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Abstract

Conditional Functional Dependencies (CFDs) have
been proposed as a new type of semantic rules
extended from traditional functional dependencies.
They have shown great potential for detecting and re-
pairing inconsistent data. Constant CFDs are 100%
confidence association rules. The theoretical search
space for the minimal set of CFDs is the set of mini-
mal generators and their closures in data. This search
space has been used in the currently most efficient
constant CFD discovery algorithm. In this paper, we
propose pruning criteria to further prune the theo-
retic search space, and design a fast algorithm for
constant CFD discovery. We evaluate the proposed
algorithm on a number of medium to large real world
data sets. The proposed algorithm is faster than the
currently most efficient constant CFD discovery al-
gorithm, and has linear time performance in the size
of a data set.
Keywords: Functional dependencies, conditional
functional dependencies, association rules, closed
patterns.

1 Introduction

Poor data quality has been a major problem in many
organisations. Erroneous and inconsistent data has
costed US business hundreds of billions of dollars be-
cause of poor business decisions resulting from the
poor data quality [1]. Recently, conditional func-
tional dependencies (CFDs) have shown great poten-

tial for detecting and repairing inconsistent data in
relational data sets [2, 3]. For example, the following
CFD was discovered in US airline traffic data in our
experiment. ”((Origin State Name, Distance Group
→ Destination State Name), Hawaii, 1 || Hawaii). It
means that if the Origin State is Hawaii and the Dis-
tance Group is in 1 (e.g. less than 1000 km), then
the Destination must be Hawaii. Normally, there is
no functional dependency (FD) between attributes
(Origin State, Distance Group) and attribute Desti-
nation State. In other words, two flights departing
from the same state and flying within the same dis-
tance group (e.g. less than 1000 km), they may fly to
different destination states. However, when the orig-
inal state is Hawaii and the distance group is 1, the
destination state is dependent on the values of two
attributes. In this example, the destination state has
to be Hawaii. This is a conditional functional de-
pendency where the value dependency only holds for
some specific attribute values (not for all values).

Conditional Functional Dependencies are designed
for the detection and repairing of inconsistencies of
data. For example, suppose that the above CFD
has been found in January data. In February, we
found a record with the following information (Ori-
gin State Name = Hawaii, Distance Group=1, Des-
tination State Name = Washington). We have very
strong reason to suspect an erroneous value in the
record. Or if a CFD can be formed when very few
records are disregarded, then these records may con-
tain erroneous values. It is important for an organi-
sation to have a complete set of integrity constraints
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that reflect the organisation’s policies and domain se-
mantics to improve and maintain the data quality of
the organisation. CFD discovery helps an organisa-
tion to build a set of such constraints.

CFDs can also be used in database design to en-
force the semantical constraints for maintaining high
quality databases. However, most CFDs are to be ob-
tained from databases since they could not be identi-
fied as functional dependencies at the database design
stage. Firstly, they represent local constraints that
domain experts are not aware of. Secondly, some
CFDs are formed in daily practices and hence they
can only be revealed from data. Therefore, the dis-
covery of CFDs is the first and very important step
for applying CFDs to data quality enforcement.

The study on the discovery of CFDs has just
started. A few algorithms have been published in
the last few years. An algorithm using an attribute
lattice to generate candidate embedded FDs is pub-
lished in [1]. A greedy approximation algorithm is
proposed in [4] to compute a close-to-optimal tableau
for a CFD when the embedded FD is given. Three
algorithms called CTANE, CFDMiner, and FastCFD
were proposed in [5]. The rule discovery based
method, CFDMiner, has been shown to be several
orders of magnitude faster than two other functional
dependency based methods. One major reason is
that the rule discovery based method makes use of
the frequency and closure pruning strategies devel-
oped in rule discovery [6, 7].

Constant CFD discovery is a special case of associ-
ation rule discovery [5]. In the light of rule discovery
research, a theoretical search space for the minimal
set of CFDs is the set of minimal generators and their
closures in data [8, 9, 7]. This search space has been
used by CFDMiner [5], the currently most efficient
constant CFD discovery algorithm. In this paper, we
will show that the discovery of minimal set of CFDs
does not need all minimal generators and closures.
We will propose new criteria to further prune this
search space. We will then propose a fast algorithm
for the discovery of minimal set of CFDs. The algo-
rithm is evaluated on some real world data sets and
has been shown to be faster than CFDMiner [5].

CC AC PN NM STR CT ZIP

t1 01 908 11111 Mike Tree Ave. MH 07974
t2 01 908 11111 Rick Tree Ave. MH 07974
t3 01 212 22222 Joe 5th Ave. NYC 01202
t4 01 908 22222 Jim Elm str. MH 07974
t5 44 131 33333 Ben High st. EDI EH4
t6 44 131 44444 Ian High st. EDI EH4
t7 44 908 44444 Ian Port PI MH W1B
t8 01 131 22222 Sean 3rd Str. UN 01202

Table 1: An example data set from [5]. Each row
specifies phone details of a customer. CC stands for
country code, AC for area code, PN for (phone num-
ber), NM for (name), STR for street, CT for city, and
ZIP for zip code.

2 Conditional Function Depen-
dencies and CFD discovery

Assume a table R over a set of attributes
{A1, A2, . . . , Am}. Let dom(A) be a set of values (or
tuples) of attribute (or attribute set) A. Let ti[A]
be the projection of tuples ti on attribute (or set)
A. In this paper, a capital letter stands for a set or
an attribute, and a lower case letter for an attribute
value. We call a tuple over the set of all attributes
{A1, A2, . . . , Am} a record.

Definition 1 (Functional dependency (FD)). An FD
over R is represented as X → Z, where (1) X is a set
of attributes and Z is a single attribute and Z 6⊂ X,
and (2) ∀i, j, if ti[X] = tj [X], then ti[Z] = tj [Z].

For example, the following two FDs hold in Table 1.

f1 : [CC,AC]→ CT

f2 : [CC,AC,PN ]→ STR

f1 requires that two customers with the same
country and area codes also have the same city code;
f2 requires that two customers with the same coun-
try and area codes and the same phone number also
have the same street address.

We only need to consider a single attribute on the
right hand side (RHS) since X → Y Z is equivalent
to X → Y and X → Z.

Definition 2 (Conditional functional dependency
(CFD) [5]). A CFD φ over R is a pair (X → Z, tp),
where (1) X → Z is a standard FD, referred to as
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the FD embedded in φ. (2) tp is a pattern tuple
with attributes in X and Z. For each attribute set
B ⊂ X ∪ Z, tp[B] is either a constant in dom(B)
or an uninstantiated (or unnamed) variable ‘ ’ that
stands for any value of dom(B). Tuple t in R
matches the pattern tuple tp in φ if for any attribute
set B ⊂ X ∪ Z, t[B] = tp[B] or tp[B] = ‘ ’ (t agrees
with tp on all instantiated (or named) attributes of
tp.) Relation R satisfies φ if ∀ i, j, ti[X] = tj [X] and
both match tp[X], then ti[Z] = tj [Z] and both match
tp[Z]. Let LHS(tp) = tp[X] and RHS(tp) = tp[Z].

The following are some CFDs that hold in Table 1.
|| is the divider of LHS (Left Hand Side) and RHS
(Right Hand Side).

φ0 : ([CC,ZIP ]→ STR, (44, || ))
φ1 : ([CC,AC]→ CT, (01, 908||MH))
φ2 : ([CC,AC]→ CT, (44, 131||EDI))
φ3 : ([CC,AC]→ CT, (01, 212||NY C))

CFDs specify 1) the specific cases of an FD in a
data set, and/or 2) some conditions where FD holds
in parts of a data set. For example, CFDs φ1, φ2, φ3

specify special cases of FD f1. FD [CC,ZIP ] →
STR does not hold in data set 1, but holds for the
part of the data set where CC = 44. This has been
summarised as a CFD φ0. An FD can be considered
as a special case of CFD when the tuple pattern con-
tains only the unnamed variable. For example, FD
f1 : [CC,AC] → CT can be represented as a CFD
f1 : ([CC,AC]→ CT, ( , || )).

Definition 3 (Support of CFDs). The support of
a CFD is the fraction of records in a data set that
satisfies the CFD.

For example, the support of φ1 is 3/8 since three
tuples in the example data set satisfy φ1. Given a
minimum support requirement, a CFD is frequent if
its support is at least as large as the minimum sup-
port.

The major purpose of CFDs is for data quality
enforcement. CFDs should be applicable for future
cases. Many low support CFDs do not generalize and
they are not of interest for data quality enforcement.
For example, we may have CFDs ((ID → Name),
10011110 || John), and ((ID → Name), 10011111 ||

Smith). They explain the current data set but have
no use for future data quality enforcement. Further-
more, many low support CFDs may be results of ran-
dom matches, and they have no use for quality en-
forcement. Therefore, we are interested in frequent
CFDs.

Definition 4 (Constant CFDs [5]). A CFD is a con-
stant CFD if its pattern tuple tp consists of constants
only. Specifically, for a constant CFD (X → Z, tp),
tp[Z] is a constant and for all B ∈ X, tp[B] is a
constant.

For example, φ1, φ2, and φ3 are constant CFDs.
If a CFD is not constant, it is variable [2]. A

variable CFD represents a set of constant CFDs
in finite domains. For example, the variable CFD
(|CC,ZIP | → STR, (44, || )) in Table 1 can be spe-
cialized as {(|CC,ZIP | → STR, (44, 908||Port PI)),
and (|CC,ZIP | → STR, (44, 131||High St))}.

In this paper we only consider constant CFDs for
the following three reasons. First, constant CFDs
represent general CFDs at the value level and are
necessary to the satisfaction check of general CFDs.
Second, all variable CFDs can be upgraded from con-
stant CFDs for finite domains [2]. Third, in data
quality control or assessment, constant CFDs will be
used for consistency checking [1]

Definition 5 (The relationship of constant CFDs).
Let tp and tq be two tuple patterns of constant CFDs.
tp is more general than tq if LHS(tp) ⊂ LHS(tq) and
RHS(tp) = RHS(tq). Equally, tq is more specific than
tp. This relationship is denoted as tp � tq.

For example, (|CC,ZIP | →
STR, (44, 131||High St)) is more gen-
eral than (|CC,ZIP,Phone Number| →
STR, (44, 131, 33333||High St)). The second CFD
is implied by the first one and hence is redundant.
Whenever a tuple satisfies the second CFD, it
satisfies the first CFD too. Furthermore, the second
CFD explains at most the same number of tuples as
the first CFD. In work [5], a non-redundant CFD is
called left reduced CFD.

Definition 6. [Minimal set of constant CFDs] A set
of CFDs is said to be minimal if no tuple pattern
in the set is more specific than another one. The
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minimal set of CFDs includes non-redundant CFDs
only.

For example, let a set of CFDs be {(|CC,ZIP |
→ STR, (44, 131||High St)), (|CC,ZIP,
Phone Number| → STR,(44, 131, 33333 || High St)),
(|CC,ZIP,Phone Number| → STR,(44, 131, 44444
|| High St)), (|CC,ZIP | → STR, (44, 908 ||
Port PI))}. The minimal set of CFDs is {(|CC,ZIP |
→ STR, (44, 131 || High St)), (|CC,ZIP | →
STR, (44, 908 || Port PI))}.

In terms of consistency check, the minimal set of
CFDs is as good as the complete set of CFDs. An
inconsistency in a record is identified when the record
contains the LHS of a CFD but does not contain its
RHS. Note that a redundant CFD, say r2, contains
extra values in the LHS with respect to a more gen-
eral CFD, say r1, in the minimal set. All inconsisten-
cies discovered by r2 are discovered by r1 too. There-
fore, the set excluding r2 does not lose any capability
for consistency check.

Definition 7 (The problem of constant CFD discov-
ery). CFD discovery is to discover the minimal set of
frequent constant CFDs.

In the following discussions, CFDs are constant
CFDs since we do not consider variable CFDs.

3 A theoretical search space for
constant CFDs

Constant CFD discovery has a close relationship with
association rule discovery. We firstly discuss their
relationship, and then discuss the search space for
constant CFDs.

We firstly introduce notions in association rule dis-
covery. A tuple can be equivalently represented as a
set of attribute value pairs, called a pattern. Given
a scheme (Name, Postcode, Phone Number), a tuple
is represented as (John Smith, 077144, 12345678).
The order is important since values have to match
attributes. However, the tuple can be represented
as a set (Name = John Smith, Postcode = 077144,
Phone Number= 12345678). In this representation,
the order is insignificant since values are associated
with their attributes. The tuple representation has

been used in FD discovery, and the set representa-
tion has been used in rule discovery. A pattern is a
sub (or super) pattern of another pattern if its set of
attribute value pairs is a sub (or super) set of the set
of attribute value pairs of another pattern. We use
set representation in the following discussions.

Definition 8 (Association rule [10]). Let p be a pat-
tern and z be an attribute value pair where z 6∈ p.
p → z is called an implication. The support of p in
relation R is the fraction of records in R containing p,
the support of z the fraction of records in R contain-
ing z, and the support of p → z or pz (a shorthand
for p ∪ z) the fraction of records containing both p
and z in R. The confidence of p → z is the ratio
of the support of pz to the support of p. Implication
p→ z is an association rule if its support s and con-
fidence c are at least as large as the minimum support
and confidence, denoted as an (s, c) association rule.
Confidence and support will be denoted as conf and
supp.

For example, (CC = 01, AC = 908 ) → CT =
MH is an association rule with the support of 3/8
and confidence of 1. We say that it is a (0.375, 1)
association rule.

Observation 1. The pattern tuple tp of a constant
CFD (X → Z, tp) is equivalent to an (ε, 1) association
rule where ε is a small positive number.

The above observation has been made in [5].
We provide a proof in the following for the self-
containment of this paper.

Proof. The pattern tuple tp occurs at least once in
the data set, and hence has some support ε > 0.
If any tuple in the data set contains LHS(tp), it
contains RHS(tp). Therefore, supp(LHS(tp)) =
supp(LHS(tp) ∪ RHS(tp)) and conf(LHS(tp) →
RHS(tp)) = 1. Rule LHS(tp) → RHS(tp) is an
(ε, 1) association rule.

Consider now an (ε, 1) association rule p → z.
Since it has support ε > 0, it occurred at least once
in the data set. Since the confidence is 1, any tuple
containing p must contain z too. Therefore, p→ z is
a pattern tuple.

The confidence of a CFD is the same as that of its
corresponding rule because of their equivalence.
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Figure 1: The search lattice of Example 1. The sup-
port count is listed with a pattern. One group of
generators and their closure are highlighted in bold.

For example, φ2 : ([CC,AC] →
CT, (44, 131||EDI)) is a (0.25, 1) association
rule, (CC = 44, AC = 131)→ CT = EDI.

The next question is how to discover (ε, 1) associa-
tion rules. This discovery is closely related to closure
operator [8, 11].

Consider a data set R and a pattern p. The clo-
sure of p is its longest super pattern pc ⊃ p such that
supp(pc) = supp(p). pc is also called the closed pat-
tern of p and p is called a generator of pc. In other
words, a closure is the pattern which does not have
a super pattern with the same support. If pm is the
shortest pattern that maps to the closure pc, pm is
called a minimal generator. In other words, the min-
imal generator is a pattern which does not have a sub
pattern with the same support. We give an example
to illustrate the concepts.

Example 1. Consider the following data set. For
simplicity, we only list attribute values that we are
interested in.

A B C D

b c d
a d
a b d
a b c d

b c

The search lattice for all patterns in the table is
illustrated in Figure 1. The support is listed with
each pattern. Patterns ac, abc, acd have the same

closure as abcd. abc, acd and ac are its genera-
tors and ac is the minimal generator. In the data
set, other minimal generators and their closures are
{(a, ad), (c, bc), (ab, abd), (cd, bcd)}.

We will use minimal generators and closures for
efficient CFD discovery. Firstly, we will discuss the
search space for CFD discovery.

Definition 9 (Search space for constant CFDs).
Given a data set, all attribute values and their com-
binations form a lattice, which is the complete search
space. The search space is the set of nodes in the
lattice to be traversed in order to discover a set of
constant CFDs.

Normally, the size of the lattice is very large even
for a data set with only a few attributes. For ex-
ample, consider a data set of 16 attributes, each of
which contains 4 values. When we search for CFDs
with up to 6 attribute values in the LHSs and 1 at-
tribute value in each RHS, the size of the lattice (the
search space without pruning) is 242 (see the last
paragraph of Section 5.4 for details.). A large search
space makes the discovery of CFDs challenging.

Forward pruning can be used to make the search
space smaller by predicting nodes that do not con-
tain CFDs and by removing these nodes from the
search space. The infrequent nodes can be pruned
following the Apriori principle for frequent pattern
mining [6]. All descendant nodes (patterns) of infre-
quent ones are infrequent and hence are pruned. The
pruned search space is significantly smaller than the
unpruned search space.

The search for a minimal generators and their clo-
sures is another well defined search task [9, 11] and
it is closely related to the non-redundant rule (CFD)
discovery [5]. We do not use all information in the
search space for determining CFDs but only closures
and their minimal generators. For example, nodes
a, b, d, ab, ad, bd, and abd in Figure 1 are nodes in
the search space, but only nodes a, ad, ab and abd
are used for determining CFDs. The four nodes form
a search space for CFDs in this example. We will
provide detailed discussions in the following.

The following result has been discussed in previous
work [7, 8, 9]. A generator and its closure will form a
100% confidence association rule (CFD). For exam-
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ple, generator ab and its closure abd form a 100% con-
fidence rule ab→ d because of supp(ab) = supp(abd)
in Figure 1.

Observation 2. All (ε, 1) rules can be derived from
generators and their corresponding closures.

Proof. Let p be a generator and pc be its closure.
conf(p → pc\p) = 1 where \ is the set difference
operator. p→ pc\p is an (ε, 1) rule.

If pc is not the closure for generator q, then
supp(q) 6= supp(pc) and there is no possibility to form
an (ε, 1) rule between them.

For example, (ε, 1) association rules in Example 1
include abc→ d, acd→ b, and ac→ bd (equivalently,
ac → b and ac → d). Therefore, a search space for
constant CFDs is the set of generators and closures.
For simplicity of presentation, we use rules to repre-
sent CFDs in this and following sections.

However, we also note the redundant rules between
a non-minimal generator and its closure. For exam-
ple, rule acd→ b is a redundant rule with respect to
rule ac→ b. As a result, the search space for a min-
imal set of CFDs is further refined as the following.

Observation 3. The search space for the minimal
set of CFDs is the set of minimal generators and their
closures.

Example 2. Following Example 1, many closed pat-
tern (and minimal generator) mining algorithms,
such as [12, 13, 7, 14, 15, 16] can find the set of
minimal generators and their closures in the data set.
All minimal generators, their closures and CFDs are
listed in the following table.

minimal generators closures CFDs
a ad a→ d
c bc c→ b
ab abd ab→ d
cd bcd cd→ b
ac abcd ac→ b, ac→ d

Based on Definition 6, the final minimal set of con-
stant CFDs includes a→ d and c→ b.

Previous work [5] makes use of this search space to
generate the minimal set of CFDs. All five closures
are to be searched to generate the minimal set of
CFDs. However, we will demonstrate that this search

space can be further pruned. In the above example,
we do not search for the closures in the last three
rows, i.e. abd, bcd and abcd, and we do not miss any
CFDs in the the minimal set of CFDs.

4 Further pruning the theoretical
search space

In this section, we will show that it is not necessary
to use all minimal generators and their closures for
the discovery of the minimal set of constant CFDs.
CFDs from some minimal generators will not be in
the minimal set of CFDs and can be pruned. For easy
understanding, we should show how closures abd, bcd
and abcd in Example 2 are pruned step by step by
presenting pruning criteria. We then give an example
to show how the criteria work together to reduce the
search space.

The objective of pruning is to remove nodes from
the search space. The removal of one node effectively
removes all its descendant nodes from the search
space in a branch and bound search. Therefore, we
should be sure that no eligible CFDs will be derived
from a node or any of its descendant nodes before
we remove the node. Formally, a node in the search
lattice is prunable based on two conditions. Firstly,
there are no CFDs that can be produced from the
node to be included in the minimal set of CFDs. Sec-
ondly, there are no CFDs that can be produced from
all descendant nodes of the node to be included in
the minimal set of CFDs.

We first present notations for CFD candidates in
the search lattice. Let pair (abd, {a, b, d}) stand for
the node abd in the lattice of Figure 1 and the set of
RHSs of potential CFDs in the node and its descen-
dant nodes. In node (abd, {a, b, d}), three potential
CFDs are bd → a, ad → b, and ab → d. Formally,
a CFD candidate is represented as a pair (pattern,
RHS set). The first part pattern indicates a node in
the search lattice (when we refer to the search lattice,
it is easy to understand a candidate as a node. How-
ever, in the algorithm, we do not use the lattice as the
search space. Instead, we directly deal with patterns.
Therefore, we use a pattern rather than a node here.).
The RHS set is a set of RHSs of potential CFDs in
the node and its descendant nodes. The removal of
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one attribute value pair x in the RHS set indicates
the removal all potential CFDs in the node and all its
descendant nodes with the LHS of x. For example,
(abd, {a, d}) indicates two CFDs bd→ a and ab→ d.
Since value b is removed from the RHS set of node
abd, the value b will be absent from RHS sets of all
descendant nodes of node abc too. For example, the
candidate in node abcd will be (abcd, {a, c, d}). There
will be no CFD acd→ b.

When we reference the candidates in the search
lattice, we call them descendant nodes and ances-
tor nodes. When we do not reference them in the
search lattice, we call them sub candidates and super
candidates. Formally, (P1, T1) is a sub candidate of
(P2, T2) if P1 ⊂ P2. Equivalently, (P2, T2) is a super
candidate of (P1, T1).

The ideas of pruning are outlined as the following.
We firstly prune attribute value pairs in the RHS
set of a node. Using candidate (abd, {a, b, d}) as an
example, if b is pruned from the RHS set, the candi-
date becomes (abd, {a, d}). This means that candi-
date CFD ad→ b and all its more specific candidate
CFDs are not in the minimal set of CFDs. In the
following discussions, we use adQ → b for any Q to
represent all more specific CFDs of ad → b. Sec-
ondly, we consider pruning the candidate when all
attribute values in its RHS set are pruned, for ex-
ample, (abd, ∅). Once a candidate is pruned, all its
super candidates will not be generated. We need to
be sure that no CFDs will be in the minimal set of
CTDs from all super candidates of a pruned candi-
date. For example, we prune candidate (abd, ∅) only
if we know that CFDs from candidate (abdX, Y ) for
any X and Y ⊆ X will not be in the minimal set of
CFDs. We present two RHS set pruning criteria, and
two candidate pruning criteria in the following.

Criterion 1 (RHS set pruning 1). Assume a CFD
candidate (Pz, T ). If there is a sub candidate (P, T1)
such that supp(P ) = supp(Pz), then z will not be in
the RHS sets of all super candidates of (Pz, T ) and
hence z can be pruned from RHS set T .

Proof. P → z is a CFD because of supp(P ) =
supp(Pz). Since P → z is a CFD, all its more specific
candidate CFDs will be CFDs too. However, those
more specific CFDs should be excluded from the min-
imal set of constant CFDs by the definition.

In Example 1, candidate (abd, {a, b, d}) is pruned
to (abd, {a, b}) since supp(ab) = supp(abd). can-
didate (bcd, {b, c, d}) is pruned to (bcd, {c, d}) since
supp(bcd) = supp(cd).

We then look at another RHS set pruning criterion.
Let ¬z be any value that is not z. supp(P¬z) means
the fraction of records containing P but not z. That
is supp(P¬z) = supp(P )− supp(Pz).

Criterion 2 (RHS set pruning 2). Assume a CFD
candidate (Pxz, T ). If there is a sub candidate
(Px, T1) such that supp(P¬z) = supp(Px¬z), then
z will not be in RHS sets of all super candidates of
(Pxz, T ) and hence z can be removed from RHS set
T .

Proof. The main point is that if PQx→ z is a CFD,
then PQ → z must be a CFD. So, PQx → z is not
in the minimal set of CFDs. We have the following
deductions.
supp(P¬z) = supp(Px¬z) =⇒
supp(PQ¬z) = supp(PxQ¬z).

conf(PxQ→ z) = supp(PxQz)/ supp(PxQ)
= supp(PxQz)/(supp(PxQz) + supp(PxQ¬z))
= supp(PxQz)/(supp(PxQz) + supp(PQ¬z))
≤ supp(PQz)/(supp(PQz) + supp(PQ¬z))
= conf(PQ→ z)
Therefore, PQx→ z will not be in the minimal set

of CFDs since its confidence is at most the same as
that of PQ→ z.

Following the example before, candidate
(abd, {a, b}) is pruned to (abd, {a}) since supp(a¬b) =
supp(ad¬b). Candidate (abd, {a}) is further pruned
to (abd.∅) since supp(d¬a) = supp(bd¬a). In
the same way, candidate (bcd, {c, d}) is pruned to
(bcd, ∅) because of supp(b¬c) = supp(bd¬c) and
supp(c¬d) = supp(bc¬d).

Now there is not a single potential CFD in can-
didate (abd, ∅) since its RHS set is an empty set.
This satisfies condition 1 stated in the second para-
graph of this section. However, we are unable to
prune candidate (abd, ∅) since the second condition
is not satisfied. For example, if candidate (abd, ∅) is
pruned, then there is no possibility to generate candi-
date (abcd, {c}) if we use an efficient algorithm based
on forward pruning. In this case, CFD abd → c is
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potentially lost. A candidate has to be kept even if
its RHS set is empty.

Now we discuss criteria for candidate pruning.
(S, ∅) means that there is not a CFD in candidate
(node) S. However, in order to prune it from the
search space we need to make sure that there is not
a potential CFD in all its super candidates (descen-
dant nodes) in the search space. The removal of a
node in the search space means the removal of all its
descendant nodes from the search space.

Criterion 3 (Candidate pruning 1). Candidate
(S, ∅) is prunable if there is subset U ⊂ S such that
supp(S) = supp(U).

Proof. Let S = Pz where z is an attribute value pair
and z /∈ P . Since all values in the RHS set of pattern
S are pruned by Criteria 1 and 2, we know that there
are not CFDs like PQ → z for any Q. However,
the candidate is not prunable because there may be
CFDs like SQ→ x for any Q where x is an attribute
value pair and x /∈ SQ. Now, we will show that
CFDs like SQ→ x are impossible in the minimal set
of CFDs.

Since supp(S) = supp(U) and U ⊂ S, for a CFD
SQ → x, there must be another CFD UQ → x.
Therefore, SQ → x will not be in the minimal set
of CFDs

Following the example before, candidate (abd, ∅)
is prunable since supp(ab) = supp(abd). Candidate
(abcd, c) is pruned too because it is a super candi-
date of (abd, ∅). Candidate (bcd, ∅) is prunable since
supp(cd) = supp(bcd).

Up to now, three closures abd, bcd and abcd
in Example 2 have been pruned since they are
unnecessary for the discovery of the minimal set of
CFDs.

We will present another criterion for candidate
pruning, which is related to the CFD candidate gen-
eration. We will discuss how candidates are gener-
ated before we are able to present the pruning crite-
rion.

For forward pruning, the Apriori candidate genera-
tion [6] is an effective approach. It takes two steps to
generate candidates: combination and pruning. In
the combination process, prefix sets are used. For

example, abc, abd, and abe are three sets with the
prefix of ab. The last single values, c, d, and e make
them distinct. Candidates are generated from the
combination of two sets with the same prefix. Three
candidates are generated as abcd, abce and abde. In
the combination process, each candidate only makes
use of two subsets in the previous level. The existence
of a candidate needs the existence of all its subsets
in the previous level. The pruning process will prune
a newly generated candidate whose any subset does
not exist. For example, if bcd does not exist, then
candidate abcd should be pruned.

CFD candidate generation is more complicated
than the Apriori candidate generation because of the
RHS set. Let us look at two candidates, (abc, ∅)
and (abd, {a, b, d}). We firstly combine the two to
a new candidate (abcd, T ) using the Apriori candi-
date generation to generate the pattern part of the
new candidate. The next step is to determine the
RHS set T . Let us firstly set T = {a, b, c, d}. Then
we prune attribute value pairs from the RHS set
{a, b, c, d}. Candidate (abc, ∅) means that none of
ab → c, ac → b, bc → a and their more specific
CFDs will be in the minimal set of CFDs. There-
fore, only abc → d and its more specific CFDs are
potentially in the minimal set of CFDs, and the
new candidate should be like (abcd, d). How do we
achieve this? Firstly, we expand the RHS set of each
CFD candidate. For (abc, ∅), the RHS set is ex-
panded to ∅ ∪ d since d is new to the candidate. For
(abd, {a, b, d}), the RHS set is expanded to abd ∪ c
since c is new to the candidate. Secondly, the RHS
set of the new candidate takes the intersection of two
expanded RHS sets. That is T = {d} ∩ {a, b, c, d}.
The new candidate is (abcd, {d}). This candidate is
further pruned by its other sub candidates, such as
(abd, {a, b}) and (bcd, {b, c, d}). In the pruning stage,
if any sub candidate of (abcd, {d}) does not exist,
candidate (abcd, {d}) should be pruned. Let us as-
sume that two remaining sub candidates (abd, {a, b})
and (bcd, {b, c, d}) exist. Then, we further prune the
RHS set of (abcd, {d}) by the remaining sub candi-
dates. We use sub candidate (abd, {a, b}) as an ex-
ample. The RHS set of (abd, {a, b}) is expanded to
abc since c is new to it. The RHS set of new gen-
erated candidate (abcd, {d}) intersects with the ex-
panded RHS set abc, and the result is the RHS set of
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the new generated candidate set. The new generated
candidate set becomes (abcd, ∅).

Let us look at an example to motivate the fol-
lowing pruning criterion. Let (abc, ∅), (abd, {a, b}),
(abe, {a, b}) be all candidates prefixed by ab in the
level 3 candidate set. We have to keep candi-
date (abc, ∅) since we do not know if candidates
(abcd, {d}), (abce, {e}) or (abcde, {d, e}) exist. By
combining the first two candidates, we have (abcd, ∅).
At this stage, we have to keep (abcd, ∅) since we do
not know if candidate (abcde, {e}) exists. By com-
bining the first and the third candidate, we have
(abce, ∅). until now, we know that (abcde, {e}) does
not exist and hence (abc, ∅) can be pruned. The fol-
lowing criterion will enable us to prune (abc, ∅) ear-
lier.

Criterion 4 (Candidate pruning 2). Consider a
CFD candidate (Sp, ∅). If for every candidate
(Sq, Tq) with the same prefix S there is q /∈ Tq, then
candidate (Sp, ∅) is prunable.

Proof. We first examine the next level candidates.
All values in Sp will not be in the RHS set of new
candidate (Spq, T ) because of (Sp, ∅). However, q is
possible because of the expansion process in the can-
didate combination. q will be eliminated eventually
in the intersection operation since q /∈ Tq. We ob-
tain (Spq, ∅) in the next level candidate. Moreover,
we obtain (SQp, ∅) for any Q 6= ∅ in a recursive way.
Therefore, no CFD can be generated from the candi-
date (SQp, ∅), and (Sp, ∅) is prunable.

Let us re-examine the motivating example before
the Criterion. Attribute values c, d, and e make
candidates (abc, ∅), (abd, {a, b}) and (abe, {a, b}) dis-
tinct. Since d is not in the RHS set of (abd, {a, b})
and e is not in the RHS set (abe, {a, b}). Based on the
criterion, (abc, ∅) is prunable and we do not search for
(abcd, ∅), (abce, ∅) and (abcde, ∅).

We now use another example to show the criteria
are able to prune the search space without generating
all minimal generators and their closures.

Example 3. Consider the following data set. For
easy illustration, we only list attribute values that we
are interested in.

A B C D E

b c d e
a c d e
a b d e
a b c e
a b c d

There is not a single CFD in the table, but this
has only been found out after the following closures
(minimal generators) have been examined. No closed
pattern mining methods can reduce the following
search space.

all closures (or minimal generators); [support]
a, b, c, d, e; [4/5]
ab, ac, ad, ae, bc, bd, be, cd, ce, de; [3/5]
abc, abd, abe, acd, ace, ade, bcd, bce, bde, cde; [2/5]
abcd, abce, abde, acde, bcde; [1/5]

All level 3 candidates are pruned by Criteria 2
and 4 and no level 4 candidates are examined. We
use candidate (abc, {a, b, c}) as an example for prun-
ing. Since supp(a¬c) = supp(ab¬c), value c is re-
moved from the RHS set and the candidate becomes
(abc, {a, b}). Similarly, values a and b are removed
from the RHS set because of supp(b¬a) = supp(bc¬a)
and supp(a¬b) = supp(ac¬b). The candidate be-
comes (abc, ∅). In the same way, we have candidates
(abd, ∅) and (abe, ∅). Based on Criterion 4, candidate
(abc, ∅) is pruned. All level 3 candidates are pruned
in the same way. No level 4 candidates are generated
and examined.

In this section, we have demonstrated that it is
unnecessary to use all minimal generators and their
closures to generate the minimal set of CFDs. The
search space for the minimal set of CFDs can be
pruned by the four proposed Criteria. In the next
section, we will present an algorithm that makes use
of the four criteria.

We have shown that the search space by using
the four pruning criteria is smaller than that for the
closed patterns and minimal generators. This work
follows the idea of rule based pruning (in contrast to
pattern based pruning used in closed pattern discov-
ery), and Criterion 2 is a typical optimality pruning
criterion [17, 18]. The major distinction is that RHSs
in the optimal rule discovery are fixed to the class
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attribute and RHSs of CFDs in this paper are not
fixed and they can be any attribute values. When the
RHSs are not fixed, we will need to predict whether
any attribute values can be RHSs of all descendant
nodes of the current node (or whether the RHS set
of the current node is permanently empty.). This
constitutes the major complexity in the above dis-
cussions and also in the implementation in the next
Section.

5 Algorithm of CFD discovery

In this section, we present an algorithm for fast CFD
discovery using the pruning criteria presented in the
previous section. These criteria can be used in con-
junction with frequency pruning [6, 9, 19]. The clo-
sure pruning [9] is implied by Criteria 1 and 3 and
need not be employed separately.

5.1 Candidate representation

We store attribute value pairs in lexicographic order.
We do not use attribute information explicitly. How-
ever, no node in the search lattice will be formed by
attribute value pairs from the same attribute. This
will be enforced in the candidate generation of this
algorithm. For example, if a1, a2 are two values from
the same attribute. supp(a1, a2) = 0, and pattern
(a1, a2) is pruned in the second level of candidate
generation, and all its super patterns will not appear
in the search lattice.

Using notations in the previous section, a candi-
date is a pair (pattern, RHS set), denoted by (P, T ).
The RHS set T is a set of attribute value pairs that
are possible RHSs of CFDs. RHS set T is a sub
or equal set of P and candidate (P, T ) represents a
number of potential CFDs. For example, candidate
(abc, {a, b, c}) indicates three potential CFDs ab→ c,
ac → b and bc → a, and candidate (abc, {a, b}) indi-
cates two potential CFDs ac → b and bc → a. The
removal of attribute value pairs from RHS set T is de-
termined by Criteria 1 and 2 as discussed in the pre-
vious section. Candidate (P, ∅) is a legal candidate,
and it can be pruned only when it satisfies Criteria 3
or 4.

5.2 Candidate generator

The algorithm is based on the branch and bound
search. For easy understanding and comparison, we
present Candidate generator in a similar way as the
Apriori candidate generation [6], the most famous
branch and bound algorithm for rule discovery. We
call a candidate l-candidate if its pattern contains l
attribute value pairs. An l-candidate set includes all
l-candidates. In the following discussions, we assume
that attribute value pairs in a pattern are stored in a
lexicographic order to avoid generating duplicate can-
didates like (abc, {a}) and (cba, {a}). Sl+1\Sl means
the set difference of Sl+1 and Sl.

Function 1. Candidate generator

1: for each pair of candidates (Sl−1p, Tp) and
(Sl−1q, Tq) in l-candidate set do

2: insert candidate (Sl+1, T ) where Sl+1 = Sl−1pq
and T = (Tpq) ∩ (Tqp) in the (l + 1)-candidate
set

3: for each Sl ⊂ Sl+1 except Sl−1p and Sl−1q do
4: if candidate (Sl, Tl) does not exist then
5: remove candidate (Sl+1, T ) and move to

the next pair of candidates
6: else
7: T = T ∩ (Tlz) where z = Sl+1\Sl

8: end if
9: if T = ∅ and (Sl+1, ∅) satisfies Criterion 3

or 4 then
10: remove candidate (Sl+1, ∅) and move to

the next pair of candidates
11: end if
12: end for
13: end for

The function takes two steps for candidate gener-
ation: combination and pruning. Lines 1 and 2 are
for combination, and lines 4 to 10 are for pruning.
We firstly illustrate the combination. Suppose that
we have two candidates (abc, {a}) and (abd, {a, d}).
They have the same prefix ab, and the pattern of
the new candidate is abcd by joining patterns of
two candidates. For the RHS set of the new candi-
date, both RHS sets are firstly expanded as {a,d}
and {a, d, c} since d and c are new to candidates
(abc, {a}) and (abd, {a, d}) respectively. Then the
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RHS set of the new candidate takes the intersection
of both expanded RHS sets. The new candidate is
(abcd, {a, d}). The intersection of RHS sets here and
on line 7 is to ensure that removed potential RHSs
from the RHS set of a candidate never appear on the
RHS sets of its super candidates. The correctness is
guaranteed by pruning Criteria 1 and 2.

Secondly we show the pruning process. Sup-
pose that other 3-candidates are: (acd, {c, d}) and
(bcd, {b}). For the new candidate (abcd, {a, d}), we
need to make sure that all its sub candidates are in
the 3-candidate set. In this example, they are and
hence candidate (abcd, {a, d}) is kept. RHS set ex-
pansion and intersection are applied to every sub can-
didate. With sub candidate (acd, {c, d}), the RHS
set of (abcd, {a, d}) becomes d. With sub candidate
(bcd, {b}), the RHS set becomes ∅. Now, the new
candidate becomes (abcd, ∅). The removal of this
candidate will be determined by the satisfaction of
Criteria 3 or 4.

5.3 Pruning and CFD testing

In this subsection, we present another pruning pro-
cess after counting the support of candidates in ad-
dition to the one in candidate generation. This is a
key to the efficiency of the algorithm. In the follow-
ing algorithm, ε is the minimum support, and {S\z}
means the set difference between S and {z}.

Function 2. Prune and test (l + 1) candidate set
(l + 1) is the new level after supports are counted.

1: for each candidate (S, T ) in (l+ 1)-candidate set
do

2: if supp(S) ≤ ε then
3: remove candidate (S, T ) and move to the

next candidate
4: end if
5: for each z ∈ T do
6: if supp(S\z) = supp(S) {Criterion 1} then
7: add (S\z) → z to the CFD set, remove

z from T and label candidate (S, T ) re-
stricted

8: else
9: if there is an x ∈ (S′ = S\z) such that

supp((S′\x)¬z) = supp(S′¬z) then
10: remove z from T {Criterion 2}

11: end if
12: end if
13: end for
14: end for
15: for each candidate (S, ∅) in (l+ 1)-candidate set

do
16: if (Sl+1, ∅) satisfies Criterion 3 or 4 then
17: remove candidate (Sl+1, ∅)
18: end if
19: end for

A candidate is pruned from two aspects, the infre-
quency of the pattern and the satisfaction of Crite-
rion 3 or 4. On line 2 a candidate with infrequent
pattern is removed. From lines 6 to 10, we limit
attribute value pairs in the RHS set of a candidate
based on Criteria 1 and 2. On lines 16 and 17, we
consider removing a candidate based on Criterion 3
or 4.

We introduce a concept restricted candidate to eas-
ily test the satisfaction of Criterion 3.

Definition 10. Candidate {Px, T} is restricted if
there is a candidate (P, T1) such that supp(Px) =
supp(P ).

To test if candidate {Px, T} satisfies Criterion 3,
we need to test if its support equals to the support
of any of its sub candidate. When the length of Px
is long, there are many such sub candidates, and the
test will affect efficiency. In this algorithm, we only
test this support equality with its immediate sub can-
didates whose patterns have one attribute value pair
less. If their supports are equal, we label the can-
didate as restricted. All super candidates of a re-
stricted candidate are restricted too. This is because
supp(Px) = supp(P )⇒ supp(PQx) = supp(PQ) for
any Q. This means the restricted status is inherita-
ble from any of its sub candidates. Furthermore, the
RHS set of a restricted candidate is not expandable
and only prunable based on Criterion 2. A restricted
candidate is prunable when its RHS set is empty.

We use an example to show how function Pruning
and Testing works.

Example 4. Given the following data set. We list
one attribute value in each attribute for easy illustra-
tion.
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A B C D E
b c e

a b c e
a c d e
a b d e

b c d

The candidate generation and pruning are illus-
trated in Figure 2. For brevity, we do not draw all
edges. All candidates are grouped by the same prefixed
pattern for the easy observation of candidate genera-
tion and termination. Candidates in dash-lined boxes
are restricted. In level 3, restricted candidates are
pruned by Criterion 3, and others are pruned by Cri-
terion 4.

In the second level, only one RHS value is pruned.
Candidate (ae, {a}) is restricted since supp(ae) =
supp(a). CFD a → e is generated and e is removed
from the RHS set of the candidate following Crite-
rion 1. All its super candidates are restricted too.

In the third level of candidate tree. We use candi-
dates (abc, ∅), (abe, ∅) and (ade, ∅) to illustrate how
candidates are generated and pruned.

Candidate (abc, {a, b, c}) is generated initially with
all possible RHSs since each of its sub candidate has
complete RHS set. Since supp(a¬c) = supp(ab¬c),
c is removed from the RHS set. Since supp(a¬b) =
supp(ac¬b), b is removed from the RHS set. Sim-
ilarly, a is removed from the RHS set because of
supp(b¬a) = supp(bc¬a). Therefore, the candi-
date set becomes (abc, ∅) after the pruning. Can-
didate (abc, ∅) is eventually pruned by Criterion 4
because candidates (abd, ∅) and (abe, ∅) do not have
RHS values d and e respectively. Candidates (abd, ∅),
(acd, ∅), (bcd, ∅), (bce, ∅), and (cde, ∅) are generated
and pruned in the same way.

Candidate (abe, {a}) is initially generated with one
RHS value inherited from candidate (ae, {a}) since
they are restricted. The RHS value a is then pruned
because of supp(e¬a) = supp(be¬a). Candidate
(abe, ∅) is pruned since it satisfies Criterion 3. Can-
didate (ace, ∅) is generated and pruned in the same
way.

Candidate (ade, {a}) is initially generated with one
RHS value inherited from candidate (ae, {a}) since
they are restricted. Since supp(de) = supp(ade),
CFD de → a is generated and a is removed from

restricted candidate

ab

a
a

b
b

c
c

d
d

e
e

ac ad
a,d

ae bc
b,c

bd
b,d

be
b,e

cd
c,d

ce
c,e

φ φ φ φ φ φ φ φ
abc
φ

abd abe acd ace ade bcd bce bde cde

ac
ac

ae
ae

a

RHS set

Pattern

φ

a,ca,b d,e
de

Figure 2: All candidates in Example 4

the RHS set of the candidate following Criterion 1.
Candidate (abe, ∅) is pruned since it satisfies Crite-
rion 3.

No candidate is left. The program returns CFDs
{a→ e, de→ a} and terminates.

5.4 Algorithm

Now we are able to present our CFD discovery algo-
rithm in Algorithm 1. Two main functions have been
discussed in the previous subsections.

Algorithm 1 Fast Algorithm for CFD Discovery
(FACD)
Input: data set D and the minimum support ε.
Output: The minimal set of CFDs.
1: set CFD set F = ∅
2: count the support of 1 and 2 patterns
3: build 1 and 2-candidate sets
4: prune and test 1 and 2-candidate sets
5: add CFDs to F
6: generate 3-candidate set
7: while new candidate set is not empty do
8: count support of patterns for new candidates
9: prune and test the new candidate set

10: add CFDs to F
11: generate next level candidate set
12: end while
13: return

Algorithm 1 is self explanatory. Level 1 and 2
candidates are counted by an array. We still build
and prune level 1 and 2 candidates to produce the
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RHS sets and restricted status for the following can-
didate generation. After that, candidate generation
and pruning are applied to each level of candidates
before and after the support count. CFD selection
has been conducted at each level too. The returned
CFD set is the minimal set of CFDs.

Theorem 1. Algorithm 1 generates the minimal set
of CFDs correctly

Proof. Firstly, without any pruning, the first two
lines of Candidate-generator will generate the com-
plete set of patterns and hence all candidate CFDs
will be examined.

Secondly, all pruning of candidate CFDs is based
on Criteria 1, 2, 3, and 4, which guarantee that the
pruned CFDs will not be in the minimal set of CFDs.

Thirdly, once a CFD is formed, Criterion 1 will
remove the candidates for producing any of its more
specific CFDs, and hence the output CFDs is the
minimal set of CFDs.

Therefore, Algorithm 1 generates the minimal set
of CFDs correctly.

The time complexity of Algorithm 1 is mainly de-
termined by the size of search space. Let N be the
size of the search space, and n be the size of a data
set. The complexity of the algorithm is O(Nn). It
is difficult to estimate N after the pruning. Let m
be the number of attributes, and p be the average
domain size of attributes. Let us search for CFDs
with up to l values in their LHSs. Note that this
does not mean that the longest LHS of discovered
CFDs is l. It is possible that all candidates have
been searched, but no single CFD is found. In the
worst case, Nmax =

∑l+1
i=1(C(m, i)pi) where C(m, i)

denotes the number of combinations of i attributes
from m attributes and pi indicates the number of
value combinations within i attributes. In the worst
case, the complete search space has been searched.
Nmax ≈ (mp)l+1 when l � m. In the best case,
Nmin =

∑2
i=1(C(m, i)pi) ≈ (mp)2. In the best

case, it becomes clear that all other candidates do
not contain CFDs after level 2 candidates have been
searched. For example, let m = 16, l = 6 and p = 4.
Nmax = 242 and Nmin = 212. The difference be-
tween Nmax and Nmin is huge. Generally speaking,
the search space can be any size in between. There is

not a good estimation of N because the effectiveness
of pruning depends on the value distribution in a data
set. In practice, N is much closer to Nmin than Nmax.
Let N = βNmax where β is a very small number and
is determined by the value distribution of a data set.
The complexity is still high for data sets of many at-
tributes. In sum, the algorithm scales well with the
data size, but does not scale well with the number of
attributes. This is common for association and non-
redundant rule discovery algorithms [6, 9, 11, 19].
We will assess its efficiency and scalability in experi-
ments.

6 Interesting CFDs

We normally find many CFDs from a medium data
set. Are they all interesting?

A CFD (X → Z, x||z) summarises a fact that when
value (tuple) x occurs in attribute X of a record
then value z must occur in attribute Z of the same
record. When we ignore the database scheme, this
means that the set of records containing x is a subset
(or an equal set) of the set of records containing z.
We define the covering set of a tuple as all records
containing the tuple. We denote this relationship as
cov(x) ⊆ cov(z). A key question is if cov(x) ⊆ cov(z)
occurs just by chance. For example, let the size of a
data set be 1000, and let z occur in the data set 500
times. We assume that x only occurs twice. The
chance of cov(x) ⊆ cov(z) is 1/2*1/2 = 0.25. This
means that even if CFD (X → Z, x||z) has been dis-
covered, it likely occurs just by chance and has noth-
ing to do with a database constraint.

Fundamentally, we do not wish to have a CFD
(X → Z, x||z), with x and z being independent. Chi
square test can be used to test if x and z are in-
dependent. Let the observation from a data set be
summarised as follows.

z ¬z
x supp(xz) supp(x¬z)
¬x supp(¬xz) supp(¬x¬z)

Here ¬x and ¬z mean that x and z do not oc-
cur in a record. supp(xz) means the proportion of
records containing both x and z. supp(¬x¬z) means
the proportion of records containing neither x or z.
supp(x¬z) means the proportion of records contain-
ing x but not z, and supp(¬xz) means the proportion
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of records containing z but not x.
If x and z are independent, the expected supports

in cells are listed in the following table.
z ¬z

x supp(x) ∗ supp(z) supp(x) ∗ supp(¬z)
¬x supp(¬x) ∗ supp(z) supp(¬x) ∗ supp(¬z)

Here supp(¬x) and supp(¬z) mean the proportion
of records that do not contain x and z respectively.

Chi square value indicates the variance of the ob-
served supports to the expected supports.

χ2 =
4∑
i

(suppo
i − suppe

i )
2/ suppe

i

where i is a cell in a contingency table, and suppo
i

and suppe
i are observed and expected supports in the

corresponding cell.
The chi square values can be mapped to statistical

significance, in this case with two degrees of freedom.
For instance, χ2 > 5.99 indicates a p-value of 0.05.
However, since we conduct a huge number of such
tests, many associations are also caused by chance.
This is a result of multiple comparisons [20]. Because
of this multiple testing, the nominal p-values should
not be interpreted as correct statistical significance.
However, the p-values or the chi square values are
useful as a tool to rank patterns

In our previous example, x occurred only twice,
and both times with z, which in turn occurred in 500
out of 1000 tuples. χ2 = 0.33. This indicates that
they are actually independent. Therefore, the CFD
is not interesting.

Chi square test should not be used for small sample
sizes because it is only an approximation of the true
distribution [22]. In our case this is not a problem,
since a frequency threshold will prune rare CFDs. If
needed, Fisher’s exact test [22] can be used for small
sample sizes to compute exact nominal p-values.

7 Experiments

7.1 Efficiency and scalability

We have conducted experiments on the data sets as
described in Table 2.

The US Airline data set has been downloaded
from (http://www.transtats.bts.gov/). We have

Data sets Size #Attributes
US Airline 520417 23
Mushroom 8124 23

Census Income 299285 21
Audiology 200 70

Table 2: A description of data sets

downloaded one month data and removed rows with
the majority of missing values. We have also removed
irrelevant and redundant attributes and we keep 23
attributes. The dimension of US airline data set looks
not high, but it has 15242 attribute values. This
means that each attribute has on average 662 val-
ues. Such a large number of attribute value pairs is
challenging for a CFD discovery algorithm.

Census income, Mushroom and Audiology data
sets have been downloaded from the UCI Machine
Learning data repository [21]. The Census Income
data set is merged with the training and test data
sets. Numerical attributes and irrelevant attributes
have been removed. The Audiology data set has 70
attributes, and we use it to test the scalability of the
algorithm with the number of attributes. The Audi-
ology data set is a small data set, but its dimension
is higher than other data sets. We use it to test the
scalability of the algorithms.

There are functional dependencies in the US Air-
line data set. There are many CFDs in the US airline
data set too, e.g. 28955 with the minimum support
of 0.001. There are not functional dependencies in
other data sets, however, there are many CFDs in
these data sets.

To demonstrate the efficiency of the proposed al-
gorithm, we compare the proposed algorithm with
the currently most efficient CFD discovery algorithm
CFDMiner [5]. The core component of CFDMiner
is to find minimal generators and their closures.
There are many algorithms for closed pattern min-
ing [16]. Each one has its own strengths and weak-
nesses. For example, frequent pattern tree based
methods [12, 13, 7] are normally time efficient but
may not handle high dimensional data because of
their large memory consumption. Branch and bound
search based methods [14, 15] are normally memory
efficient but may not be time efficient for small data
sets since they scan a data set many times. To have a
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Figure 3: The search space and running time for CFD discoveries by FACD and CFDMiner

fair comparison, we have implemented a branch and
bound algorithm, A-CLOSE [15], for minimal genera-
tor discovery, as the core for CFDMiner (we could not
obtain the original implementation because of poten-
tial commercial interest on it.). Our aim is to handle
large and very large data sets with the low minimum
support. Memory efficiency is very important given
the fact that some fast closed pattern mining algo-
rithms do not handle large data data well or could not
discover patterns with the low minimum support [16].

Experimental results of FACD in comparison to
CFDMiner are listed in Figure 3. FACD is faster
than CFDMiner on all three data sets. To under-
stand the results, we list the number of candidates

searched in Figure 3. The trend for time efficiency is
the same as the trend for the size of search space. The
improvement of efficiency is obtained by the pruning
search space of the proposed algorithm.

The scalability of the proposed algorithm with the
data set size and the number of attributes are listed
in Figure 4. FCAD scales well with the size of a
data set. So does CFDMiner. We note that some
data points deviate from the straight lines in the fig-
ure. This is because the size of search space changes
with the change of data sets. The overall trends of
both algorithms are consistent. FACD does not scale
well with the number of attributes. However, FACD
performs better than CFDMiner with the increase of
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Figure 4: The scalability of the algorithm FACD with the data size and the number of attributes

the number of attributes. All rule and FD discov-
ery algorithms do not scale well with the number of
attributes since their time complexity are eventually
exponential to the number of attributes [6, 19, 9, 11].
70 attributes are high for these algorithms.

7.2 Significance of discovered CFDs

To understand the discovered CFDs, we study the
support of LHS and RHS with the statistical signif-
icance of CFDs. Chi square test [22] is used to test
if LHS and RHS are independent. Normally, if a chi
square value is less than 2, LHS and RHS are very
likely to be independent. The higher a chi square
value, the lower possibility of independency between
LHS and RHS. To obtain a reliable chi square value
estimation, we need to keep the expected count in
every cell of a contingency table above 5. We set
the minimum support as 0.0031 to ensure that the
expected support number of (supp(x, z)) of a CFD
tuple pattern x → z is more than 5. We removed
CFDs with the expected support number of less than
5 in any other cell from the discovered CFDs. We
obtained 2091 CFDs from the US airline data set.

The distribution of chi square values of the dis-
covered CFDs is listed in Figure 5. All chi square
values are larger than 5. The distribution has two
peaks. Many CFDs have very high chi square values
(more than 10000 with the highest ones of 520417)
and many have chi square values between 5-10 . Not
many other CFDs locate in between. We list some
typical ones in Table 3.

Most CFDs with very high chi square values are
those with the strongest association (one to one map-

ping from the LHS to the RHS). For example, the
first CFD in Table 3 instantiates FD “Destination
World Area Code → Destination Name”. There are
a number of CFDs with different Destination Cities.

Some CFDs with very high chi square values do not
associate with FDs. For example, the second CFD in
Table 3 does not correspond with an FD. However,
it explains a number of flights flying between cities
in Hawaii. Their characteristic is the short distance,
which is too short to fly off Hawaii. These types of
constraints are most likely not designed in a database
but form in data.

A CFD with a middle level of chi square value is
shown as the third CFD in Table 3. This captures a
common sense in data — “If a flight arrives earlier
than the schedule by 16-30 minutes, it most likely
departs on time”. However, this information has not
been captured by an FD because of few violations.
The third CFD shows a subcase of flights departing
at 6:00. There are a number of similar CFDs for
different departure times.

Some CFDs can be uninteresting even though they
have a chi square value higher than 2. The fourth
CFD in Table 3 shows an example. It says that a
flight departing between 18:00 and 19:00 and arriving
at its Destination of World Area Code 91 between
19:00 and 2:00 has not been diverted. Given that
99.76% of flights have not been diverted, people may
not be interested in such a “trivial truth”. A number
of CFDs carry the similar semantic meanings.

Figure 5 shows the relationship of chi square val-
ues, supports of LHS and RHS. We see that CFDs
with highest chi square values locate at the diagonal
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1: ((Destination Wac* → Destination Name), 91 || California)
supp(LHS) = 60211, supp(RHS) = 60211, χ2 = 520417
*Wac: World area code

2: ((Origin Sate Name, Distance Group →
Destination State Name), Hawaii, 1 || Hawaii)
supp(LHS) = 7150, supp(RHS) = 9436, χ2 = 392596

3: (( CRS Departure Time, Arrival Delay Groups →
Departure Delay,), 6:00, -2 || 0)
supp(LHS) = 1625, supp(RHS) = 429163, χ2 = 346

4: ((Destination Wac*, Departure Time Block, Arriving Time
Block → Diverted), 91, 18:00-18:59, 19:00-19:59 || 0)
supp(LHS) = 2085, supp(RHS) = 519163, χ2 = 5.1
*Wac: World area code

Table 3: Some typical examples of discovered CFDs

of the plane formed by supports of LHS and RHS.
This means that they correspond to CFDs of one to
one mapping between LHS and RHS. Other CFDs
with high chi square values locate at the corner of
low RHS support. CFDs with a highly supported
RHS normally do not have high chi square values.

The discovered CFDs will mainly be used for data
quality improvement, especially for detecting and fix-
ing value inconsistencies. We have not discussed the
application of CFDs in this paper. We refer readers
to the following work [2, 3, 23] for the use of discov-
ered CFDs.

8 Conclusions

In this paper, we have studied the problem of discov-
ering the minimal set of constant CFDs that hold in
some given data. As in previous work, we take ad-
vantage of the observations that constant CFDs es-
sentially are 100% confidence association rules, and
that the minimal set of CFDs can be produced from
the set of minimal generators and their closures. We
proposed new pruning criteria to further reduce the
search space, removing unnecessary generators and
closures.

We designed an efficient algorithm based on the
new pruning criteria and we evaluated it on real data
sets. According to the results, the proposed algo-
rithm is faster than the currently most efficient con-
stant CFD discovery algorithm. We also showed how
chi square can be used to measure the interestingness
of CFDs.
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