although the discovery based on
observational data alone may never replace the actual intervention
experiments, these results can serve as a tool for the design of
follow-up miRNA experiments.

In this paper, we have applied our method to the EMT datasets.
The results show that our method has effectively identified the
causal relationships between miRNAs and mRNAs. The follow-
up experiments confirm the validity of the identified causal
relationships for the miR-200 family. The results for other miRNAs
remain open for further research and experiments. In addition,
the enrichment analysis from the extracted results shows the
consistency of the results of our method with the literature regarding
biological functions of EMT.

We expect that our method can be applied to different datasets
to discover the miRNA causal regulatory relationships, and to
the complex regulatory networks including miRNAs, transcription
factors and mRNAs. For extension purposes, the results of this
method can be further analysed and interpreted in various ways.
For instance, we can focus on the miRNA regulatory networks, or
discover the level of regulations that a group of miRNAs has on a
particular gene, or compare the similarity of two miRNAs based on
the causal effects they have on a group of genes.

Our approach complements existing prediction methods that
are based on sequence complementarity. Current understanding
of the nature of miRNA-mRNA interactions is still somewhat
limited. Predictions based on sequence complementarity and/or
structural stability of the putative duplex have a very high rate
of both false positives and false negatives. A major reason for
this is the role played by RNA folding as well as accessibility
due to protein binding. The more sophisticated prediction methods
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such as mirSVR (Betel et al., 2010) incorporate training of the
models on experimental data derived from genome-wide mRNA
expression changes following miRNA transfection. Our approach
predicts miRNA-mRNA interactions based on gene expression
data. Some of the interactions have already been experimentally
validated, with reporter assays and the like, supporting the validity
of our approach. Some interactions from our study are novel
and can be good candidates for future investigation. Some of
the interactions and regulatory modules are likely to be applied
to other biological scenarios in which the component miRNAs
and mRNAs are expressed, while others, such as those involving
miR-200, will be restricted to epithelial cells and the EMT
process, because the miRNA and/or mRNA targets have cell-
specific expression. However, because our approach not only
indicates bi-component miRNA-mRNA interactions, but generates
multi-component regulatory modules, the approach has the power
of suggesting important regulatory pathways that warrant future
study. Some of these are likely to be restricted to the EMT process,
but are worthy of investigation because EMT has a major role in
development and in cancer progression.

Using our method (which is based on the IDA method), we
can theoretically infer the causal relationships between every two
variables in the dataset. However, to make it computationally
efficient for a specific biological problem, in practice, we should
restrict the number of “cause” variables and/or the number of
“effect” variables. For instance, in our method, we only focus on
the causal relationships between miRNAs (causes) and mRNAs
(effects). Other relationships such as miRNA-miRNA, mRNA-
mRNA, or mRNA-miRNA, though in theory can be inferred, are
beyond the scope of this paper and the complexity of the algorithm
would increase significantly.

Conflict of Interest: none declared.
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