
1 
 

From miRNA regulation to miRNA - TF co-regulation: computational 

approaches and challenges 

1,*Thuc Duy Le, 1Lin Liu, 2Junpeng Zhang, 3Bing Liu, and 1,*Jiuyong Li 

1School of Information Technology and Mathematical Sciences, University of South Australia, 

Mawson Lakes, SA 5095, Australia 

2Faculty of Engineering, Dali University, Dali, China 

3Children’s Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, 

Randwick, NSW 2031, Australia 

*Contact Author: Thuc.Le@unisa.edu.au and Jiuyong.Li@unisa.edu.au  

Biographical note: 

Thuc Duy Le is a research associate at the University of South Australia (UniSA). He 

received his BSc (2002) and MSc (2006) in pure Mathematics from the University of 

Pedagogy, Ho Chi Minh City, Vietnam, and BSc (2010) in Computer Science from UniSA. 

He completed his PhD thesis in Bioinformatics (January 2014) at UniSA. His research 

interests are Bioinformatics, data mining, and machine learning. 

Lin Liu is a senior lecturer at the School of Information Technology and Mathematical 

Sciences, University of South Australia (UniSA). She received her bachelor and master 

degrees in Electronic Engineering from Xidian University, China in 1991 and 1994 

respectively, and her PhD degree in computer systems engineering from UniSA in 2006. Dr 

Liu’s research interests include data mining and bioinformatics, as well as Petri nets and their 

applications to protocol verification and network security analysis. 

 

mailto:Thuc.Le@unisa.edu.au
mailto:Jiuyong.Li@unisa.edu.au


2 
 

Junpeng Zhang is a teaching assistant at the Faculty of Engineering, Dali University. He 

received his BSc (2009) in Bio-medical Engineering and MSc (2012) in Control Theory and 

Control Engineering from Kunming University of Science and Technology, Kunming City, 

China. His research interests include bioinformatics and data mining. 

Bing Liu is a bioinformatician at Children's Cancer Institute Australia (CCIA) for medical 

research. CCIA is the only independent medical research institute in Australia devoted to 

research into the causes, prevention, better treatment and ultimately a cure of childhood 

cancer. Dr. Bing Liu received his Bsc (1997) and Msc (2000) in electronics and computer 

engineering from the Yunnan University, China, and Phd (2010) in computer science from 

the University of South Australia. Before he joined CCIA, he has worked as a research fellow 

at the Centre for Cancer Biology, Adelaide and the University of Newcastle, Australia. His 

major research areas are in bioinformatics and data mining, particularly integrating 

heterogeneous data for biological/medical research. 

Jiuyong Li is a professor at the School of Information Technology and Mathematical 

Sciences, University of South Australia. He received his BSc degree in physics and MPhil 

degree in information processing from the Yunnan University, China in 1987 and 1998, 

respectively, and received his PhD degree in computer science from the Griffith University, 

Australia (2002). His research interests are in the field of data mining, privacy preserving and 

Bioinformatics. His research has been supported by five prestigious Australian Research 

Council Discovery grants since 2005. 

 

 

 

 



3 
 

Key points: 

  microRNAs and transcription factors are important regulators, but few feasible 

experimental techniques are available for  exploring all of their functions. 

Computational methods can generate hypotheses about miRNA and TF targets, 

narrowing down the vast amount of possibilities to be tested by wet lab experiments. 

 Integrating multiple sources of data and/or multiple types of data enhances the 

capability to identify miRNA functions. 

 Exploring miRNA and TF co-regulation gives more insights into the causes of 

diseases. Some recent methods utilise both target information and gene expression 

profiles to construct the regulatory network with the presence of miRNAs, TFs, and 

genes. 

 Although several computational methods are presented and made available, it is 

challenging to evaluate them and decide which method is better than the others as 

they are more often complementary to one another. 
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Abstract 

microRNAs (miRNAs) are important gene regulators. They control a wide range of biological 

processes and are involved in several types of cancers.  Thus, exploring miRNA functions is 

important for diagnostics and therapeutics. To date, there are few feasible experimental techniques for 

discovering miRNA regulatory mechanisms. Alternatively, predictions of miRNA-mRNA regulatory 

relationships by computational methods have increasingly achieved promising results. Computational 

approaches are proving their ability as effective tools in reducing the number of biological 

experiments that must be conducted and to assist with the design of the experiments. In this review, 

we categorise and review different computational approaches to identify miRNA activities and 

functions, including the co-regulation of miRNAs and TFs. Our main focuses are on the recent 

approaches that utilise multiple data types for exploring miRNA functions. We discuss the remaining 

challenges in the evaluation and selection of models based on the results from a case study. Finally, 

we analyse the remaining challenges of each computational approach and suggest some future 

research directions. 

INTRODUCTION 

The human genome contains more than twenty thousand genes. Most of these genes are expressed 

differentially to create proteins, the main actors in a living cell. The gene expression program is an 

extremely complex and well-organised procedure. While the expression program is made up of 

individual genes expressing on their own mechanisms, together they create a unified big picture to 

ensure that cells can function properly. Any interference to the expression program of genes would 

result in diseases. Therefore, understanding the mechanisms of regulating gene expression is crucial 

for preventing and curing diseases. 
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At the transcription level, transcription factors (TFs) are known to be the main gene regulators. TFs 

are proteins that control gene expression by directly binding to the DNA sequences of the target genes. 

The binding will result in an increase or decrease in the expression levels of the target genes. There 

has been extensive research on the regulation of TFs, and many experimental and computational 

methods have been proposed to elucidate the regulatory mechanisms of this type of regulators (see [1] 

for a review). 

Recently, microRNAs (miRNAs) have been discovered to be the main regulators at post-

transcriptional level. miRNAs are small nucleotide sequences of 21-25 bases [2] which are transcribed 

from the non-coding parts of the DNA. They recognise target genes by base pairing to complementary 

sequences in the 3'-untranslated region (3'UTR), 5’UTR, and sometimes in the open reading frames of 

the target mRNA.  

More and more evidence has emerged on miRNA involvements in biological processes and diseases. 

By regulating their target genes, miRNAs control a wide range of biological processes such as 

proliferation [3, 4], metabolism [5], differentiation [6], development [7], apoptosis [8], cellular 

signaling [9] and even cancer development and progression [2, 10]. Therefore, it is not surprising that 

miRNAs have been identified to be involved in several types of cancers including breast cancer [11], 

prostate cancer [12], lung cancer [13], colon cancer [14], ovarian cancer [15], and many other  

diseases [10, 16-19]. 

One of the challenges in miRNA research is that miRNAs have their own characteristics, making it 

difficult or impossible to apply the experimental and computational methods used for other gene 

regulators such as TFs, to miRNA research. Like TFs, one miRNA can regulate multiple target genes 

simultaneously and multiple miRNAs may regulate their target genes cooperatively. A single miRNA 

can control up to hundreds of target genes [20], and most target genes in the genome can be regulated 

by multiple miRNAs [21]. Unlike TFs, however, miRNAs are very short in length (21-24 nucleotides), 

and the gene regulatory region of a miRNA is small in size, less than 1kb compared to dozens of kbs 

in the case of a TF [22]. The small target regulatory region poses challenges for computational 
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methods that search for the base pairing between miRNAs and the binding sites, as the 

complementary region is too short to be statistically significant. Therefore novel and appropriate 

methods especially designed for miRNAs are required.  

The significant roles of miRNAs have given rise to a fast growing body of research over the last 

decade (see Figure 1 for an illustration).  In the early years of miRNA research, great effort was made 

to discover new miRNAs as well as to explore miRNA functions with wet experiments (see [23] for a 

review). These studies have significantly improved our understanding of miRNA functions. On the 

other hand, they also pose new challenges to scientists by producing a tremendous amount of data that 

needs to be analysed. Given the increasing number of novel miRNAs discovered (coupled with the 

large number of their regulated targets), it is infeasible to validate all the possible regulatory 

interactions by means of biological experiments. In response to the calls for discovering new 

knowledge from the vast amount of data available, computational methods have been developed and 

many of them have proved to be effective tools in assisting with the design of wet experiments, short-

listing statistically significant regulatory interactions, thus making it feasible to conduct validation 

experiments [23, 24]. Although computational methods may never replace wet-lab experiments, they 

will assist with the design of the experiments. 

 

Figure 1. The number of miRNA-related publications accumulated in the past decade. The 

number of miRNA-related publications from PubMed library with the keyword “miRNA". 
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A variety of computational methods have been proposed to explore miRNA functions, ranging from 

sequence based methods to methods incorporating expression data or combining multiple sources of 

data; correlation based methods to causality discovery based methods; methods for discovering single 

interactions to those finding modules of interacting molecules; analyses of interactions in a specific 

condition to differential analyses involving multiple conditions; and methods of studying miRNA 

regulation alone to those considering cooperative effects of miRNAs and TFs. These methods provide 

complementary views and approaches to exploring miRNA functions, and have their own advantages 

and limitations. 

Table 1. Summary of computational approaches for inferring miRNA functions. The grey areas are the 

topics have been reviewed elsewhere. The areas with ticks are the topics will be covered in this review. 

 Sequence data Expression data Multiple data 

sources 

miRNA-mRNA 

regulatory 

relationships 

See [23, 24] for 

reviews 

• Classical approaches: 

             See [23] for a review 

 

 

 
 Emerging approaches 

 

miRNA-mRNA 

regulatory 

modules 

See [24] for a 

review 

 

See [24] for a review 

 

 

miRNA-TF co-

regulation 
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In this paper, we review the new work for exploring (human) miRNA functions complementary to the 

previous reviews and discuss challenging issues in model evaluation. We categorise the methods into 

three main approaches: inferring miRNA-mRNA regulatory relationships, identifying miRNA-mRNA 

regulatory modules, and discovering miRNA-TF co-regulatory relationships. Table 1 shows the 

overall picture of the computational approaches, including the topics that have been reviewed 

elsewhere [23, 24], and the topics that will be covered in this review. We discuss the remaining 

challenges of the evaluation and selection of models with a case study on three real world cancer 

datasets. Finally, we discuss some future research directions. 

 

INFERRING miRNA-mRNA REGULATORY RELATIONSHIPS  

Identifying miRNA targets is the first and foremost task to understand miRNA functions and 

regulatory mechanisms. Therefore, there have been several methods developed to predict putative 

target mRNAs at the sequence level [20, 25, 26]. The methods have contributed to the understanding 

of the regulatory functions of miRNAs, and have helped to narrow down the otherwise immeasurable 

amount of experimental work to be conducted. However, these approaches have a high rate of false 

positive predictions, and do not take biological context into account. These approaches have been 

reviewed in [23, 24], and we do not cover them in this review. 

In recent years, with the advances in experimental technology, gene expression data has emerged as 

important and promising resources for exploring miRNA functions. Various computational methods 

have been devised to incorporate gene expression profiles into the study of miRNA-mRNA regulatory 

relationships. Figure 2 shows a common framework used by these existing methods. In this 

framework, matched samples of miRNA and mRNA expression data are integrated into a dataset. To 

reduce the computational complexity, researchers apply some constraints such as differentially 

expressed gene analysis to reduce the number variables (genes) in the dataset, or use sequence based 

target predictions to reduce the number of miRNA-mRNA interactions considered by the method.  

The input expression dataset is then analysed by statistical/machine learning models to predict 
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miRNA targets. Recent advances focus on integrating multiple expression datasets, or using 

heterogeneous data such as over-expression data and sequence data in building a model. There are 

also some newly emerged methods for inferring miRNA targets, such as the methods based on 

causality discovery approach. In this section, we review these new works (summarised in Table 2) for 

inferring miRNA-mRNA regulatory relationships.  

 

Figure 2. A common framework of existing computational methods. The matched miRNA and mRNA 

expression profiles are integrated into a dataset. A set of constraints can be firstly applied to this dataset 

for feature selection purpose. These constraints include differentially expressed gene analysis, sequence 

based techniques such as seed sequence matching and seed sequence conservation. The gene 

expression dataset is then input into a statistical model to predict the miRNA-mRNA regulatory 

relationships. The predictions can be further filtered using target information, statistically significant 

thresholds or enrichment analyses such as pathway analysis. 
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Classical approaches with gene expression data and beyond 
 

Classical approaches such as correlation, regression analysis, and Bayesian parameter learning, have 

achieved significant results in inferring miRNA-mRNA regulatory relationships. The principle of 

these methods is that if a gene is regulated by a miRNA, a correlation should show between the 

expression levels of the gene and the miRNA.  Some of these methods also take into consideration the 

available miRNA target information previously predicted using sequence data, which has proved to 

reduce the false discoveries compared to sequence based approaches. Details of these approaches 

have been reviewed elsewhere [23]. Recent advances in these approaches concern the problem of 

integrating heterogeneous datasets. 
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Table 2. Summary of methods to infer miRNA-mRNA regulatory relationships 

Method Brief description Data sources Notes Software tool 

Chen et al. 

 [27] 

Combine different gene expression datasets into a model to infer 

miRNA-mRNA interactions. 

 Calculate the correlation in expression levels between miRNA 

and mRNA in each individual dataset. 

 Use Empirical Bayes model for integrating the correlation 

coefficients to output the ranked interactions 

 Multiple matched 

miRNA and mRNA 

expression datasets  

 Suitable for analysing multiple expression 

datasets of the same condition, e.g. 

cancer. 

http://bioinformatics.me

d.yale.edu/group/ 

 

Jacobsen et al.  

[28] 

Use regression analysis to analyse miRNA-target interactions across 

diverse cancer types. 

 Utilise heterogeneous data including DNA copy-number, 

promoter methylation, and expression data from TCGA to 

generate a good resource for exploring the recurrent miRNA-

mRNA interactions. 

 DNA copy-number,  

 promoter methylation  

 miRNA and mRNA 

expression data 

 A good resource for biologists to explore 

the miRNA-mRNA interactions that 

occur in multiple cancer types. 

 Given the cancer types of interest, users 

can query the top miRNA-mRNA 

recurrent interactions. 

http://cancerminer.org 

 

Li et al.  

[29] 

Integrate miRNA-overexpression data and target information to 

predict miRNA-mRNA interactions. 

 Curate the miRNA overexpression data from literature 

 Use Variational Bayesian-Gaussian Mixture Model to integrate 

the score from overexpression data and from sequence based 

prediction methods 

 miRNA-

overexpression, 

  target information 

based on sequence 

data 

 A good resource of miRNA 

overexpression data 

 When new overexpression data is 

available, users can apply the method to 

predict miRNA targets. 

http://www.bioconducto

r.org/packages 

/devel/bioc/html/Target

Score.html 

Liu et al.  

[30] 

Use Bayesian network learning in split samples to learn miRNA-

mRNA interactions. 

 Apply Bayesian network learning for each condition of the 

dataset 

 Integrate the results from different conditions 

 Target information 

based on sequence 

data,  

 matched miRNA and 

mRNA expression 

data 

 Suitable for datasets with multiple 

conditions 

Upon request 

Le et al.  

[31] 
 Use a causality discovery based method to infer the causal effect 

that a miRNA has on a mRNA. 

 Learn the regulatory network from expression data 

 Simulate the intervention procedure to estimate the causal effect 

that  a miRNA has on a mRNA 

 Matched miRNA and 

mRNA expression 

data 

 A good method of simulating the gene 

knockdown experiments 

 Computational complexity is high 

http://bioinformatics.oxf

ordjournals.org/ 

content/29/6/765/suppl/

DC1 

Liang et al. 

[32] 

Explore miRNA activities in different conditions of the datasets 

 Infer the activity of miRNA in a sample and then analyse the 

overall behaviour of the miRNA activity in samples with 

different biological conditions 

 miRNA and mRNA 

expression data 

 Suitable for finding active miRNAs in 

expression datasets with multiple 

conditions 

http://sysbio.ustc.edu.cn

/software/mirAct 

Amar et al.  

[33] 

Identify a group of differential co-expression genes 

 Identify groups of genes that are co-express in all samples, but 

express differently between two conditions of interest. 

 Assume that these groups may be the targets of a miRNA family 

 

 miRNA and mRNA 

expression data 

 Can be used to find a group of biomarkers 

for a condition of interest.  

http://acgt.cs.tau.ac.il/di

cer/ 

http://bioinformatics.med.yale.edu/group/
http://bioinformatics.med.yale.edu/group/
http://cancerminer.org/
http://www.bioconductor.org/packages/devel/bioc/html/TargetScore.html
http://www.bioconductor.org/packages/devel/bioc/html/TargetScore.html
http://www.bioconductor.org/packages/devel/bioc/html/TargetScore.html
http://www.bioconductor.org/packages/devel/bioc/html/TargetScore.html
http://bioinformatics.oxfordjournals.org/content/29/6/765/suppl/DC1
http://bioinformatics.oxfordjournals.org/content/29/6/765/suppl/DC1
http://bioinformatics.oxfordjournals.org/content/29/6/765/suppl/DC1
http://bioinformatics.oxfordjournals.org/content/29/6/765/suppl/DC1
http://sysbio.ustc.edu.cn/software/mirAct
http://sysbio.ustc.edu.cn/software/mirAct
http://acgt.cs.tau.ac.il/dicer/
http://acgt.cs.tau.ac.il/dicer/
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Chen et al. [27] proposed a method to combine different gene expression datasets into a model for 

exploring miRNA-mRNA regulatory relationships. The main argument of the method is that 

analysing the relationships from multiple datasets at the same time may improve the identification of 

miRNA-target interactions. The method firstly used Pearson correlation coefficient method to 

calculate the correlation of miRNA-mRNA pairs in each individual dataset. It then used the empirical 

Bayes approach to incorporate shared information between datasets for the identification of miRNA-

mRNA interactions. Experimental results on both simulation studies and real world cancer datasets 

proved that the method is better than the ones that use only one dataset or simple aggregated dataset. 

Meanwhile, Jacobsen et al. [28] used regression analysis to analyse miRNA-target interactions across 

diverse cancer types. The method firstly inferred the miRNA targets in individual cancer types using a 

multivariate linear model. Apart from miRNA and mRNA expression profiles, the multivariate linear 

model takes into consideration the effects of DNA copy-number and promoter methylation at the 

mRNA gene locus. Specifically, the mRNA expression is represented as a linear function of miRNA 

expression, DNA copy number changes (log2 tumor/normal ratio), and promoter methylation, i.e. 

methylation beta-value of the selected methylation probe. The selected methylation probe is the one 

that shows the strongest negative correlation between its beta value and the gene mRNA expression 

across all samples in a cancer type. It is found that the miRNA-mRNA pairs predicted by the method 

largely overlap with those predicted by miRanda [34] and TargetScan [20]. To explore the recurrence 

of target association across cancer types, the authors proposed a statistical score (REC score) to rank 

the miRNA-mRNA expression associations. The top ranked miRNA-mRNA interactions are those 

that have strong association across different cancer types. They applied the method to 11 different 

cancer types in The Cancer Genome Atlas (TCGA, https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp), 

and reported all the results as an online resource at http://cancerminer.org.  

In contrast to the above methods which used expression data, Li et al. [29] developed a method called 

TargetScore to integrate miRNA-overexpression data and target information based on sequence data. 

The method firstly compiled 113 miRNA transfected experiment data from 84 Gene Expression 

Omnibus (GEO) datasets and calculated the gene expression fold-changes in each experiment.  The 

https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp
http://cancerminer.org/
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authors then used the Variational Bayesian-Gaussian Mixture Model to integrate the scores from 

sequence-based prediction methods and the miRNA-overexpression data. The prediction results were 

validated using mirTarBase [35], proteomic data in Baek et al. [36], and gene functional enrichment 

analysis. The transfection data and source codes are available at Bioconductor: 

http://www.bioconductor.org/packages/devel/bioc/html/TargetScore.html.  

These methods effectively apply classical approaches to different types of data, which increasingly 

become available, to explore miRNA-target relationships. In another direction, researchers have also 

explored novel approaches for elucidating miRNA functions by designing and applying the emerging 

data mining and machine learning techniques. 

Emerging approaches 

The first emerging approach is to infer miRNA-target relationships using causality discovery based 

methods. The main argument of this approach over the classical association approach is that 

correlations or associations are not necessarily causality. For instance, the expression values of a 

miRNA and a mRNA may be strongly correlated across a set of samples, but it is not sufficient to 

conclude that the miRNA regulates the mRNA. The strong correlation between the miRNA and the 

mRNA may be a result of the mRNA regulating the miRNA, or a third molecule such as a TF 

regulating both the miRNA and the mRNA.  

The gold standard for tackling the causality discovery problem is randomised control experiments. 

For example, we can use gene knockdown experiments to knock down miRNAs one by one whilst 

measuring the changes (i.e. causal effects) in the expression level of mRNAs. However, such 

experiments are time consuming, expensive, and not necessarily definitive. In computer science, the 

main theory of discovering causality from data is the theory of causal Bayesian networks. However, 

the computational complexity of Bayesian network learning algorithms is very high, and thus learning 

the causal network becomes impractical in high dimensional datasets like gene expression datasets. In 

application, researchers usually integrate some biological knowledge into the Bayesian network 

learning process to reduce the complexity. 

http://www.bioconductor.org/packages/devel/bioc/html/TargetScore.html
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For instance, Bayesian network structure learning was used in [30] to discover the regulatory 

relationships between miRNAs and mRNAs. Bayesian network learning algorithm searches for all 

possible networks in the form of directed acyclic graphs and uses a scoring function to score each 

graph based on observational data. In this work, the authors assumed that there was a bipartite of 

interactions between the group of miRNAs and group of mRNAs (miRNAs regulate mRNAs) and 

there were no interactions between molecules in the same group. Target information predicted with 

sequence-based methods was used to initialise the network (bipartite). The gene expression profiles of 

miRNAs and mRNAs were then discretised and input into the Bayesian network learning algorithm 

[37-39]. The innovation of this work is that the authors used target information to restrict the search 

space for the computational expensive Bayesian network learning algorithm. Additionally, they split 

the samples according to their conditions (i.e. normal and cancer) and infer the top interactions under 

each condition. The final results are the merge of the interactions in all conditions. 

However, the method assumes the bipartite of interactions between miRNAs and mRNAs. This 

assumption may limit the ability to interpret the results and may not necessarily hold in reality. For 

example, a transcription factor may regulate other mRNAs and even may regulate miRNAs [40]. 

Therefore, it is necessary to consider different kinds of interactions, e.g. TF regulates miRNA. Ideally, 

we should assume that every molecule could interact with each other when building a computation 

model. 

Recently, Le et al. [31] adapted a causal discovery approach, IDA (intervention-calculus when the 

DAG is absent) [41, 42], to uncover the causal regulatory relationship between miRNAs and mRNAs. 

The method firstly learnt the causal structure from the expression profiles of miRNAs and mRNAs 

using PC (Peter & Clark) algorithm [43, 44]. do-calculus [38, 42] was then used to estimate the causal 

effect that a miRNA has on a mRNA. The estimated causal effects simulate the effects of randomised 

controlled experiments.  The method tackles two drawbacks of current miRNA regulatory 

relationships research. Firstly, the method discovers causal relationships between miRNAs and 

mRNAs, not just the statistical relationships. Secondly, the method assumes that miRNAs and 

mRNAs interact with each other in a complex system; for instance, a miRNA can causally regulate 



15 
 

mRNAs as well as other miRNAs. This assumption is more reasonable than the assumption from 

commonly used approaches that considers only the bipartite of interactions between miRNAs and 

mRNAs. For example, Zisoulis et al. [45] shows that let-7 can regulate other non-coding RNAs 

including miRNAs. However, the method has high computational complexity and can only infer the 

lower bounds of the real causal effects. 

Another emerging approach is utilising differential analyses. To understand the causes of a disease, it 

often requires analysing the differences between normal and disease samples. For example, 

differentially expressed analysis identifies genes that express differently in different conditions, and 

thus reveal possible biomarkers for a disease. Recent advances have seen several forms of differential 

analyses for different purposes, such as differential co-expression and differential networking. 

Differential co-expression analysis identifies the groups of co-expressed genes that differ markedly 

between disease and control samples [33, 46]. Meanwhile, differential networking goes a step further 

to identify the differences in the gene regulatory networks between diseased and healthy conditions.  

In this research stream, researchers infer miRNA activity changes in two biological conditions. 

Highlights in this direction are miReduce [47], DIANA-mirExTra [48], Sylamer [49], MIR [50]. The 

common feature of these methods is that they firstly infer the differences in gene expression levels in 

the two biological conditions, then correlate those alterations with the miRNA binding motifs 

predicted based on sequence data.  

Contrastingly, Liang et al. [32] proposed a method (mirAct) to explore the miRNA activity in a 

sample and then analyze the overall behavior of the miRNA activity in samples with different 

biological conditions. Meanwhile, Amar et al. [33] proposed a method called DICER to detect 

differential co-expression in disease and control samples. They hypothesized that changes in co-

expression may be the result of changes in regulatory patterns, and thus the discovered differential co-

expression may be the targets of specific miRNA families. To test the approach, they identified 

miRNA families whose targets are enriched in the gene groups detected by their method, and tested 

whether those miRNAs are associated with the relevant diseases.  
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As suggested in [46], the differential networking may be a promising approach to elucidate the causes 

of diseases. An example of such approach is a work in protein-protein interaction networks [51]. The 

method identifies the differences of the hubs of protein-protein interactions between two conditions of 

interest. They hypothesized that the hubs of interactions play an important role in the regulation 

networks and the differences in the interaction behaviors may provide some clues for the causes of 

diseases. However, these differential networking techniques are rare in miRNA research. 

DISCOVERING miRNA-mRNA MODULES BY INTEGRATING 

HETEROGENEOUS DATA SOURCES 

It is important to know the modular organisation of the regulatory networks, as the recognition of 

these structures advances our understanding of the complex systems [52-54]. However, this is a 

challenge in the case of miRNA-gene interactions, as each miRNA can regulate a large number of 

genes, and multiple miRNAs can regulate the same gene. Therefore, researchers aim to search for a 

set of miRNAs and their co-regulated genes [55]. 

In the first stream of research, researchers identify the groups of co-expressed miRNAs and mRNAs 

using sequence data, or integrate sequence and expression data with or without taking the biological 

conditions of the datasets into consideration (see [24] for a review). However, these methods utilise 

only one or two data resources (sequence and expression data), and are thus sensitive to the data noise 

as pointed out in [55].  As each data type provides different but complementary information, recent 

studies (Table 3) integrate multiple sources of data into inferring miRNA-gene regulatory modules.   

Zhang et al. [55] proposed a framework to identify miRNA-gene regulatory modules by integrating 

miRNA target predictions based on sequence data, miRNA and gene expression profiles, protein-

protein interaction and DNA-protein interaction networks. In their work, sequence-based miRNA 

target predictions were considered as a static prior network, and expression profiles were used 

subsequently to identify the active miRNA-gene interactions. These active interactions were further 

refined by the gene-gene interaction networks (protein-protein and DNA-protein networks). Applied 
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to the human ovarian cancer samples from TCGA, the method discovered several miRNA-gene 

regulatory modules. The results are then validated against miRNA cluster from miRBase 

(http://www.mirbase.org/), and the mRNAs are validated using gene functional enrichment analysis. 

Similarly, Le et al. [56] proposed a regression-based method to integrate sequence, expression, and 

protein interactions data for identifying modules of miRNAs and mRNAs for a specific condition. 

The authors firstly used a regression model to link the expression profiles of miRNAs and mRNAs. 

The assumption was that the expression level of a mRNA can be represented as a linear function of 

expression profiles of all predicted miRNAs. The predicted miRNA regulators for a mRNA were 

taken from sequence-based prediction databases. To assign miRNAs and mRNAs into a module, they 

designed a function to measure the strength of the predicted miRNA-mRNA interactions based on the 

information from miRNA target information and protein-protein interactions. Specifically, the 

assigning function is based on the logistic-sigmoid function with parameters to adjust the 

contributions of the two types of interaction data. The higher the probabilities of interactions are, the 

more chances the interacting entities are assigned into the same module.  The method was applied to 

multiple cancer datasets from TCGA to explore the regulators (miRNAs) that are common for all 

cancer types and the specific active regulators for each cancer type. The results were then validated 

against knowledge from literature and by gene functional enrichment analysis.  

Zhang et al. [57] proposed a method to integrate cancer genomic data from different platforms, 

including DNA methylation, gene expression, and miRNA expression data. The method adopted a 

joint matrix factorization technique to integrate different data sources for ovarian cancer samples from 

TCGA. The method firstly identified the subsets of miRNAs, mRNAs and methylation markers that 

show the similar patterns across a subset or all of the samples. The aims were to reduce the 

complexity of the data and provide a global overview of the data from different platforms. The 

authors applied the method to the ovarian cancer datasets to find the so-called multi-dimensional 

modules. They validated the method by investigating the genes in the modules that have been 

confirmed as ovarian cancer related genes and by gene functional enrichment analyses.  

http://www.mirbase.org/
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In a similar fashion but targeting different data types, Li et al. [58] proposed a method to integrate 

multiple data sources, including copy number variation (CNV), DNA methylation (DM), gene 

expression data (GE), and miRNA expression data (ME) for inferring multi-layer gene regulatory 

modules. The proposed method is called sparse Multi-Block Partial Least Squares regression method 

(MBPLS) and is employed to identify multi-dimensional regulatory modules from the data. The 

assumption was that CNV, DM, and ME all regulate the gene expression. The method projected each 

data type into a summary vector, and maximises the covariance between the summary vectors of 

source data (CNV, DM, ME) and the response data (GE). Finally, it used the weighted sum of the 

summary vectors of source data to represent the unique input source data, and again maximises the 

covariance between the input data and the response data. The method was tested on simulated data as 

well as the ovarian cancer datasets from TCGA and was capable of identifying the modules that have 

significant functional and transcriptional enrichments. The results predicted from this method were 

proved to be better than the results from those methods that use only one type of data.  

The results from the above studies encourage future work of integrating more types of genomic data 

for elucidating the causes of diseases.  
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Table 3. Summary of methods to discover miRNA-mRNA modules 

Method Brief description Data sources Notes Software tool 

Zhang et al.  

[55] 

A framework to identify miRNA-gene regulatory 

modules by integrating multiple data sources 

 Use sequence based predictions to build the 

prior network. 

 Use expression data, and known gene-gene 

interactions to refine the findings 

 

 Sequence based miRNA target 

predictions,  

 miRNA and gene expression 

profiles,  

 protein-protein interactions,  

 DNA-protein interactions 

 Can be applied when we have 

matched datasets for multiple 

data types. 

 The outputs are groups of 

miRNAs and mRNAs that are 

important in the biological 

condition of the dataset 

http://zhoulab.usc.edu/SNMNM

F/ 

Le et al.  

[56] 

A regression based method for identifying modules 

of miRNAs and mRNAs for a specific condition by 

integrating multiple data sources 

 Use sequence based predictions to assign 

regulator-target relationships. 

 Use expression data to build a regression model 

between regulators and targets 

 Use protein-protein interactions to design a 

function for measuring the strength of the 

predicted miRNA-mRNA relationships. 

 Sequence based miRNA target 

predictions,  

 miRNA and mRNA expression 

data,  

 protein-protein interactions 

 Provide a list of miRNA-

mRNA regulatory modules 

from multiple cancer dataset 

from TCGA. This could be a 

good resource for further 

exploration 

 

NA 

Zhang et al. 

[57] 

A joint matrix factorisation method to integrate 

cancer genomic data from different platform 

 Integrate multiple data types using matrix 

factorization technique 

 Apply to Ovarian datasets from TCGA 

 DNA methylation,  

 miRNA and gene expression 

data 

 Suitable when matched samples 

of DNA methylation data 

available 

 May exclude important genes 

 

http://nar.oxfordjournals.org/co

ntent/40/19/9379/suppl/DC1 

 

Li et al.  

[58] 

The sparse Multi-Block Partial Least Squares 

method to integrate multiple data sources 

 Reduce the dimension of each data type and 

represent as a vector 

 Use regression to integrate the summarised 

vectors each data type 

 Copy number variation,  

 DNA methylation, 

  miRNA and gene expression 

data 

 Prove that using multiple data 

types generates better results 

than using single data type 

 May miss important genes in 

the modules 

http://zhoulab.usc.edu/sMBPLS

/ 

 

http://zhoulab.usc.edu/SNMNMF/
http://zhoulab.usc.edu/SNMNMF/
http://nar.oxfordjournals.org/content/40/19/9379/suppl/DC1
http://nar.oxfordjournals.org/content/40/19/9379/suppl/DC1
http://zhoulab.usc.edu/sMBPLS/
http://zhoulab.usc.edu/sMBPLS/
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DISCOVERING miRNA AND TF CO-REGULATORY RELATIONSHIPS 

TFs and miRNAs are primary gene regulators, and identifying their functions is a challenging and 

important research topic. Currently, there are still no feasible experimental techniques to discover 

miRNA and TF co-regulatory mechanisms. Meanwhile, computational methods have mainly focused on 

exploring the functions of miRNA and TF separately in the past decade.  

A unified picture of regulatory relationships of the two main regulators and target genes would provide 

useful insights into the causes of diseases. The combined regulations of miRNAs and TFs are important 

but difficult to explore, as miRNAs and TFs can regulate each other in addition to regulating target 

genes.  Recently, there are some studies constructing the gene regulatory networks with the presence of 

both TFs and miRNAs based on sequence data. Few other works utilise both sequence based target 

predictions of miRNAs and TFs and expression profiles to learn the complex regulatory network and 

inferring network motifs. Table 4 shows the basic features of the methods in this category. 

 

Figure 3. A common framework for exploring miRNA-TF co-regulations. The target information of miRNA and 

TF is integrated into a network. This network contains three types of molecules, which are miRNAs, TFs, and 

mRNAs, and it may contain loop of interactions. At this stage, network inferences such as network motif finding 

algorithms and other filters can be applied to infer miRNA-TF co-regulation knowledge. 
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Table 4. Summary of methods to infer miRNA-TF co-regulatory relationships 

Method Brief description Data sources Notes Software tool 

Shalgi et al. 

[59] 

Build the regulatory network that involves 

miRNAs, TFs, and mRNAs 

 Use sequence based predictions to build the 

network 

 Identify the shared targets of a pair of 

regulators 

 Sequence based 

target predictions 

 The hubs of interactions are usually TFs. 

 The results may involve a high rate of 

false discoveries 

 No software tool available. 

 The procedure is repeatable.  

 Users can replace the target 

information with recent 

prediction programs. 

Zhou et al. 

[60] 

Build the miRNA-TF-mRNA regulatory network 

 Use sequence based predictions to build the 

network 

 Use Fisher’s exact test to identify the 

significant shared targets of regulators 

 Sequence based 

target predictions  

 Shared targets of TFs are much more 

abundant than that of TF-miRNA 

 Shared targets in FFLs motifs with TFs as 

master regulators are statistically 

significant 

 Involve high false discovery rate 

As above 

Chen et al. 

[61] 

Explore the miRNA-TF co-regulatory 

relationships 

 Use sequence based predictions to build the 

network 

 Use gene functional enrichment analysis to 

find functional profiles of shared target genes 

 Identify significant shared targets of regulators 

 Sequence based 

target predictions 

 Gene ontology 

 Some biological processes emerged only 

in co-regulation 

 Did not consider the relationships 

between the regulators. 

As above 

Tran et al. 

[62] 

Discover gene regulatory modules that consist of 

miRNAs, TFs, and mRNAs using a rule based 

method 

 Build the regulatory network based on target 

information 

 Refine the network based on a set of rules, e.g. 

binding score is significant 

 Sequence based 

target predictions 

 Output a set of modules that involve 

miRNAs and mRNAs 

 Results are sensitive to the defined rules 

As above 

Le Bechec et 

al. 

[63] 

Provide a web tool for miRNA-TF co regulation 

analysis 

 Use available target prediction databases to 

build the network 

 Infer network motifs based on the built 

network 

 Sequence based 

target predictions 

 A good resource for exploring network 

motifs that involve miRNA and TF 

 Did not use expression data, so the 

network may be static 

http://mironton.uni.lu 

 

Roqueiro et 

al. 

[64] 

Identify the key regulators (miRNAs or TFs) of 

pathways 

 Curate known pathways that involve miRNAs 

and TFs 

 Use Bayesian inference to integrate sequence 

based target predictions 

 KEGG pathways,  

 Sequence based 

target predictions 

 Can be used to identify key regulators of 

a disease 

 Good resources for validating 

computational predictions 

NA 

http://mironton.uni.lu/
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Sun et al. 

[65] 

Uncover miRNA-TF regulatory network in 

Glioblastoma (GBM) 

 Curate a list of miRNAs, TFs and genes 

related to GBM 

 Build a regulatory network based on sequence 

data 

 Use gene expression to gene-gene 

interactions, and network motifs 

 Sequence based 

target predictions, 

  gene expression 

profiles 

 Specific for GBM 

 Good resource for exploring network 

motifs involved in GBM 

NA 

Jiang et al. 

[66] 

Identify active miRNA-TF regulatory pathways in 

Alzheimer’s disease 

 Use curated databases to build the regulatory 

network 

 Use gene expression to identify differentially 

expressed miRNAs and genes between disease 

and control samples 

 Curated miRNA 

and TF target 

databases, 

  gene expression 

data  

 Specific for Alzheimer’s disease 

 A good resource for validating 

computational predictions related to 

Alzheimer’s disease 

NA 

Huang et al. 

[67] 

Develop a web tool (mirConnX) for constructing 

the regulatory networks that include miRNAs, 

TFs, and mRNAs 

 Use target prediction and experimentally 

confirmed targets to build the static prior 

regulatory network 

 Expression data is used to refine the findings 

for a specific condition 

 Sequence based 

target predictions,  

 Experimentally 

validated target 

databases 

 expression 

profiles of 

miRNAs, TFs, 

and mRNAs 

 A good web tool for exploring the 

regulatory relationships between 

miRNAs, TFs and genes 

 Users can input gene expression data and 

receive the regulatory relationships for 

the input dataset.  

http://www.benoslab.pitt.edu/mi

rconnx 

Zacher et al. 

[68] 

Explain the activities of miRNAs and TFs in 

different biological conditions 

 Use Bayesian inference on expression data to 

identify the switch in the states of regulators 

(active, inactive) between two conditions 

 Gene expression 

profiles 

 A good tool to identify marker regulator 

for a condition of interest 

 Suitable for expression datasets with 

multiple conditions  

http://www.bioconductor.org/pa

ckages/release/bioc/html/birta.h

tml 

 

Le et al. 

[69] 

Learn the regulatory networks that include 

miRNAs, TFs, and mRNAs from heterogeneous 

data 

 Split the samples based on the biological 

conditions 

 Use Bayesian network to learn the gene 

regulatory network in each condition 

 Integrate the results from different conditions, 

and identify network motifs 

 Sequence based 

target predictions,  

 expression data of 

miRNAs, TFs,  

 mRNAs, sample 

categories 

 Suitable for datasets with multiple 

conditions 

 Can be used to explore the interplay 

between regulators (miRNA and TF) 

 Long running time with big datasets.  

Upon request 

 

 

http://www.benoslab.pitt.edu/mirconnx
http://www.benoslab.pitt.edu/mirconnx
http://www.bioconductor.org/packages/release/bioc/html/birta.html
http://www.bioconductor.org/packages/release/bioc/html/birta.html
http://www.bioconductor.org/packages/release/bioc/html/birta.html
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Sequence based approaches 

A common framework of exploring miRNA-TF co-regulatory relationships is to integrate the putative 

target information of both TFs and miRNAs to obtain an interaction network with the three 

components, miRNAs, TFs, and mRNAs. Statistical tests, network inference algorithms, or gene 

functional enrichment analyses are then used to infer gene regulation knowledge from the combined 

network. Figure 3 shows the procedure of this framework.  

In the first stream of research, researchers studied the co-regulation of TFs and miRNAs by 

discovering  their shared downstream targets [59, 60]. Shalgi et al. [59] built the network that involves 

miRNAs, TFs and mRNAs using sequence data. They used evolutionary conserved binding sites of 

miRNA targets to construct the interactions between miRNAs and genes (including TFs). Meanwhile, 

conserved binding sites of TFs in promoters were used to uncover the interactions between TFs and 

mRNAs and the interactions between TFs and miRNAs.   The combined network was then analysed 

to identify the shared targets of the regulators.  It was found that the hub of interactions is usually TFs 

and also discovered some network motifs that involve miRNAs, TFs and mRNAs. Similar to Shalgi’s 

approach, Zhou et al. [60] used PicTar  [26] as the miRNA putative targets and Transfac [70] as TF  

target information to build the network of miRNAs, mRNAs, and TFs. They then used Fisher’s Exact 

Test to measure the significance of the shared targets between the regulators, and to remove the 

insignificant co-regulating interactions that occurred by chance. They found that the shared targets of 

TF pairs and miRNA pairs are much more abundant than that of TF-miRNA pairs, and that the shared 

targets in feed-forward-loops with TF playing as a master regulator are more statistically significant 

than other types and feed-forward-loops. 

Tran et al. [62] proposed a rule based method to discover the gene regulatory modules that consist of 

miRNAs, TFs, and their target genes based on the available predicted target binding information. 

Sequence based target prediction database was used to construct putative targets of miRNAs and TFs. 

The obtained network was refined by retaining only the genes regulated by at least two miRNAs and 

two TFs with a significant binding score (p-value<0.05). The method then searched for the module 
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that consists of genes, miRNAs and TFs such that the miRNAs and TFs regulate the genes with a 

stringent p-value. The validity of the modules was assessed using gene functional enrichment analysis 

for the target genes. 

Contrastingly from the above works that use statistical tests as the filter (Figure 3), Chen el al. [61] 

utilised gene functional enrichment analysis (second filter in Figure 3) to explore the co-regulatory 

relationships. They also used target information to construct the co-regulation network as the first step. 

The authors then applied Gene Ontology (GO) for gene functional enrichment analysis for the shared 

target genes to find the functional profiles for these co-regulation pairs. To calculate the significant 

levels of the shared targets, they compare their method with the randomly pick method and use the 

hypergeometric distribution to calculate the p-values of the findings. It was found that some 

biological processes emerged only in co-regulation and that the disruption of co-regulation might be 

closely related to cancers, suggesting the importance of the co-regulation of miRNAs and TFs. 

Apart from the methods for inferring miRNA-TF co-reguations, there are some works focusing on 

providing resources for exploring miRNA and TF shared targets, network motifs involving miRNAs 

and TFs, and known pathways related to miRNAs and TFs. For instances, Le Bechec et al [63]  

provided a web tool for miRNA-TF co-regulation analysis, MIR@NT@N, which is available at 

http://mironton.uni.lu. They integrated available target prediction databases for both TFs and miRNAs 

to construct a regulatory network that involves miRNAs, TFs, and mRNAs. This work provides a web 

resource for facilitating the retrieval of regulatory relationships and network motifs. Users can explore 

the shared targets of miRNAs and TFs, and query a list of Feed-Forward-Loops (FFLs) and Feed-

Back-Loops (FBLs) that involve miRNAs and TFs. Differently, Roqueiro et al. [64] proposed a 

method to identify the key regulators (miRNAs or TFs) of pathways. The method used Bayesian 

inference on known pathway structures to infer a set of regulators in the pathway network. The 

Bayesian network in this method was constructed manually using the known KEGG pathways by 

removing the cycles in the pathways and applying some filtering criteria. The method drew findings 

based on existing knowledge and provided a good resource for other methods to validate their results. 

However, it is not fit for application in further exploratory studies. 

http://mironton.uni.lu/
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The common feature standing out from the above methods is their employment of sequence-based 

putative target information. However, the networks constructed from sequence-based predictions 

involve a high rate of false negatives and false positives [71]. Therefore these methods are only the 

first step of exploring the complex relationships between the three components, miRNAs, TFs and 

mRNAs. It would be ideal if expression data can be incorporated to refine the discoveries. 

 

Expression data and other data based approaches  

Recently, there has been some work in the second stream of research into miRNA and TF co-

regulations that incorporates gene expression data into the studies. These methods also use sequence 

based target prediction programs to initialise the network at the first step, after which the expression 

data is used to refine the findings. This procedure is similar to the framework in Figure 2 of the 

previous section. For instance, Sun et al. [65] proposed a method to uncover miRNA and TF 

regulatory networks in Glioblastoma GBM). They firstly filtered the miRNAs, TF, and genes related 

to GBM based on existing knowledge from literature. They then integrated the target prediction of 

miRNA and TF, which are based on sequence data for constructing the regulatory network. Only the 

gene expression was utilised to infer the gene-gene interactions by assuming that the interaction 

occurs when they are co-expressed. The authors then infer the 3-node FFL and 4-node   motifs, which 

involve miRNA-TF interactions. These motifs were integrated into a so-called GBM miRNA-TF 

mediated network. The authors then conducted the signalling pathway and gene functional enrichment 

analyses to validate the results. 

Similarly, Le et al. [69] proposed a framework to learn from heterogeneous data the three-component 

regulatory networks, with the presence of miRNAs, TFs, and mRNAs. They firstly used target 

information of miRNA and TF to define the bipartite of interactions between regulators and target 

genes.  They then utilised Bayesian network structure learning to construct a regulatory network from 

gene expression profiles of miRNAs, TFs and mRNAs. Then, in order to produce more meaningful 

results for further biological experimentation and research, the method searched the learnt network to 
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identify the interplay between miRNAs and TFs, and the FFLs that involve miRNAs and TFs from 

the learnt network.  

In another direction, researchers used target information to build the TF, miRNA, and mRNA 

regulatory networks as the first step. The expression data was then used to identify active pathways 

that involve miRNAs and TFs [66], or to identify active regulators in different biological conditions 

of the datasets [68]. For example, Jiang et al. [66] proposed a method to identify active miRNA-TF 

regulatory pathways in Alzheimer’s disease. In the first instance, the curated databases, including 

TransmiR [40], TRANSFAC [70], miRecords [72], TarBase [73], miRTarBase [35] were used to 

create the network that included miRNAs, TFs and genes. The authors then integrated miRNA and 

gene expression data from different sources and identified the differently expressed genes and 

miRNAs between disease and control samples. They defined these genes as active seeds (nodes) in 

the curated network, and found the sub-network by connecting all the active nodes with their 

immediate neighbours. Furthermore, the authors searched for the active pathway in the sub-network 

by searching for the directed acyclic paths from nodes without parents to nodes without children. The 

results were validated using gene functional enrichment analysis.  

Differently, to create a tool for clinical scientists to generate hypotheses and for explorations, Huang 

et al. [67] develops a web tool (mirConnX) for constructing the regulatory networks that include 

miRNAs, TFs, and mRNAs. They firstly created the prior network based on sequence-based miRNA 

and TF target prediction programs as well as the experimentally confirmed target databases. The 

expression data were then used to build the association network where the edges represent the 

significant correlation between the expression levels of the two genes (nodes). They then integrated 

the association network based on expression data and the prior network based on sequence data into 

the final network.  Using this tool, users can input the expression data and receive the regulatory 

network that includes miRNA, TFs, and mRNAs. The built networks can be further analysed to 

identify network motifs. However, an edge in this network simply shows the statistical association in 

expression levels between a regulator and a target gene, which may not indicate a regulatory 

relationship.  
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It is challenging and interesting to design a new class of methods that integrate multiples types of data 

for exploring miRNA-TF-mRNA regulatory complex relationships. 

 

CHALLENGES IN EVALUATION AND SELECTION OF MODELS 

Evaluation of models 

A question raised even prior to designing any computational methods of identifying miRNA-mRNA 

interactions is how to validate the predictions. Although there has been some progress in tackling the 

validation problem, the challenge remains due to the sparse number of experimentally confirmed 

miRNA-mRNA interactions. Therefore, there is no complete ground-truth for evaluating and 

comparing different computational methods. In this section, we review the current methods of 

validating or enriching miRNA target predictions. 

Currently, the common methods for validating computational results about miRNA targets are: 

 Using experimentally validated target databases such as TarBase [73], miRecords [72], 

miRTarbase [35] 

 Using miRNA transfection experiment data 

 Performing enrichment analysis using proteomic data 

 Calculating the number of target genes appearing in known pathways 

 Applying functional and/or pathway enrichment analyses to investigate the relevance of the 

target genes to the biological conditions of the dataset 

Tarbase and miRecords are manually curated experimental interaction databases and are commonly 

referred to when validating miRNA target predictions. These databases contain the collection of the 

experimentally confirmed interactions, and provide interfaces for facilitating the information retrieval 

process. mirTarBase stores miRNA targets validated by high-confidence low-throughput assays such 
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as Western blot. Meanwhile, Transmir [40] stores the curated experimentally confirmed interactions 

between miRNAs and TFs. These databases provide good tools to validate miRNA-mRNA regulatory 

predictions, although the number of confirmed targets is still small. 

A common approach to validating miRNA-mRNA regulatory predictions is to examine the overlap 

between the predictions and the experimentally confirmed databases. However, the small number of 

experimentally validated targets would make the validation of a new method difficult, as we do not 

know whether a predictive target that is not in those databases is a false discovery or a novel true 

target. 

Another approach of validating miRNA-mRNA regulatory predictions is to use miRNA transfection 

data. Transfection data presents the changes in gene expression between the control and miRNA 

transfected conditions. The differentially expressed genes identified from the control and miRNA 

transfected samples are considered as targets of the miRNA. Although this approach cannot 

differentiate between direct and indirect miRNA-mRNA interactions, it provides a tool to evaluate the 

real effect that a miRNA has on mRNAs. 

Khan et al. [74] collected  the miRNA transfection data from 151 published transfection experiments 

in seven different  human cell types. Luo et al [75]  provided the fold-change in the gene expression 

levels between control and transfected samples in MDA-MB-231 cells for miR-200c, miR-375, and 

miR-205. Le et al [31] presented the transfection data for miR-200 family in MDA-MB-231 cells. Li 

et at. [29] compiled 84 datasets from GEO for 113 transfected miRNAs. Table 5 shows the available 

miRNA transfection data sources. 
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Table 5. Summary of miRNA transfection data collected from literature by Khan et al [74], Luo et al. [75], Li et al. [29], and Le et al. [31]. 

 

References Cell types Transfected miRNAs 

Luo et al. [75] MDA-MB-231 miR-200c, miR-375, miR-205 

Lim et al. [76] HeLa miR-124, miR-1, miR-373, miR-124mut5-6, miR-124mut9-10, chimiR-1-124, chimiR-124-1 

Linsley et al. [77] HeLa, HCT116,  

HCT116 Dicer 

miR-106b, miR-200a/b, miR-141,  miR-15a/b, miR-16, miR-103, miR-20, let-7c, miR-195, miR-107, 

miR-192, miR-215, miR-17-5p 

Grimson et al. [78] HeLa miR-7, miR-9, miR-122a, miR-128a, miR-132, 

miR-133a, miR-142, miR-148, miR-181a 

He et al. [79] HeLa, A549, TOV21G, 

HCT116 Dicer 

miR-34a, miR-34b, miR-34c 

Selbach et al. [80] HeLa miR-1, miR-155, let-7b, miR-30 

Baek et al. [36] HeLa miR-181a, miR-124, miR-1 

Chang et al. [81] HeLa miR-34a 

Wang et al. [82] HepG2 miR-124 

Li et al. [29] 77 human tissue or cells from 

GEO 

113 miRNAs 

Le et al. [31] MDA-MB-231 miR-200a, miR-200b 
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In the similar fashion, protein expression data in miRNA transfection experiments can be used to 

validate computational predictions. Although measuring protein expression data generates higher cost 

compared to gene expression data, protein expression data better reflect the effect of miRNA 

regulations. For instance, Baek et al [36] reported both gene and protein expression data for 

transfection experiments of hsa-miR-1, 124, and 181a. They then use the data to validate and compare 

different target prediction methods. 

In another direction, researchers use pathway and/or gene functional enrichment analyses to 

investigate the relevance of the functions of predicted targets to the biological conditions of the 

datasets used for the predication [23, 30, 83]. The assumption is that a good prediction method will 

generate a set of miRNA target genes which are involved in the pathways and processes relevant to 

the biology behind the used dataset. There are several software tools designed for this purpose. The 

common ones are GO [84] enrichment analysis, KEGG pathway analysis [85], GeneCodis [86], 

Ingenuity Pathway Analysis (IPA, Ingenuity Systems, www.ingenuity.com), GeneGo Metacore from 

GeneGo Inc.. The first three are free for research use, while the last two are commercial software 

tools with a limited trial time. 

To date, the validation tools for evaluating miRNA-mRNA regulatory predictions are still limited and 

there is no unique ground-truth for assessing the performance of different computational methods. A 

possible remedy for the problem is to combine different validating methods. For example, a good 

computational method should have a significant number miRNA-mRNA interactions confirmed by 

transfection experiments and have the target genes highly relevant to the biological condition of the 

datasets. However, the differences in biological conditions between the training datasets and the 

transfection experiments may result in biased validation results. It is desirable to have follow-up 

experiments with the same biological conditions of the dataset used for validating the results of a 

computational prediction method. 
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Selection of models 

As we do not have the ground-truth for evaluating the models, it is impossible to conclude which 

method is better than the other. Therefore, selecting a model for assisting with the experiment design 

is a difficult task. To investigate whether we can select one model over another based on its relative 

performance validated by the above-mentioned evaluation methods, in this section we conduct a case 

study in three different cancer datasets. 

In this study, we choose Pearson correlation [87], maximal information coefficient (MIC) [88], Lasso 

[89],  Elastic-net [90], and the method which is based on IDA in [31] for the comparison. We apply 

them to the matched miRNA and mRNA expression profiles from epithelial-mesenchymal transition 

(EMT) [91, 92], multi-class cancer (MCC) [93, 94], and 51 cell lines breast cancer (BR51) [95] 

datasets. We then use experimentally validated miRNA targets and miRNA transfection data for 

validating the predictions. 

For EMT datasets, the miRNA expression profiles are from [92] (data available at 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26375 ). They were profiled from the 60 

cancer cell lines of the drug screening panel of human cancer cell lines at the National Cancer 

Institute (NCI-60). The mRNA expression profiles of EMT for NCI-60 were obtained from 

ArrayExpress  http://www.ebi.ac.uk/arrayexpress  accession number E-GEOD-5720.  There are 11 

samples of epithelial, and 36 samples of mesenchymal.  For MCC datasets, the miRNA expression 

profiles were obtained from [94] (data available at 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2564). The mRNA expression profiles of 

MCC are from [93]. They can be downloaded at http://www.broad.mit.edu/cancer/pub/migcm. 

Samples of the MCC data classified as normal (21 samples) and tumor (67 samples). Finally, for 

BR51 datasets, the miRNA data are from [95] and the mRNA gene expression data are available at: 

http://www.ncbi.nlm.nih.govgeoqueryacc.cgiacc=GSE41313. There are 27 samples in the luminal 

group and 23 samples in the basal group for this dataset. 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26375
http://www.ebi.ac.uk/arrayexpress
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2564
http://www.broad.mit.edu/cancer/pub/migcm
http://www.ncbi.nlm.nih.govgeoqueryacc.cgiacc=gse41313/
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 We perform differential gene expression analysis on the gene expression profiles to identify 

differentially expressed miRNAs and mRNAs between the two conditions in each data set. In this 

work, we use limma package [96] of Bioconductor for the analysis. As a result of the analysis, 46 

probes of miRNAs and 1635 probes of mRNAs for the EMT dataset, and 62 probes of miRNAs and 

1363 probes of mRNAs for the MCC data set have been identified to be differentially expressed at 

significant level (adjusted p-value <0.05, adjusted by BH method). Meanwhile, 92 miRNAs (adjusted 

p-value < 0.2) and 2354 mRNAs (adjusted p-value<0.0001) are identified to be differentially 

expressed in the BR51 dataset.  To cover the important miRNAs mentioned in the analysis of [95] and 

to have a manageable number of mRNAs for the computational method, we choose different 

thresholds of adjusted p-values in the differential gene expression analysis for this dataset. 

Figure 4 shows the performance of the methods validated by experimentally confirmed target 

databases. We firstly use the union of three databases, Tarbase 6.0 [97], miRecords [72], and 

miRWalk [98] as the ground-truth. For each miRNA in a dataset, we extract the top 100 target genes 

predicted by each of the methods and validate them against the experimentally confirmed interactions. 

We then compare the number of confirmed interactions for the methods in each of the three datasets.  

 

Figure 4. Number of interactions validated by experimentally confirmed target databases for IDA, 

Pearson correlation coefficient, MIC, Lasso, and Elastic-net in EMT, MCC and BR51 datasets.  
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Meanwhile, for transfection data, we use the miR-200a transfection data from [35] to validate the 

predictions of the methods. The comparison results are shown in Figure 5. 

 

Figure 5. Number of interactions validated by miR-200a transfection data for IDA, Pearson correlation 

coefficient, MIC, Lasso, and Elastic-net in EMT, MCC and BR51 datasets.  

 

In general, there is no superior method that outperforms all other methods in any validation method.  

Association methods such as MIC and Pearson perform well when validating against experimentally 

confirmed target databases. Meanwhile, the causality discovery based method, IDA, performs well 

when we use miRNA transfection data as the ground-truth.  

It is important to note that the validation results, however, do not imply that all the methods are of 

equal merits. Figure 6A shows the overlap in miR-200a predicted targets by IDA, Pearson, and MIC. 

There is a significant number of targets predicted by a method, but other methods fail to discover. 

This suggests different methods may infer different sets of the miRNA targets. Moreover, Figure 6B, 

6C, and 6D show a large number of confirmed genes predicted by a method but not by the other. 

There is a strong implication that these methods discover results which are complementary to each 
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other. Therefore, it is not simple to claim that a method is outstanding over the others using existing 

validation methods. 

 

Figure 6. A) Overlapping between predicted targets from IDA, Pearson correlation coefficient, and MIC. 

B) Overlapping in targets confirmed by miR-200a transfection data between IDA and Pearson correlation 

coefficient. There are 17 confirmed genes predicted by IDA only, and 12 confirmed genes predicted by 

Pearson correlation coefficient only. C) Overlapping in targets confirmed by miR-200a transfection data 

between IDA and MIC. There are 29 confirmed genes predicted by IDA only, and 24 confirmed genes 

predicted by Pearson correlation coefficient only. D) Overlapping in targets confirmed by miR-200a 

transfection data between MIC and Pearson correlation coefficient. There are 24 confirmed genes 

predicted by IDA only, and 24 confirmed genes predicted by Pearson correlation coefficient only. 
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CONCLUSIONS AND OUTLOOKS 

As more and more evidence has suggested the important roles of miRNAs in the development of 

several diseases, identifying miRNA functions will reveal further insights into the causes of fatal 

diseases such as cancer. The huge amount of data available in different types poses opportunities and 

challenges for computational approaches to exploring miRNA functions. These methods assist with 

the designs of the wet lab experiments. In this review we have discussed different computational 

approaches to inferring miRNA functions. These approaches provide different views on how to 

elucidate the complex regulatory mechanism of miRNAs and their relationships with target genes as 

well as other regulators.  

The approaches which are based on sequence data provide a list of potential target genes. However, 

the results from these approaches involve a high rate of false discoveries. There is a need to design 

new accurate methods for utilizing sequence data. Recently, such computational and experimental 

methods have started to emerge. For instances, Wang et al [99] proposed the mirTarPri method to 

reduce the false discovery rates of commonly used target prediction methods by ranking the predicted 

targets to select optimal results. In another direction, experimental methods such as HITS-CLIP [100] 

and PAR-CLIP [101] have achieved better accuracy rates compared to prior prediction programs. 

These new approaches may have potential to enhance our understanding in miRNA functions. 

Complementary to sequence based approaches, which discover static miRNA targets, approaches that 

utilise gene expression data can infer the miRNA activities and miRNA-mRNA relationships in a 

specific condition. These approaches have long been studied based on the foundation of correlation or 

association. However, it is well known that association is not causation, and thus the correlation 

between a miRNA and target genes may not imply the real regulatory relationships, which are causal 

relationships.  Recently, causality discovery based methods have emerged and provided an alternative 

approach to inferring miRNA-mRNA causal regulatory relationships. In saying so, these methods 

usually have a set of assumptions on the distribution of the data and those assumptions may be mostly 

violated in some real world datasets. As a result, the causality discovery methods may not perform 
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consistently in all datasets. Therefore, it is crucial to design a new class of methods that can infer 

causal relationships as well as produce stable results across different datasets. 

On another note, the approaches of integrating multiple sources of data have been shown to be 

effective in improving the predictive power of a computational method. Each data type provides 

complement information, and thus integrating more sources of data would provide a clearer picture of 

gene regulations. However, different data sources often come from different labs with different 

experiment settings and different biological conditions. The question raised here is how to uniformly 

transfer the knowledge learnt from one lab to another.  

As the ultimate research goal is to elucidate the causes of a disease, differential analysis approaches 

are promising. We have seen differential analysis techniques in identifying gene differentially 

expressed analysis, and recent methods of identifying differential co-expression. As suggested in [46], 

the next step would be identifying differential networking, i.e. identifying the differences between 

gene regulatory networks in different conditions. However, it is still unclear how to achieve the goal. 

As discussed in the above section, it is still challenging to evaluate and select a model for assisting 

with the experimental design. It is necessary to create tools for systematically evaluating a model 

based on current knowledge, and visualising prediction results from different methods. As different 

methods may infer complementary results and have their own advantages, ensemble approaches such 

as in [102] can be promising in producing stable and high accurate results.  Although we used human 

cancer datasets in the case study, the methods discussed in this review generally are not limited to 

human cancer datasets. The methods can be applied to different organisms and biological conditions. 

Gene regulatory networks involve several classes of regulators, and thus constructing the unified 

picture of the network with the presence of important regulators and genes is crucial. Recent methods 

have constructed the gene regulatory networks to present the relationships between miRNAs, TFs and 

genes. However, most of the methods utilise the sequence based target prediction to build the 

network, which may involve a high rate of false discoveries. There is a potential to integrate multiple 

sources and/or types of data to learn such complex networks. Furthermore, differential analyses can 
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be utilised to explore the changes in regulatory patterns, e.g. the changes in Feed-Forward Loops 

(FFLs) and Feed-Back-Loops (FBLs) that involve miRNAs, TFs, and/or genes.  The FBLs and FFLs 

have been found to play important roles in cancers and other diseases [103]. Please refer to [103] for a 

recent review of the TF-miRNA motif roles in biological processes and diseases. Understanding the 

roles of such motifs in disease development would better assist with the diagnosis process and the 

design of pharmaceutical products for treatment.   

Together with the two  major gene regulators, miRNAs and TFs, long non-coding RNAs (lncRNAs) 

play important roles in biological processes and diseases [104]. More emerging evidence has shown 

that lncRNAs, miRNAs, and TFs are important nodes in the signaling networks that regulate vital 

biological processes and diseases, including cancer [104, 105]. Recent evidence also reveals the 

interactions between miRNAs, TFs and lncRNAs [106]. With more and more data available, there is a 

strong possibility for computational methods to tap into the area of learning gene regulatory networks 

with the existence of miRNAs, TFs, lncRNAs, and genes. It would pose interesting implications for 

future work as these methods can help elucidate the complex gene regulatory relationships and the 

causes of diseases. 
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