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Abstract—Discovering causal relationships in large databases
of observational data is challenging. The pioneering work
in this area was rooted in the theory of Bayesian network
(BN) learning, which however, is a NP-complete problem.
Hence several constraint-based algorithms have been developed
to efficiently discover causations in large databases. These
methods usually use the idea of BN learning, directly or
indirectly, and are focused on causal relationships with single
cause variables. In this paper, we propose an approach to mine
causal rules in large databases of binary variables. Our method
expands the scope of causality discovery to causal relationships
with multiple cause variables, and we utilise partial association
tests to exclude noncausal associations, to ensure the high
reliability of discovered causal rules. Furthermore an efficient
algorithm is designed for the tests in large databases. We assess
the method with a set of real-world diagnostic data. The results
show that our method can effectively discover interesting causal
rules in large databases.

Keywords-data mining; causality; partial association; causal
rule

I. INTRODUCTION

The discovery of causal relationships between variables
is important in revealing intricate interactions among the
components of a system or process. Causal relationships are
more powerful than correlative relationships, in that causal
relationships indicate not only that the variables are related,
but also how varying a cause variable is likely to induce a
change of an effect variable, therefore they are more useful
in prediction and reasoning. For example, with identified
causal relationships, we can predict potential consequences
(effects) before actually carrying out any actions (causes),
which is extremely useful in preventing erroneous decision
or policy making. In medical science, causal relationships
help us understand the causes of diseases and deliver better
diagnosis and cures for diseases. In brief, the studies of
causality will fully display their values in various areas, such
as economics, physical, behavioral, social and biological
sciences.

The common approach to identify causal relationships is
to conduct randomised controlled experiments, which unfor-
tunately, is often expensive and infeasible with large number
of variables. Therefore much attention has been focused

on discovering causal relationships from observational data,
particularly with the rapidly increased accumulation of large
volume of observational data.

Discovering causal relationships in large observational
databases, however, is also a challenging task. Firstly, there
is not a generally acceptable definition for causal rela-
tionships. Causality is more a philosophical phenomenon,
and it may have different meanings in different areas. This
makes it difficult to expound causality in a unified form.
Pearl [1] proposed a framework that connected conditional
independence with causal structures, based on which some
methods have been developed to define and identify the
causality. However, it is still far from satisfaction with
discovering causal relationships effectively and efficiently
from large databases. Secondly, the computational cost for
the discovery is high. Causal relationships are typically
represented by probabilistic dependence.

Probabilistic causality has been proposed and discussed
in some early literature [2], [3], [4], [5]. More recently,
Bayesian networks [6] have emerged as a major platform for
discovering causal structures [7], [8], [9], [10], [11], [12],
[13], given the methods they have provided for representing,
inferring and learning probabilistic independence among
variables. However, discovering complete causal models
with Bayesian network learning is a NP-complete problem
[14]. Constraint-based approaches which do not search for a
general Bayesian network are more efficient. Currently, sev-
eral constraint-based algorithms have been used to discover
causal structures in large databases and have produced some
good results [15], [16], [17], [18], [19]. These methods use
observational data to determine conditional independence
of variables and learn local causal structures. It is worth
noting that these constraint-based methods apply the idea
of Bayesian network learning directly or indirectly, with
the goal of generating a directed acyclic graph (DAG) to
represent the conditional independence between variables.

Although constraint-based approaches have shown
promise with large data sets, they normally are designed to
discover causal relationships with some fixed structures in
a DAG, e.g. CCC [15], CCU [16] and Y structures [17].
Furthermore, they are not designed to discover combined



causal factors. In practice, the combination of two or
more cause variables may strengthen the degree of effects.
Even when each variable individually does not cause any
effect, their combination may do. For example, someone
who has eaten raw fish and drunk cold milk separately
may feel well, but he/she may feel sick after having them
together. To the best of our knowledge, there is no previous
work on discovering combined causal relationships with
constraint-based causal relationship discovery.

We should note that it is insufficient to discover causal
relationships in observational data only. Ultimately, the
identified relationships have to be validated with controlled
experiments. However, it is sufficient to exclude noncausal
relationships based on the discoveries from data. Causal
relationship discovery in data is to find a short list of rules
that are most likely causal. These causal rules represent a
small set of statistically reliable relationships that are likely
to embed cause and effect relationships. This distinguishes
the causal rule discovery from the normal rule discovery.
For example, association rule mining normally finds a large
set of rules, many of which are redundant and spurious, but
causality has not been used as an interestingness criterion
before. However, we argue that it would be inefficient to
find causal rules in a large collection of association rules
as a secondary discovery process, and new approaches are
required for causal rule discovery.

In this paper, we propose a general approach to causal
relationship discovery using association and partial associ-
ation. In comparison with previous work, we have made
three main contributions. Firstly, the approach does not
rely on Bayesian network structures, and it does not define
causal relationships in such a way that the relationships are
restricted to some specific structures in a DAG. Our method
directly searches for potential causal relationships among
variables based on association and partial association, which
also have strong theoretical support for causal relationship
discovery. Secondly, our approach can discover causal re-
lationships with a single cause factor (variable), as well as
the relationships with combined cause variables, from obser-
vational data. Existing constraint-based discovery methods
do not consider combined cause variables. Furthermore,
with Bayesian network learning based causal relationship
discovery, domain experts are needed to create the structure
of a network to identify combined causal variables if each of
the individual variables of the combination is independent of
the outcome (effect) variable. Thirdly, we have designed an
efficient algorithm for causal rule discovery. The algorithm
reduces the memory space requirement considerably to make
it computational feasible.

The rest of the paper is organised as follows. In Section
II, we give the relevant definitions and present the problem
statement. Section III describes our algorithm for causal rule
discovery and discusses its time complexity. Then in Section
IV we present the implementation of the algorithm and the

experimental results to show the validity of the algorithm. In
Section V we conclude the paper and suggest future work.

II. DEFINITIONS AND PROBLEM STATEMENT

In this section, we firstly define the notation to be used
in the paper and an informal definition of causal rules
(Section II-A). We then define the concepts and formulas for
presenting our causal rule discovery method (Sections II-B
and II-C). Finally, we give the formal definition of causal
rules in Section II-D, and discovering such rules is the goal
of this paper.

A. Notation and an Informal Definition

Individual random variables are represented using upper
case letters, e.g. X and Y . We use bold-faced upper case
letters, e.g. X, to denote a set of random variables. Lower
case letters, e.g. x and y, denote the value assignments to
variables X and Y respectively. We use the symbol “\” to
denote the set difference operator, e.g. X\{Xi} represents
the set of all variables in X except for Xi.

Particularly in this paper, we use the bold-faced upper case
letter, V, where V = {V1, V2, . . . , Vm} to represent a set of
binary predictive variables, and use letter Y to represent a
binary outcome (target or effect) variable. Suppose that value
1 indicates yes, and value 0 indicates no, an example data
set for 6 predictive variables A, B, C, D, E, F and one
target variable Y is shown in Table I, where the last column
shows the number of repeats of a sample in the data set.

Table I
AN EXAMPLE DATA SET FOR SIX PREDICATE VARIABLES AND THE

TARGET VARIABLE

A B C D E F Y #Repeats
1 1 1 1 1 1 1 14
1 0 1 1 1 1 1 8
1 1 0 1 0 1 1 15
0 1 1 1 1 1 1 8
0 1 0 0 0 0 0 5
0 0 0 0 1 0 1 6
1 0 0 0 0 1 0 4
1 0 1 1 1 0 0 3
0 1 0 1 1 0 0 3
0 1 0 0 1 0 0 5

Let X ⊂ V, a causal rule X → Y indicates that: 1)
variables in X are associated with Y , and 2) the association
remains given any Z ⊂ V and X ∩ Z = ∅. In other words,
the association is persistent.

The justification of the above (informal) definition of a
causal rule is as follows. If two variables are not associated,
they cannot form a cause and effect relationship. If two
variables (X and Y ) are associated, but the association
disappears when a third variable Z is given, this means that:
both X and Y are caused by Z; or X causes Z and Z
causes Y . In either case, X is not a direct cause of Y .
As mentioned before, it is insufficient to validate causal
relationships in data only, but it is sufficient to exclude



noncausal relationships with the findings in data. Hence the
idea is to exclude the noncausal relationships based on the
definition of causal rules, and keep the remainder as potential
causal relationships. The same strategy is employed in [16].
In Section II-D, we will define causal rules formally.

B. Association

In this section, we firstly review the concept of the associ-
ation of two variables, by following the standard statistical
definition. Then we discuss the case with more than two
variables, and provide several new definitions, which will
be used in developing and presenting our approach to causal
rule discovery.

Table II provides the general form of a contingency table
for two binary variables X and Y . In the table, nij (i, j ∈
{0, 1}) represents the counts or frequencies of X = i and
Y = j in the data set, and ni. = ni1+ni2, n.j = n1j +n2j .

Table II
A 2× 2 CONTINGENCY TABLE

Y=1 Y=0 Total
X=1 n11 n12 n1.

X=0 n21 n22 n2.

Total n.1 n.2 n

If X and Y are independent, the count values will be
distributed in the four cells (the cells that are not totals)
based on the independent principle. In this case, the expected
values of the four cells are: E(n11) =

n1.

n ∗ n.1

n ∗n = n1.∗n.1

n ,
E(n12) = n1.∗n.2

n , E(n21) = n2.∗n.1

n , and E(n22) =
n2.∗n.2

n .
The Chi-square statistic (Equation (1)) indicates the devi-

ation of the observed values from the expected values when
the two variables are independent. The higher the Chi-square
statistic value, the more the two variables deviate from the
independence. Normally, when χ2 > 3.84, we have 95%
confidence to reject the hypothesis that the two variables
are independent and consider that they are associated.

χ2 =
2∑

i=1

2∑
j=1

(nij − E(nij))
2

E(nij)
(1)

When we have more than two variables, e.g. three vari-
ables Xp, Xq , and Y , following the standard statistics
method, to compute the Chi-square statistic for the three
variables, a three way contingency table is constructed with
8 cells: {(Xp = 1, Xq = 1, Y = 1), (Xp = 1, Xq =
1, Y = 0), (Xp = 1, Xq = 0, Y = 0), . . . , (Xp = 0, Xq =
0, Y = 0)}. One major problem with using such a multi-
way contingency table is that it is very difficult to obtain a
reliable Chi-square estimation for three or more variables.
To obtain a reliable Chi-square statistic, the count value in
each cell has to be 5 or larger, and this is often violated when
the number of cells becomes large. For example, with the
3 binary variables representing gender, having breast cancer

and having prostate cancer, the cells with “gender=female,
prostate cancer=yes” and “gender=male, breast cancer=yes”
may each have a count close to zero, as in reality it is highly
unlikely for a female to have prostate cancer or for a male
to have breast cancer.

Therefore for our purpose of discovering causal rules, we
propose to use a simplified contingency table, as illustrated
in Table III with three variables Xp and Xq (two predicative
variables) and Y (the target variable). We call the simplified
contingency table contingency table with combined vari-
ables. In the table the predictive variables are considered
to be combined into one variable, and all the cases of the
predictive variables having zero values (negative outcomes)
are considered as “others”.

Table III
THE GENERAL FORM OF A CONTINGENCY TABLE WITH COMBINED

VARIABLES

Y=1 Y=0 Total
Xp = 1, Xq = 1 n11 n12 n1.

others n21 n22 n2.

Total n.1 n.2 n

It is important to note that such a contingency table
captures the semantics of our intended causal relationships
better. In most cases of investigating causal relationships,
we are more interested in the positive outcomes (value 1)
of binary variables. For example, “smoking = yes” is more
meaningful to doctors than “smoking = no”. We would
have to introduce lots of redundancies if we considered
all cells with close to zero counts. We call the association
identified by using such a simplified contingency table
positive association (Definition 1).

Definition 1. (POSITIVE ASSOCIATION AND ZERO AS-
SOCIATION) Given an attribute set (predictive variables)
X, an outcome attribute (target variable) Y , and M (the
contingency table with combined variables for X), X is
positively associated with Y if χ2

M ≥ χ2
p, where χ2

M is
the Chi-square statistic obtained from M using Equation
(1), and χ2

p is the Chi-square value corresponding to the
specified p value. When χ2

M < χ2
p, X and Y are said to be

zero-associated.

With the definition, a commonly used p−value is 0.05,
and χ2

0.05 = 3.84.
We consider only positive associations since in most

cases, e.g. investigating the causes of a diseases, only
positive outcomes are of interest. In practice, the affirma-
tive statements are of interest to many research areas. For
example, medical researchers would like to know the direct
associations between different symptoms and a disease.
However surveying for the relationships between the absence
of a symptom and the disease or the absence of a symptom
and the absence of the disease have little interest to most
users. Furthermore, we only consider positive associations



in order to reduce the search space. Empirically, a positive
association does not mean causality, but it is logical to say
that if there is no positive association between two variables,
there will be no causality between them.

Definition 2. (SUPPORT FOR POSITIVE ASSOCIATION) In
the contingency table with combined variables for attribute
set X and outcome attribute Y , n11 denotes the counts of all
positive assignments to the variables in X, and it is called
the support for the positive association between X and Y .

The support for positive association, n11, indicates the
number of cases supporting the positive association between
the predictive variables and the outcome variable. If n11 is
small, the association may not be of interest to users since
the relationship explains only very few cases. It is sensible
to set a threshold on the support for positive association, to
only keep positive associations with high supports, thus the
following definition.

Definition 3. (FREQUENT POSITIVE ASSOCIATION) As-
sume that X and Y are positively associated, the association
is frequent if n11 > n∗, where n∗ is the minimum support
threshold.

The value of n∗ can be set to be a constant or relative to
n.1. The rate n∗/n.1 indicates the percentage of cases being
explained in n.1. Consider the example in Table IV, where
n11 = 27 and n.1 = 30. It is easy to see that {B,E} has
frequent positive associative relationship with Y if we set
n∗/n.1 = 50%, i.e. n∗ = 15.

Table IV
AN EXAMPLE CONTINGENCY TABLE WITH COMBINED VARIABLES

Y=1 Y=0 Total
B=1, E=1 27 3 30

others 29 12 41
Total 56 15 71

Frequent positive associations make it possible for the
causal rule discovery to use frequency pruning in associ-
ation rule mining, which could improve the efficiency of
the algorithm. Based on the definition of frequent positive
association, we have the following definition.

Definition 4. (FREQUENT ASSOCIATION RULE) X → Y
is a frequent association rule if: 1) X and Y are positively
associated; and 2) The support of the positive association
X → Y is greater than the minimum support threshold.

C. Partial Association

Positive associations are a starting point for identifying
causal relationships. However, a positive association be-
tween two variables may disappear when other variables
influence the relationship. Causal relationships, however,
are more persistent and precise than positive associations.
Causal relationships indicate the essential relationships that
will not be affected by other factors. In other words, causal

relationships are persistent given all other observable vari-
ables.

A positive association may imply a causal relationship, but
not every association is a causal relationship. If a positive
association is not persistent, it will be unwise to use it
for predicting direct causal relationships between variables.
For example, with three binary variables: having high blood
pressure (HB), smoking (S) and having cancer (C), S and
C may have positive association, but when we take the
factor of HB into consideration, we cannot establish the
causal relationship that S is the cause of C, as it could be
possible that HB is a common cause of both S and C.
If we use associations only, we may miss the real causes.
As a result, it is imperative to remove those noncausal
associations effectively and efficiently. Our idea is to exclude
noncausal relationships from associative relationships and
produce a small set of potential causal relationships.

To filter out noncausal relationships from a set of pos-
itive associations, we may conduct randomised controlled
experiments. However, these experiments are usually costly
and sometimes impossible or irrational to perform. On the
other hand, when only having observational data, partial
association tests can be employed to remove noncausal
relationships.

Assume that a set of predictive variables, X and an
outcome variable, Y , are positively associated. When taking
another set of variables Z into account, we can test the partial
association between X and Y . If the partial association
is zero, it means the association between X and Y is
not persistent and it is obstructed by other variables. In
causality discovery, zero partial association can be explained
by considering Z as a common cause of both X and Y , or
X causes Z, which then causes Y. So we are more interested
in nonzero partial associations which indicate constant re-
lationships and potential causal relationships. Therefore we
should determine that the association between X and Y is
persistent using partial association test before we are able to
conclude that X → Y is a causal rule. In other words, we
need to test the partial association between X and Y given
any Z ⊂ V and X ∩ Z = ∅.

There are some existing methods for testing partial associ-
ations, but no all-powerful tests are well-known. Mantel and
Haenszel [20] proposed a refined method for testing partial
association between two variables I and J with a three-way
contingency table. It has the power against alternatives no
matter the sign of the deviation varies or not. Furthermore,
it has been proved to be valid when the data set is large (but
the individual counting number is small), so it is suitable for
discovering causal relationships in large data sets. Birch [21]
showed that the Mantel-Haenszel test was optimal for testing
against alternatives when the strength of partial associations
keep constant. Therefore, the Mantel-Haenszel test is a good
tool for testing partial associations for the purpose of causal
relationship discovery.



Assume that I and J are two binary variables, and K has
t possible values, k1. . . kt. To test the partial association of
I and J given K, let nijk be the number of I = i, J = j
and K = k. A dot in the subscript indicates the sum of all
possible values i, j or k. Based on the basic idea of Mantel-
Haenszel test, the partial association, PA(I, J,K), between
I and J can be computed using the following equation.

PA(I, J,K) =(|
∑
k

n11kn00k − n10kn01k

n..k
| − 1

2
)2/

∑
k

n1.kn.10kn.0kn0.k

n2
..k(n..k − 1)

(2)

Based on this equation, we can define nonzero partial
association as follows.

Definition 5. (NONZERO PARTIAL ASSOCIATION) Let
α∈[0, 1] be a significance level threshold for a partial
association. There is a nonzero partial association between I
and J given K if the following inequality holds, otherwise
it is a zero partial association between I and J given K.

PA(I, J,K) ≥ χ2
α

From the definition, we see that a nonzero partial associa-
tion means that the association between I and J is persistent.
Otherwise, the association is considered to be non-persistent.
We will search for all persistent associations for the purpose
of causal relationship discovery.

In order to discover the causal rules included in the
positive association rules of the predictive variables and the
outcome variable in large data sets, we transplant the Mantel-
Haenszel test to compute the partial associations, and to
identify the nonzero partial associations.

Assume that V = {V1, V2. . . Vm} is a set of binary
predictive variables, Y is a binary outcome variable. The
number of all the possible combinations of the variables in
V (i.e. the power set of V excluding the empty set and V
itself) is 2m − 2 altogether. In order to find if a variable
Vi ∈ V has a partial association with Y conditioned on any
of the combinations, we need to test the partial association
between Vi and Y given each of the combinations of V\Vi.

It is worthing noting that although some combinations
may not have records of values in the data set, we see that
on average, the number of the combinations will increase
exponentially when the number of variables, i.e. m, increas-
es. This will hinder the performance of partial association
tests. In the next section, we will present a method as part
of our algorithm to alleviate this problem.

Let n11k be the number of Vi and Y both having value
1 given the k-th combination, n10k be the number of Vi

being 1 and Y being 0 given the k-th combination, n01k

be the number of Vi being 0 and Y being 1 given the k-
th set of conditions, n00k be the number of Vi and Y each
having value 0 given the k-th combination. Then we can use

Equation (2) to obtain the value of the partial association
between Vi and Y . Finally based on Definition 5, we can
test if Vi has a nonzero partial association with Y or not.

For example, referring to the example data set shown in
Table I, let us test if {B,F} has a partial association with
Y . The contingency tables for testing the partial association
between {B,F} and Y are listed in Table V. To simplify
the representation, in the following we use BF to represent
the set {B,F}, and similar notation is used for a set with
multiple elements. Also we use [B = 1, F = 1] to indicate
that only B and F are 1 and all other variables in V are
zero.

Table V
CONTINGENCY TABLES FOR TESTING PARTIAL ASSOCIATION BETWEEN

BF AND Y GIVEN K = ACDE

ACDE
− +

˜BF 3 8
BF 0 14

In order to investigate the partial association of BF and
Y in this case, variable K is used to represent the possible
combinations of the rest 4 variables, A, C, D, and E. Then
we can obtain from the original data set a set of 2×2 three-
way contingency tables, each corresponding to a possible
value of K. Note that a contingency table that has all zeros
in one row or one column can be eliminated because the
contribution to the partial association value from such a table
is going to be zero. As a result, the actual number of valid
contingency tables could be smaller. In this example, there is
only one table left, as shown in Table V, BF represents both
B and F are ones, and B̃F represents either B or F is zero,
or both are zero, where “-” and “+” represent Y = 0 and
Y = 1 respectively. Then based on the contingency table
and using Equation (2), the partial association between I
and J given K is calculated as follows (note that in this
case, I = BF , J = Y and K = ACDE and k has just one
value):

∑
k

n11kn00k − n10kn01k

n..k
= 1.6800

∑
k

n1.kn.10kn.0kn0.k

n2
..k(n..k − 1)

= 0.6776

PA(BF, Y,K) = 2.418, α = 0.880

So we conclude that the partial association between BF and
Y is not significant, thus BF → Y is not a causal rule.

With our causal rule discovery approach, we firstly find
all the variables (or sets of variables) that are positively
associated with Y . Then we perform partial association tests
as illustrated above on these positive associations, and keep
the nonzero partial associations, as they may imply causal
relationships. This idea is formalised in the following section
II-D.



D. Causal rules

Definition 6. (CAUSAL RULES) X → Y is a causal rule if:
1) X and Y are positively associated; 2) The support of the
association X → Y is greater than the minimum support
threshold; and 3) there exists a nonzero partial association
between X and Y .

The support requirement makes it possible to use an
efficient frequent pattern discovery algorithm as a base for
causal rule discovery.

Definition 7. (REDUNDANT CAUSAL RULES) Assume that
X⊂W, if X → Y is a causal rule, rule W → Y is redundant
as it does not provide new information.

If X → Y is a causal rule, W → Y may or may not be a
causal rule. However, in either case it is not of interest to us.
Therefore, we can terminate a search for more complicated
(longer) causal rules when a causal rule has been discovered.
This reduces the search space.

If X and Y are positively associated, then W, a superset
of X, may or may not positively associated with Y . If W and
Y are not positively associated, they cannot have a causal
relationship, and we should not test its partial association.
If W and Y are associated, then the association attributes
to the association between X and Y . Therefore, no matter
W and Y are associated or not, the rule W → Y is not of
interest. This leads to the following condition for testing the
causal rules with combined factors.

Definition 8. (CONDITION FOR TESTING CAUSAL RULES
WITH COMBINED FACTORS) We only test a combined causal
rule XV → Y if X and Y have a zero association and V
and Y have a zero association.

This definition will serve as a forward pruning criterion
where all variables positively associated with the target
variable are excluded from the combination of future search.
This condition and the minimum support requirement make
the search space manageable.

III. ALGORITHM

In this section, we describe our algorithm for causal rule
discovery and discuss its complexity.

The algorithm (Algorithm 1) is designed based on
our definition of causal rules (Definition 6), as well the
conditions for removing redundant rules and testing rules
with combined factors, as discussed in Section II-D.

Algorithm 1 Mining Causal Rules
Input: variable set U, data set T, support threshold s, signif-
icance threshold α, target Z.
Output: Causal Rules Set R.
1)set P=∅, N=∅, R=∅, V=U

2)while (set V is not empty)

3) Prune(V)

4) for each variable X in V

5) create contingency table

6) if (X is frequent)

7) Calculate χ2
X,Z

8) if (χ2
X,Z>χ2

α)

9) insert X into P

10) if PAssociation(X) is nonzero

11) insert X into R

12) end

13) else insert X into N

14) end

15) end

16) set V ← Generate(N),P=∅, N=∅
17)return R

To save space, at above, we have omitted the details of the
three key functions: Generate(), Prune() and PAssociation().

The algorithm makes multiple passes over the data. In
the first pass, we count the support of all the individual
variables together with the outcome variable and summarise
them in the corresponding contingency tables to conduct the
Chi-square tests. Positive associations and zero associations
identified from the tests are kept. Associations with insuffi-
cient support will be eliminated directly. Next we use a well-
designed method to do the partial association test with 2×2
contingency tables for each positive association. The records
of data set will first be sorted and repeats are counted before
the detection of partial associations. If a record contains the
value of a variable, such as X , the rest variable with value
1 will be treated as a condition set. Conditioned on this set,
one pass over the records will produce a 2× 2 contingency
table as illustrated in table V. Then the remaining tables
for X will be generated according to the ordered records.
Hence the nonzero partial association, by Definition 5, could
be detected. The causal rules in current combined case can
be determined from the nonzero partial associations. At the
end of the pass, the zero associations found in the first step
are combined for the next pass until no causal rules are
found.

There are several favorable properties to improve the per-
formance of the algorithm. The efficiency of the algorithm
lies in the redundant rule property specified in Definition
7. Based on it, the pruning technique is used in generating
combinations of two or more variables to reduce the search
space. Suppose that the data set is a complete binary matrix
and has no missing values, each column of the matrix
indicates a predictive variable and the outcome variable is
listed in the last column, QuickSort algorithm can be used
to rank the records and merge the equivalence classes based
on the features of the data, so the total number of the
records will be reduced remarkably, especially in a database
with large number of records. Regarding efficiency, not all
the combinations are considered as a condition during the
tests of partial associations. Instead, we only investigate the
combinations appearing in the data which may be much



smaller than the totality. As a result, the complexity of the
algorithm is reduced.

To analyse the performance of the algorithm with respect
to time and space complexity, and the number of passes
over the data set, we denote the number of variables n,
the number of records m. Suppose that there are l different
records in the database. The complexity of the method is
discussed based on the mining of causal rules in the form
of [X = 1, Y = 1]→Z = 1.

Consider the naive method for discovering the causal
rule XY → Z. The single variables are combined and
the support is counted with O(n) passes over the database.
Each combination needs a Chi-square test to determine the
positive association, which requires O(n2) passes. In the
process of testing partial associations, a positive association
will be examined conditioned on all other combinations. The
total number of possible combinations is O(2n), so it needs
to scan the database as many as O(2nn2) times. To conclude,
the passes over the database using naive method is O(2nn2),
and the time it takes is O(m2nn2).

As mentioned above, we use QuickSort to rank the
records and merge the equivalence classes, so the number of
different records is reduced to l. The QuickSort algorithm
takes O(mlgm) on average. Then the database is scanned for
O(1) times to generate positive association if O(n2) memory
space is available. In the worst case, it costs O(l) passes over
the data set to test a partial association.

At the end, it takes O(l2) time and O(l) passes over
the database. In addition, it can be proved that l ≤ 2n.
Therefore, this method is more efficient comparing with
naive method. The result is shown in Table VI.

Table VI
COMPARISON IN SPACE AND TIME WITH THE NAIVE METHOD

Algorithm Memory space Time DB passes
naive O(1) O(m2nn2) O(2nn2)

efficient method O(n2) O(l2) O(l)

IV. IMPLEMENTATION AND EXPERIMENTS

We implement the algorithm and apply it to an Arrhythmia
data set [22], which distinguishes between the presence
and absence of cardiac arrhythmia and classifies them into
different groups. The data set contains 452 records and each
record obtains 279 data attributes and one class attribute. All
the data attributes have been translated into binary variables
in which 1 indicates yes and 0 indicates no. Here we consider
the class named “Right bundle branch block” as target and
aim to find its causes in the attributes. Hence the patients are
classified into two categories: Right bundle branch block or
not, and they are labeled in the class attribute respectively
with 1 and 0. Our goal is to discover the potential causal
relationships between the data attributes and the target.

Table VII
SINGLE CAUSAL RULES DISCOVERED WITH OUR METHOD

(α=0.02, n∗=5)

Causal Rule in form of X→Y
P18→P280 P53→P280 P57→P280
P89→P280 P105→P280 P138→P280

P150→P280 P160→P280 P177→P280
P189→P280 P198→P280 P217→P280
P228→P280 P229→P280 P238→P280
P267→P280 P277→P280

A. Causal rule discovery

We firstly find all the single causal rules using our method,
and compare it with Verstein’s method [16]. The minimum
support threshold n∗ is set as 5, and the significance level
threshold α is set as 0.02 considering the numbers of causal
rules. To facilitate the description, the data attribute with
index i is indicated as Pi, for example, the third attribute
is P3. The discovered causal rules with our algorithm are
shown in Table VII.

CCC and CCU are two causal structures presented in [16].
We implement the methods in [16] for discovering the CCC
and CCU structures, and apply it to the Arrhythmia Data Set
with the same values for α and n∗. Suppose that A, B and C
are three attributes and they form a CCC structure. That is,
A, B and C are pairwise dependent, meanwhile A and C are
independent given B. With the assumption of no hidden and
confounding variables, three different causal paths could be
inferred: A → B → C, A ← B ← C, A ← B → C.

Causal rules like A → B, C → B can be deducted
when B is the target. The causal rules contained in the CCC
structures are found and illustrated in Table VIII.

Table VIII
CAUSAL RULES BASED ON CCC STRUCTURES

(α=0.02, n∗=5))

CCC Causal Rule X→Y
P5→P280 P17→P280 P18→P280

P29→P280 P30→P280 P42→P280
P53→P280 P57→P280 P71→P280
P77→P280 P78→P280 P89→P280
P90→P280 P91→P280 P93→P280
P95→P280 P102→P280 P103→P280

P104→P280 P105→P280 P107→P280
P115→P280 P116→P280 P138→P280
P150→P280 P160→P280 P63→P280
P173→P280 P177→P280 P178→P280
P189→P280 P192→P280 P197→P280
P198→P280 P213→P280 P217→P280
P222→P280 P224→P280 P227→P280
P228→P280 P229→P280 P234→P280
P235→P280 P237→P280 P238→P280
P244→P280 P245→P280 P267→P280
P273→P280 P277→P280

With respect to a CCU structure, A and B are dependent,
and C and B are dependent. A and C are independent, but
they become dependent conditioned on B. The only causal
path is A → B ← C. The CCU causal rules found using
method [16] are listed in Table IX.



Table IX
CAUSAL RULES BASED ON CCU STRUCTURES

(α=0.02, n∗=5)

CCU Causal Rule X→Y
P5→P280 P17→P280 P18→P280

P30→P280 P42→P280 P57→P280
P78→P280 P89→P280 P90→P280
P91→P280 P93→P280 P102→P280

P105→P280 P107→P280 P163→P280
P192→P280 P197→P280 P213→P280
P217→P280 P222→P280 P224→P280
P229→P280 P237→P280

Comparing with the set of CCC causal rules, the set of
single casual rules discovered with our method is a subset
of it. Quite a lot of inconstant associations include in the
CCC causal rules should have been removed using partial
association test. It is infeasible to find plausible alternative
explanation for the effect other than the cause [23]. In
this paper, we use partial association tests to reduce the
plausibility of other explanations. Therefore, there is no
cause and effect relationship between two variables when
their association is zero partial. Based on this, the CCC rules
may include many non-causal rules. For example, P5→P280
in Table VIII is a causal relationship based on the CCC
structure. When the partial association test is applied to
check if the casual relationship is persistent, it fails to pass
the test due to a low partial association value (3.250). As a
result, P5→P280 should be eliminated.

The result of the CCU method shows a small number of
causal rules. It is also a subset of the CCC causal rules,
but there are several different causal rules in the result
which do not appear in Table VIII. The same reason for
the set of CCU rules, it also contains a few non-causal
rules. In addition, the CCU method works in an opposite
direction compared to partial association test. In the view of
CCU, we need to examine the association between different
predictive variables. Take the relation A→B for instance,
we have to find another predictive variable C, which is
independent of A but becomes dependent on A given B,
before we can determine A→B to be a causal rule. In
other words, to find causal rules in CCU structures we
must investigate the influence of the target variable on the
associations among predictive variables. Instead, the partial
association test investigates the influence of other predictive
variable on the associations between predictive variables and
target variable. In conclusion, it is reasonable for the two
methods CCC and CCU to make a difference in the result,
especially in a large data set.

In discovering of causal rules, we concern the global
persistence of causal relationships and remove the influence
of other predictive variables. A lot of the positive associ-
ations may not pass the partial associations tests thus are
eliminated, so the causal rules defined in this paper should
be more reliable. Besides, the proposed algorithm is more

Table X
COMBINED CAUSAL RULES DISCOVERED WITH OUR METHOD

(α=0.05, n∗=5)

Association +/− Association +/−
P3→P280 − P11→P280 −

P12→P280 − P14→P280 −
P89→P280 + P160→P280 +

P171→P280 − P195→P280 −
P215→P280 − P221→P280 −
P225→P280 − P231→P280 −
P241→P280 − P245→P280 −

Causal Rule +/− Partial Association Value
P3&P11→P280 + 5.0698

P11&P171→P280 + 4.9543
P11&P231→P280 + 2.2982

P171&P221→P280 + 0.8767
P171&P231→P280 + 3.1126

efficient according to the experimental comparison (see the
next section for details).

Furthermore, another contribution of the proposed method
is that we extend the causal rules for the situation with com-
bine cause variables. Two or more variables are combined
to test if they are both positive associated and have nonzero
partial association with the target. In consideration of the
small sample size of the data set, we mainly investigate 15
attributes. For simplicity, we only list the combined positive
associations and summarise them in Table X. The symbol
“+” or “−” indicates positive or zero association for the
single rules in the top part of the table, and in the lower
part of the table “+” indicates both positive association and
nonzero partial association for the combined rules.

As χ2
0.05=3.84, we determine that P3&P11→P280 and

P11&P171→P280 are the newly discovered causal rules be-
cause they also have nonzero partial associations. The result
shows that the combinations of zero associated variables can
generate combined causal rules, such as P3&P11→P280 in
which P3 and P11 are both zero associated with P280 respec-
tively. The combination of positive associated variables are
thought to be redundant and provide little new information.
However, P3&P11→P280 and P11&P171→P280 are new
causal rules, which imply that the interaction of zero asso-
ciations can produce causal relationships. Considering the
CCC and CCU structures, the zero associated variables are
ignored directly. Based on this, our method could generate
new causal rules which are not considered by the CCC or
CCU method.

B. Performance

Apriori [24] is the most fundamental algorithm for gener-
ating association rules in large databases. It is implemented
distinctively here to find the association rules in regards
to a given target whose causes we are only interested in
discovering. The scalable techniques [16] for discovering
the CCC and CCU causal structures are also used for
comparison. We select two subsets with record size 20K and



Figure 1: Extraction Time Comparison (20K Records)

Figure 2: Extraction Time Comparison (100K Records)

100K from the census income data [22]. Each set is sampled
to their 8 subsets with transaction sizes: 6, 8, 10, 12, 14,
16, 18 and 20. We run all the algorithms for these subsets
in sequence to show the superiority of our algorithm. Both
Figure 1 and Figure 2 show the performance of the causal
discovery proposed in this paper relative to Apriori and the
CCC&CCU algorithm. For the two groups of subsets, the
Causal discovery algorithm to be the most efficient one and
it finds all single causal rules. As shown in the figures, the
extraction time of the other two algorithms is nearly larger
by 1 order of magnitude when the attributes size becomes
large. For the subsets with small number of attributes, the
CCC&CCU algorithm has better performance than Apriori.
The growth of attribute size leads to clear performance
degradation, and the Causal discovery algorithm degenerates
most slowly for both the two scales of 20K and 100K.

Further, we do experiments to evaluate the scalability
of the algorithms with the record size and the number of
attributes. Figure 3 shows that the Causal discovery algo-
rithm scales up with the number of records. We examine the
performance degradation of the algorithm for three different
scales: 20K, 50K, 100K. The significance level threshold

Figure 3: Scale-up of records

Figure 4: Scale-up of attributes

and the minimum support threshold are respectively set as
0.05 and 5, and they remain the same in all the experiments.
As shown in Figure 3, the extraction time increases gently
with the number of attributes. More important, the curve is
linear, which means that the performance of our algorithm
is linearly related to the increase of attribute size.

Next, the increase of extraction time for different record
size with different number of attributes is evaluated and
the curves are shown in Figure 4. 8 sample points ranging
from 20K to 100K are extracted to create the variation
curves. Each curve indicates the trend of extraction time
along with record size. They clearly illustrate that the time
of discovering single causal rules by my Causal discovery
algorithm is linear in the size of data set for all attributes
scales. As a result, the algorithm should be adaptable to
discovery casual rules in large data set efficiently.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have developed a general approach to
discover causal rules in large databases of binary variables.
Based on the idea of a causal relationship being persistent,
our method takes both associations and partial associations
into account to detect the causal relationships. Also the



method extends previous work by considering combined
cause factors, and the identified combined causal rules can
be potentially useful in a wide range of areas. To cope with
the computational complexity of partial association tests, we
have proposed to use QuickSort in the algorithm, which
has significantly improved the efficiency. When applying our
approach to a set of real-world diagnostic data, the algorithm
is able to efficiently produce both single and combined
causal rules.

In the future, we plan to evaluate the performance of
this algorithm with a wider range of large scale data sets.
In addition, we will conduct further comparisons of our
approach with other causality discovery methods. The algo-
rithm proposed aims at discovering causality from observed
binary data with known target, so we intend to extend
the algorithm to make it adapt for various data types and
discover causal relationship effectively from more complex
cases.
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