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Discovering the regulatory relationships between microRNAs (miRNAs) and mRNAs is an important
problem that interests many biologists and medical researchers. A number of computational methods
have been proposed to infer miRNA–mRNA regulatory relationships, and are mostly based on the
statistical associations between miRNAs and mRNAs discovered in observational data. The miRNA–mRNA
regulatory relationships identified by these methods can be both direct and indirect regulations. How-
ever, differentiating direct regulatory relationships from indirect ones is important for biologists in
experimental designs. In this paper, we present a causal discovery based framework (called DirectTarget)
to infer direct miRNA–mRNA causal regulatory relationships in heterogeneous data, including expression
profiles of miRNAs and mRNAs, and miRNA target information. DirectTarget is applied to the Epithelial to
Mesenchymal Transition (EMT) datasets. The validation by experimentally confirmed target databases
suggests that the proposed method can effectively identify direct miRNA–mRNA regulatory relationships.
To explore the upstream regulators of miRNA regulation, we further identify the causal feedforward
patterns (CFFPs) of TF–miRNA–mRNA to provide insights into the miRNA regulation in EMT. DirectTarget
has the potential to be applied to other datasets to elucidate the direct miRNA–mRNA causal regulatory
relationships and to explore the regulatory patterns.

� 2014 Elsevier Inc. All rights reserved.
1. Background

A fundamental challenge of understanding complex gene
regulatory mechanisms is to identify how the regulators regulate
their target genes in different biological processes, especially in
disease progression. Many studies have demonstrated that microR-
NAs (miRNAs) are primary metazoan gene regulators at the
post-transcriptional level. miRNAs are short (�22 nt) endogenous
non-coding RNAs and recognise target genes by binding to comple-
mentary sequences on the target messenger RNA (mRNAs)
transcripts. The binding activities usually result in translational
repression or target degradation and gene silencing [1,2]. The
research into miRNAs has revealed the roles that they play in
negative regulation and possibly in positive regulation. By regulat-
ing target genes, miRNAs are likely to be involved in most biolog-
ical processes, including developmental timing, cell proliferation,
metabolism, differentiation, apoptosis, cellular signaling, stress
responses and cancers [3–9].

miRNA target prediction using sequence data [10–13] can
provide the direct reference of miRNA binding sites on the target
genes. However, these methods are based on sequence comple-
mentarity and/or structural stability of the putative duplex. This
may result in a high rate of false positives and false negatives
[14], mainly because of the role played by RNA folding as well as
accessibility due to protein binding. Moreover, the currently
available sequence-based target prediction algorithms produce
hundreds to a few thousands of target genes for each miRNA,
which makes it difficult to focus on a small number of most likely
targets of the miRNAs of interest.

Complementary to the target prediction based on sequence
data, some methods have been developed to use gene expression
data or the combination of expression data and sequence data to
find out miRNA targets. For example, the approaches presented
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in [15–18] identify miRNA regulatory modules (MRMs) by inte-
grating heterogeneous datasets, including expression profiles of
miRNAs and mRNAs, and putative target binding information.
The discovery of MRMs has demonstrated that using both
sequence information and expression profiles can produce more
accurate predictions. Attempts have also been made to infer
functional miRNA–mRNA regulatory modules (FMRMs), which
are regulatory networks of miRNAs and mRNAs for specific biolog-
ical conditions [19–26]. The identified FMRMs give insights into
biological processes, functional regulatory interactions of many
diseases and gene target therapy. The limitation shared by these
methods is that they can only infer statistical correlations or asso-
ciations between miRNAs and mRNAs. However, correlations or
associations may not reveal gene regulatory relationships which
are indeed causal relationships. For example, a strong correlation
between miRNA A and a target gene B does not necessarily imply
that A causally regulates B. This strong correlation between A and
B may be due to a common cause (regulator) of them.

Recently Le et al. [27] adapted the causal modelling and discov-
ery approach, IDA [28,29] to infer miRNA–mRNA causal regulatory
relationships from gene expression data. The discovered miRNA–
mRNA causal regulatory relationships were found to have a large
portion of overlap with the results of the follow-up gene knock-
down experiments. This outcome has demonstrated the high accu-
racy that can be achieved by the computational method. However,
the method does not distinguish between direct and indirect causal
relationships. Therefore, a discovered causal regulatory relation-
ship can be a direct interaction between a miRNA and a mRNA, or
indirect regulation of a miRNA on a mRNA that is mediated by some
other regulator(s). Given that a major benefit of identifying miRNA–
mRNA causal regulatory relationships is to provide biologists with
high quality hypothetical miRNA target information to assist them
in setting up gene knockdown experiments, it is essential to have
direct miRNA–mRNA causal regulatory relationships identified
and presented to biologists.

In this paper, we extend the work in [27] to infer direct miRNA–
mRNA causal regulatory relationships. Our framework (called
DirectTarget) makes use of multiple sources of data, including gene
expression profiles and target binding information. We hypothe-
sise that target information predicted using sequence data pro-
vides evidence of direct interactions between miRNAs and the
predicted targets. With DirectTarget, firstly we apply the approach
in [27] to the expression profiles of miRNAs and mRNAs to identify
all the pairs of miRNA and mRNA that are causally related. Then
based on the target information, we select from the pairs only
direct causal relationships. We then use experimentally confirmed
target databases to validate the computational results.

Since transcription factors (TFs) are main regulators at the tran-
scriptional level, they are also essential for the regulation of gene
expression, including miRNA expression levels. Therefore, to fur-
ther explore the upstream regulators (TFs) of miRNA regulation,
we repeat the procedure of DirectTarget for inferring the direct
TF–miRNA and TF–mRNA causal regulatory relationships, where
miRNAs and mRNAs are targets of the TFs. Then they are integrated
with the direct miRNA–mRNA regulatory relationships found to
generate the causal feedfoward patterns (CFFPs).

We apply DirectTarget to the EMT datasets and use experimen-
tally confirmed target databases to validate the identified direct
causal relationships. Validation results show that the proposed
method is suitable for discovering direct miRNA–mRNA causal reg-
ulatory relationships. Moreover, the enrichment analyses on the
top ranked target genes show that their functions are highly rele-
vant to the biological conditions of the datasets. The computational
results of miRNA–mRNA regulatory relationships as well as CFFPs
provide good resources for cancer research and future experimen-
tal validations.
Please cite this article in press as: Zhang J et al. Identifying direct miRNA–mRN
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2. Methods

2.1. Overview

In this section, we present DirectTarget, a framework for infer-
ring direct miRNA–mRNA causal regulatory relationships. As
shown in Fig. 1, the overall process contains three steps: (1) data
preparation, (2) inferring miRNA–mRNA causal regulatory
relationships, and (3) identifying direct miRNA–mRNA causal reg-
ulatory relationships. In the following, we present each of the steps
in detail.
2.1.1. Step (1): Data preparation
The aim of this step is to obtain the input data for the causal dis-

covery step (Step (2)), including miRNA target binding information
and expression profiles of miRNAs and mRNAs. Since we will apply
DirectTarget to the Epithelial to Mesenchymal Transition (EMT)
datasets, we use the EMT datasets as an example to introduce
the data preparation step in the following.

EMT is a process in which cells lose their epithelial features
characterised by the high E-cadherin expression level and acquire
mesenchymal characteristics, including Vimentin filaments and a
flattened phenotype. EMT is a part of the process of tissue remod-
elling during embryonic development and wound healing [30], and
during carcinogenesis [31] when cancer cells undergo a change
transforming into a more invasive tumor [30,32]. By expressing
proteases, cells become more invasive, and they can pass through
the underlying basement membrane and migrate. These are crucial
steps in the multi-step process of metastasis [33].

To obtain target binding information of miRNAs, several dat-
abases [10–13] may be queried. In this work we use Microcosm
(Version v5) [11]. The miRNA expression profiles are from Søkilde
et al. [34]. They were profiled from the 60 cancer cell lines of the
drug screening panel of human cancer cell lines at the National Can-
cer Institute (NCI-60). They are available at http://www.ncbi.nlm.-
nih.gov/geo/query/acc.cgi?acc=GSE26375. The mRNA expression
profiles for NCI-60 are obtained from ArrayExpress (http://www.e-
bi.ac.uk/arrayexpress, accessionnumberE-GEOD-5720). In total 47
samples, including 11 epithelial samples and 36 mesenchymal
samples are used for this work.

With the retrieved miRNA and mRNA expression profiles, we
perform differential gene expression analysis to identify differen-
tially expressed miRNAs and mRNAs between the epithelial and
mesenchymal samples. In this work, the limma package [35] of Bio-
conductor is used for the analysis. The expression values of differ-
entially expressed miRNAs and mRNAs are to be used as an input
for Step (2).
2.1.2. Step (2): Inferring miRNA–mRNA causal regulatory relationships
This step is based on the causal discovery method, IDA [28,29]

and the adaptation of IDA presented in [27] for finding miRNA–
mRNA causal regulatory relationships. Therefore two sub-steps
need to be carried out: (2a) using the PC algorithm [36] to learn
the causal structure from expression data; (2b) applying do-calcu-
lus [37] to infer the causal effects of miRNAs on mRNAs.

In Step (2a), each miRNA or mRNA is considered as a random
variable whose values are its expression levels. The PC algorithm
assumes that there is a true causal structure in the form of a direc-
ted acyclic graph (DAG), where a node corresponds to a variable (a
miRNA or mRNA in our case) and an edge between two nodes rep-
resents the existence of a causal relationship between them. The
PC algorithm is used to learn the causal structure (the DAG) from
the expression profiles of miRNAs and mRNAs.

The structure learning by the PC algorithm starts with a fully
connected undirected graph, assuming that initially every pair of
A causal regulatory relationships in heterogeneous data. J Biomed Inform
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Fig. 1. The workflow (steps) for inferring direct miRNA–mRNA causal regulatory relationships. The overall process of DirectTarget involves three main steps: data
preparation, inferring miRNA–mRNA causal regulatory relationships and identifying direct miRNA–mRNA causal regulatory relationships. Putative target binding information
between miRNAs and mRNAs, and expression profiles of miRNA and mRNAs are used. Target binding information is used to create the initial structure representing the
interactions of miRNA–mRNA. Expression profiles are then used in the IDA learning procedure to construct causal regulatory interactions of miRNA–mRNA in both epithelial
(E) and mesenchymal (M) sample conditions. Bootstrapping strategy is used to improve the stability of the estimation of causal effects between miRNAs and mRNAs. The
causal interactions and putative target binding information of miRNA–mRNA are further integrated to infer direct miRNA–mRNA causal regulatory relationships. All direct
causal interactions are ranked in descending order of the absolute values of the causal effects, and those direct causal interactions with less than median of absolute causal
effect are removed when selecting potential direct miRNA–mRNA causal interactions.
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nodes (i.e. a pair of miRNA–mRNA, miRNA–miRNA or mRNA–
mRNA) is related. Then, the algorithm decides if an edge is to be
removed from or retained in the graph by conducting conditional
Please cite this article in press as: Zhang J et al. Identifying direct miRNA–mRN
(2014), http://dx.doi.org/10.1016/j.jbi.2014.08.005
independence tests for the two nodes connected by the edge.
Finally, the directions of edges in the obtained graph are oriented
with the aim of getting a DAG. However, the PC algorithm can only
A causal regulatory relationships in heterogeneous data. J Biomed Inform
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generate a completed partially directed acyclic graph (CPDAG) which
contains both directed edges and undirected edges. From a CPDAG,
there are several ways to orient the undirected edges to form a
DAG. Therefore, the resulting causal structure is not a unique
DAG, but a class of DAGs generated from the CPDAG. Fig. 2 shows
an example of a CPDAG, G, and from G there are four different ways
to orient the edges, resulting in the four DAGs in the equivalence
class [28].

In Step (2b), do-calculus [37] is used to estimate the causal
effect that a miRNA has on a mRNA. Given a DAG, do-calculus
can estimate the causal effect of a node on any other node in the
DAG using observational data, by way of ‘simulating’ the interven-
tions in controlled experiments. However, the problem is that we
do not have just one unique DAG, but a class of DAGs as described
above. The solution [27–29] is that to find out the causal effect of a
miRNA on a mRNA, we estimate the causal effects using the DAGs
resulting from a CPDAG one by one and take the minimum causal
effect value as the final result for this pair of miRNA and mRNA.
The idea is that, since we are not able to estimate the unique causal
effect between each miRNA and each mRNA, we use the lower
bound of all possible causal effect absolute values as the output.

For illustration, assume that we have the CPDAG G and a class of
DAGs as in Fig. 2, where R1 is a miRNA and T is a mRNA. We can use
do-calculus to estimate the causal effect of R1 on T in all four DAGs,
G1; G2; G3 and G4. Suppose that the causal effects calculated based
on the four DAGs are 0.5, 0.2, �0.3, and 0.4 respectively, then the
value of 0.2 will be chosen as the final result. We use absolute val-
ues when comparing the strength of causal effects, as a calculated
causal effect can be either negative or positive.

Details of the causal discovery procedure and its implementa-
tion in R can be found in [27].

2.1.3. Step (3): Identifying direct miRNA–mRNA causal regulatory
relationships

In Step (2), we have found the causal effects for all possible
pairs of miRNA–mRNA. Each obtained causal effect value indicates
the strength of the regulation of a miRNA on a mRNA. However, the
value does not tell whether the relationship between the miRNA
and the mRNA is direct or mediated by other miRNAs or mRNAs.

A simple solution for differentiating direct from indirect rela-
tionships is to use the signs of causal effects obtained from Step
(2). A positive causal effect means that when we manipulate the
expression value of the miRNA to be increased, the expression
value of a target gene will increase too. In other words, a positive
causal effect implies up-regulation, and vice versa. As the common
knowledge about miRNA regulation is that a miRNA usually
down-regulates its target genes (only a few reported cases for
up-regulation so far), we may simply assume that miRNA–mRNA
relationships with negative causal effect values are direct
interactions, and those with positive causal effects are indirect
(CPDAG

R1

R3 R4

(DAG G1)

R1 R2

R3 R4 T

(DAG G2)

R1 R2

R3 R4 T

Fig. 2. A CPDAG G with four DAGs G1, G2, G3 and G4 in its equivalence class [28].
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relationships. However, as human knowledge about miRNA regula-
tion is still limited, the above assumption does not necessarily
hold.

In this paper, we propose a solution that is based on target
information predicted using sequence data. We argue that the
binding site information about a target gene can provide evidence
for direct miRNA–mRNA interactions. In other words, miRNA tar-
get information predicted from sequence data can be used as a
means for differentiating direct and indirect miRNA–mRNA rela-
tionships. However, the predicted miRNA target information usu-
ally involves a high number of false discoveries. Therefore, to
take advantage of and to compensate for the drawbacks of the tar-
get prediction and the causal discovery approaches, in Step (2)
above, we use the causal discovery approach to find out the miR-
NA–mRNA causal relationships (with higher accuracy), and then
in this step, from these discovered causal relationships, target
information is used to select direct miRNA–mRNA interactions.

For the EMT case, we query Microcosm to retrieve target infor-
mation for the differentially expressed miRNAs that were identi-
fied in Step (1). We use the target information to filter the
miRNA–mRNA causal relationships discovered in Step (2). The
miRNA–mRNA causal relationships that are not supported by the
target information are removed. Then we rank all the remaining
direct interactions for each miRNA based on the absolute values
of its causal effects on mRNAs. The top interactions in the final
result will have high causal effects and have been predicted using
sequence data, and they are selected for validation (see the Results
section).

2.2. Exploring TF–miRNA–mRNA causal feedforward patterns

To further explore the upstream regulators of miRNA regula-
tion, we use the same steps described above to infer the direct
TF–miRNA and TF–mRNA causal regulatory relationships, where
TFs are considered as regulators while miRNAs and mRNAs are
targets of the TFs. Then they are integrated with the direct miR-
NA–mRNA causal regulatory relationships found to form the causal
feedfoward patterns (CFFPs). With each CFFP, a TF regulates a
mRNA directly and indirectly via a miRNA.

To find all the TFs in the EMT datasets, we use the list of TF rep-
ertoire [38] to extract all the TF genes. This list is then used to
query against the mRNA expression profiles for EMT to obtain TF
expression profiles. The TF–miRNA target information is down-
loaded from MIR@NT@N [39]. To obtain TF–mRNA target informa-
tion, we use TRANSFAC 9.3 [40] and promoter databases [41]
integrated in the composite regulatory signature database (CRSD)
[42].

Using DirectTarget, we infer all the direct causal regulatory rela-
tionships of TF–miRNA and TF–mRNA. Then we rank all the causal
regulatory interactions of miRNA–mRNA (found previously),
G)

R2

T

(DAG G3)

R1 R2

R3 R4 T

(DAG G4)

R1 R2

R3 R4 T

R1; R2; R3 and R4 denote four different miRNAs, and T represents a mRNA.
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Fig. 3. A comparison of the total number of experimentally confirmed miRNA–
mRNA interactions out of all the top 10 and top 20 target genes for the 44 miRNA
used in the validation. The union of miRTarBase v4.5 and TarBase v6.0 is used as the
ground truth. DirectTarget is comparable with the Pearson method, and outper-
forms the other four methods: Lasso, GenMiR++, ProMISe and generic IDA.

J. Zhang et al. / Journal of Biomedical Informatics xxx (2014) xxx–xxx 5
TF–miRNA, and TF–mRNA. Theoretically, any interactions with
causal effects different from zero can be used to explore the TF–
miRNA–mRNA causal feedforward patterns. In order to reduce
false negatives (type II error) and for exploration purpose, we keep
the interactions with ‘above-the-middle’ strength for the explora-
tion. Specifically, we use the median of the absolute values of the
causal effects as the cutoff to determine candidates of potential
miRNA–mRNA, TF–miRNA, and TF–mRNA causal interactions.
These causal interactions are then integrated to explore the causal
feedforward patterns of which TFs are the upstream regulators.
Details of the patterns are presented in the Results section.

3. Results

3.1. Data preparation and implementation

After the differentially expressed gene analysis of the EMT data-
sets using the limma package [35], 46 probes of miRNAs and 1612
probes of mRNAs are identified to be differentially expressed at a
significant level (adjusted p-value < 0.05, adjusted by Benjamini–
Hochberg (BH) method). We extracted 112 probes of TFs from
the differentially expressed mRNAs using the list of TF repertoire
[38]. The detailed result can be found in Supplementary material 1.

The input of DirectTarget is a 47 � 1658 matrix for the 47 NCI-
60 samples of two different types. For inferring miRNA–mRNA cau-
sal regulatory interactions, the first 46 columns of the input data
matrix are miRNA expression data, and the remaining 1612 col-
umns are mRNA expression data. For exploring causal feedforward
patterns of TF–miRNA–mRNA, the first 112 columns of the input
data matrix are TF expression data, the next 46 columns are miRNA
expression data, and the remaining 1500 columns are mRNA
expression data.

The PC algorithm [36] is used to learn the causal structure from
an input dataset. To estimate the completed partially directed acy-
clic graph (CPDAG), G from the input dataset, we use the open
source R-package, pcalg [43], and set the significance level of the
conditional independence test, a = 0.01, as the tuning parameter
for the PC algorithm. As described in the Methods section, for each
causal regulatory relationship, the causal effect with respect to
each of the DAGs in the equivalence class is calculated, and we
regard the causal effect with the minimum absolute value as the
final result.

Since a small number of samples can cause unstable estima-
tions of causal effects, we use bootstrapping to estimate causal
effects of the discovered causal regulatory relationships. The num-
ber of bootstrapping is set to 100 and the median of 100 estimates
for each relationship is regarded as the final result.

3.2. Validated miRNA–mRNA interactions by experimentally confirmed
target databases

To show the effectiveness of DirectTarget in identifying direct
miRNA–mRNA interactions, we compare the performance of
DirectTarget with the Pearson correlation method [24], Lasso
[25], GenMiR++ [15], ProMISe [26] and the generic IDA method
[27] respectively using the number of validated miRNA–mRNA
interactions as the criterion. We define the ground truth for vali-
dating computational results as the union of the two largest exper-
imentally confirmed target databases: miRTarBase v4.5 [44] and
TarBase v6.0 [45]. Pearson correlation is computed using the R
built-in function, cor (Package stats). We implement Lasso using
glmnet [46] with the parameter alpha = 1, and remove those miR-
NA–mRNA interactions with Lasso’s correlation coefficient of 0.
The Matlab code of GenMiR++ is obtained from http://www.psi.-
toronto.edu/genmir/. To implement ProMISe, we use the average
expression values across the 47 EMT samples of miRNAs and
Please cite this article in press as: Zhang J et al. Identifying direct miRNA–mRN
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mRNAs as the input. Since the seed matrix between miRNAs and
mRNAs is very sparse, which leads to failure in running ProMISe,
we add a ones matrix based on the original seed matrix. As for
generic IDA, we infer miRNA–mRNA causal regulatory relation-
ships without using target binding information. To have a fair
comparison of all methods, we extract from the discovered direct
regulatory relationships the top 10 and 20 target genes of each val-
idated miRNA respectively, based on the absolute values of the
causal effects, correlations or probabilities. The detailed results of
each method in identifying miRNA–mRNA regulatory relationships
can be seen in Supplementary material 2.

Out of the 46 differentially expressed miRNAs in the EMT data-
set, 44 are to be validated since 2 miRNAs do not have confirmed
targets in the databases or do not have target binding information
available. As shown in Fig. 3, DirectTarget is comparable with the
Pearson correlation method, and performs better than Lasso, Gen-
MiR++, ProMISe and generic IDA in terms of the total number of
validated miRNA–mRNA interactions for the two cases (Top 10
and Top 20). This implies that DirectTarget can be used as a good
alternative to existing methods for discovering target genes of
miRNAs.

However, each method discovers a different set of confirmed
miRNA–mRNA interactions, suggesting their own predicting mer-
its. Fig. 4 shows the differences in the numbers of validated miR-
NA–mRNA interactions predicted by DirectTarget and the other
five methods. In the top 10 lists for the 44 miRNAs, there are 6,
2, 6, 6 and 4 validated miRNA–mRNA interactions discovered by
Pearson, Lasso, GeneMiR++, ProMISe, and generic IDA respectively,
but missed by DirectTarget. However, there are 5, 12, 8, 10, and 17
validated miRNA–mRNA interactions identified by DirectTarget
but missed by Pearson, Lasso, GeneMiR++, ProMISe, and generic
IDA, respectively. In the top 20 lists of the 44 miRNAs, DirectTarget
does not identify 4, 0, 11, 5 and 11 confirmed miRNA–mRNA inter-
actions discovered by Pearson, Lasso, GeneMiR++, ProMISe, and
generic IDA respectively. Nevertheless, in the top 20 lists, there
are 6, 20, 12, 9 and 27 validated miRNA–mRNA interactions discov-
ered by DirectTarget, but missed by Pearson, Lasso, GeneMiR++,
ProMISe, and generic IDA respectively. The detailed information
of validated miRNA–mRNA interactions by different methods is
in Supplementary material 3.

In order to assess the statistical significance of the number of
validated miRNA–mRNA interactions, we conceive a cumulative
hypergeometric distribution model for this.
A causal regulatory relationships in heterogeneous data. J Biomed Inform
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Let S be the number of possible target genes for n miRNAs used
in the validation in the EMT dataset, K be the number of miRNA–
mRNA interactions from the ground truth for these miRNAs, N be
the number of miRNA–mRNA interactions predicted by each
method for these miRNAs, and x be the number of validated miR-
NA–mRNA interactions by the ground truth for these miRNAs.
The p-value of the validation results, which is the probability of
the random method equal to or better than each method, is calcu-
lated using the cumulative hypergeometric test formula:

pðX P xÞ ¼
XN

i¼x

K

i

� �
S � n� K

N � i

� �

S � n

N

� � ð1Þ

Table 1 shows the total number of validated miRNA–mRNA interac-
tions out of all the top 10 and 20 lists of the 44 miRNAs obtained by
each method together with the p-values for each of the results. The
low p-values for DirectTarget in Table 1 suggest that the validation
results of the method in discovering direct miRNA–mRNA causal
regulatory relationships are statistically significant and not
obtained by chance.

We also use the cumulative hypergeometric test to assess the
statistical significance of the prediction for each single miRNA, i.e.
using formula (1) when n = 1. With the assessment based on the
top 10 list of each miRNA, the numbers of significant miRNAs, i.e.
miRNAs with statistically significant predictions (p-value < 0.05)
by the six methods (DirectTarget, Pearson, Lasso, GenMiR++, ProM-
ISe and generic IDA) are 9, 8, 4, 6, 6 and 1 respectively. With the
assessment based on the top 20 list of each miRNA, there are 7, 5,
1, 6, 5 and 1 significant miRNAs respectively for the six methods.
The results show that DirectTarget could identify more miRNAs
Table 1
Statistical significance of experimentally validated miRNA–mRNA interactions for the 44 m
top 20 miRNA–mRNA interactions predicted by each method for the 44 miRNAs, respective
not used in the validation, the values of N1 and N2 for Lasso is 296 and 394 respectively. x1

the two cases: Top 10 and Top 20, respectively. p1 and p2 represent p-values in the Top 1

Methods S n K

DirectTarget 1127 44 447
Pearson 1127 44 447
Lasso 1127 44 447
GenMiR++ 1127 44 447
ProMISe 1127 44 447
Generic IDA 1127 44 447
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with validated targets that is statistically significant than the other
five methods in both cases. The detailed information of the
statistical significance of each miRNA by different methods is in
Supplementary material 3.

3.3. Confirmed direct miRNA–mRNA causal interactions for EMT by
literature

In order to balance the chance of finding more novel interac-
tions and the cost of the exploration, instead of using the top-k
interactions (e.g. k = 100), we use the median of the absolute
values of all calculated causal effects as the cutoff in selecting
potential causal relationships. When we list the interactions
between miRNAs and mRNAs at probe level, a mRNA having differ-
ent probe names may have multiple interactions with the same
miRNA. Therefore when we represent the interactions at mRNA
level, i.e. using gene symbols, there are duplicated miRNA–mRNA
causal interactions. For each set of duplicated interactions, we keep
only the interaction with the highest causal effect. As a result, we
obtain 975 unique direct miRNA–mRNA causal regulatory relation-
ships which involve 44 miRNAs and 493 unique mRNAs for EMT
(details in Supplementary material 4).

Given that the miR-200 family is closely associated with epithe-
lial to mesenchymal transition, we focus the exploration on direct
causal regulatory relationships of the miR-200 family. As shown in
Fig. 5 (red bold-faced line), the results indicate that ZEB1 is caus-
ally co-regulated by miR-200b, miR-200c and miR-429, and ZEB2
is co-regulated by miR-141, miR-200a, miR-200b, miR-200c and
miR-429. Previous research [47–50] has shown that the miR-200
family inhibits the initiating step of metastasis and EMT by target-
ing the E-cadherin transcriptional repressors ZEB1 and ZEB2. The
expression and inhibition of the miR-200 family causally
iRNAs in the EMT dataset that are used in the validation. N1 and N2 are the top 10 and
ly. Since those miRNA–mRNA interactions with Lasso’s correlation coefficient of 0 are
and x2 denote the number of validated miRNA–mRNA interactions of each method in

0 and Top 20 cases, respectively.

N1ðN2Þ x1ðx2Þ p1ðp2Þ

440(880) 17(28) 6.9965E�07(1.2481E�08)
440(880) 18(26) 1.4307E�07(1.7550E�07)
296(394) 7(8) 0.0186(0.0276)
440(880) 15(27) 1.3931E�05(4.7719E�08)
440(880) 13(24) 2.1248E�04(2.1025E�06)
440(880) 4(12) 0.5616(0.1042)

A causal regulatory relationships in heterogeneous data. J Biomed Inform
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Fig. 5. Direct causal regulatory relationships of the miR-200 family (miR-141, miR-200a, miR-200b, miR-200c and miR-429). Red circles denote miRNAs and green circles are
mRNAs. Red bold-faced lines are experimentally confirmed interactions. All of the nodes in the confirmed interactions are EMT bio-markers. They are the miR-200 family,
ZEB1 and ZEB2. The miR-200 family that regulates ZEB1 and ZEB2 for EMT has been confirmed by literature. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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determine the regulation types of ZEB1 and ZEB2. The discoveries
using DirectTarget are consistent with these results in the
literature. Furthermore, ZEB1 and ZEB2 as bio-markers are also
confirmed by our findings. The two mRNAs causally regulated by
the miR-200 family are the markers in all three subtypes of EMT
[51].

3.4. Functional validation of mRNAs for EMT

As the results are generated based on the EMT datasets, we
extract the significant direct miRNA–mRNA causal regulatory rela-
tionships with the median of the causal effect (absolute) values as
the cutoff, and validate those mRNAs as target genes for EMT. The
functions of the target genes and the molecular pathways they
potentially constitute are performed with the Ingenuity Pathway
Analysis (IPA, Ingenuity Systems, www.ingenuity.com). Significant
biological functions are identified for the target genes with a p-
value cutoff of 0.05.

The causally regulated target genes are significantly enriched
for several biological functions. The top five biological functions
from IPA that are crucial for EMT are cancer, reproductive system
disease, endocrine system disorders, cellular movement and der-
matological diseases and conditions. Especially, the sub-categories
of cellular movement, migration, invasion and scattering are criti-
cal for EMT since they have been identified as the functional mark-
ers of EMT in vitro [52]. As illustrated in Table 2 (details in
Supplementary material 5), a significant number of target genes
are associated with migration and invasion biological functions
at significant level (max p-value < 0.05) and they are functional
bio-markers for EMT.

3.5. Exploring causal feedforward patterns of TF–miRNA–mRNA

Great efforts have been made in investigating how miRNAs act
in regulating target genes and their roles in various biological
Please cite this article in press as: Zhang J et al. Identifying direct miRNA–mRN
(2014), http://dx.doi.org/10.1016/j.jbi.2014.08.005
conditions. However, we have seen relatively few research into
how miRNAs are regulated by TFs (TF–miRNA regulation). In fact,
the genes with more TF-binding sites have a higher probability of
being targeted by miRNAs and have more miRNA-binding sites
on average, indicating that miRNAs and TFs may collaborate to reg-
ulate gene expression [53]. Therefore in this paper, we also exam-
ine the causal feedforward patterns (CFFPs) of TF–miRNA–mRNA in
order to get insights into the indirect TF–mRNA regulation as a
result of direct TF–miRNA and miRNA–mRNA causal interactions.

To explore the CFFPs, we only retain the direct TF–miRNA and
miRNA–mRNA causal interactions with high absolute values of
causal effects. We also use the median of the absolute values of
the causal effects of all indirect TF–mRNA relationships as the cut-
off to get significant CFFPs of TF–miRNA–mRNA. In total 1188 sig-
nificant CFFPs of TF–miRNA–mRNA are selected, which involve 8
unique TFs, 29 miRNAs and 317 unique mRNAs for EMT (details
in Supplementary material 6).

We focus on the significant CFFPs of TF–miRNA–mRNA that
involve the miR-200 family (miR-141, miR-200a, miR-200b, miR-
200c and miR-429) because some causal relationships in this cate-
gory have been validated. As shown in Fig. 6, transcription factor
ZEB2 can also directly regulate miR-200a, miR-200b and miR-429
(red bold-faced line). This implies that ZEB2 and the miR-200 family
are reciprocally linked in a feedback loop, each one strictly control-
ling the other. This result is consistent with previous reports that a
ZEB/miR-200 feedback loop plays a role in regulating EMT and can-
cer invasion [48,54]. Another transcriptional factor associated with
EMT is SNAI2 (SLUG), and it plays an important role in EMT events
during development, cancer and fibrosis [55]. Our results infer that
SNAI2 directly regulates the miR-200 family transcript (red
bold-faced line in Fig. 6). This discovery is consistent with the
known discovery that SNAI2 regulates the miR-200 family [56].

We have also confirmed an observation that when the direct
regulation of both TF–miRNA and miRNA–mRNA are up-regulation
(positive causal effects) or down-regulation (negative causal
A causal regulatory relationships in heterogeneous data. J Biomed Inform
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Table 2
Identified target genes that are significantly involved in Migration and Invasion biological functions and are functional bio-markers of EMT. The results are generated by IPA.

Functions Molecules #Molecules Min p-value Max p-value

Migration ABL1, ACTR3, AGK, AKT3, ANPEP, AREG, ARHGAP8, CD9, CMTM8, CST6, CTSC, CTSL1, CTSL2, DAB2, DDR1,
DLC1, EFNA1, EFNB3, ELK3, EPB41L5, EPHA1, EPHB3, ERBB2, ERBB3, ESRRA, ETV5, F2RL1, FLNA, FN1, FOLR1,
FOXA1, GALNT2, GIT2, GNAI2, GNAS, GRB7, GRHL2, HAMP, IL17RB, ITGA5, ITGB4, JUP, KLF5, KLK3, KLK6,
KRT6A, KRT8, LAMA3, LCN2, LIMA1, MCAM, MCF2L, MIEN1, MSN, MSX2, MYLK, MYLK3, NCOA3, NFIA, NINJ1,
NMU, NOTCH4, PARD6B, PDCD4, PIK3C2B, PLXNB1, PRKCZ, PRKD1, PTPRM, RAP1GAP, REPS2, RLN2, RTN4,
S100A14, S100B, S100P, SCHIP1, SCNN1A, SERPINB5, SGPP1, SLC37A4, SLC3A2, SLFN12L, SPAG9, SPDEF,
SPG20, SREBF1, TACSTD2, TIMP1, TLN1, TNFRSF10A, TNFSF13, TNFSF13B, TNS4, TPT1, TRAF4, TUBA1A,
TUBB2B, VIL1, VIM, ZEB1, ZEB2, ZFYVE21

103 2.41E�08 2.70E�03

Invasion ABL1, AKT3, ANPEP, AREG, CD9, CLDN3, CMTM8, CST6, CTNND1, CTSL1, CTSL2, DAB2, DLC1, EFNA1, EFNB3,
ELF3, ERBB2, ERBB3, ETV5, FLNA, FN1, GALNT2, GNAI2, GNAS, HIPK2, ITGA5, ITGB4, JUP, KLK3, KLK6, LCN2,
MCAM, MIEN1, MSX2, MYLK, NCOA3, OTUB1, PDCD4, PLEKHG6, PLXNB1, RAP1GAP, S100A14, S100P,
SERPINB5, SPDEF, ST14, TFF3, TIMP1, TNS4, VIM, ZEB1, ZEB2

52 5.56E�08 1.54E�03

Fig. 6. Significant CFFPs of TF–miRNA–mRNA involving the miR-200 family (miR-141, miR-200a, miR-200b, miR-200c and miR-429). Yellow circles denote TFs, red circles
denote miRNAs and green circles represent mRNAs. Red bold-faced lines are experimentally confirmed interactions. All of the nodes in the confirmed interactions are EMT
bio-markers. ZEB2 and SNAI2 (SLUG) directly regulate the miR-200 family transcript, and ETS1 plays a crucial role in the process of EMT. These findings have been confirmed
by literature. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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effects), the indirect regulation of TF–mRNA shows as up-
regulation. Meanwhile, when the direct regulation of TF–miRNA
is different from the regulation type of miRNA–mRNA, the indirect
regulation of TF–mRNA shows as down-regulation. The consistency
of the occurrences is up to 100% when the median of causal effect
(absolute) values is used as the cutoff when selecting indirect
TF–mRNA relationships for examination. Even when considering
all indirect TF–mRNA causal relationships the consistency is up to
95.58% (details in Supplementary material 6). The results
demonstrate that we can infer indirect regulation types of
TF–mRNA using direct regulation types of TF–miRNA and miRNA–
mRNA.
Please cite this article in press as: Zhang J et al. Identifying direct miRNA–mRN
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4. Conclusions and discussions

miRNAs are important gene regulators at the post-transcrip-
tional level. However, it is still very challenging to achieve accurate
prediction of the regulatory relationships between miRNAs and
their target genes. In this paper, we have proposed a causal discov-
ery based framework (DirectTarget) to identify the direct causal
relationships between miRNAs and mRNAs. DirectTarget utilises
both gene expression data and the target information predicted
based on sequence data. The computational results of DirectTarget
have been validated to be effective with experimentally confirmed
target databases.
A causal regulatory relationships in heterogeneous data. J Biomed Inform
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Most existing computational methods can only discover from
observational data the statistical relationships between miRNAs
and mRNAs, neglecting the causal nature of gene regulatory rela-
tionships. The recent work in [27] has adapted the idea of causal
discovery for identifying causal regulatory relationships between
miRNAs and mRNAs. However, the method is not able to
distinguish direct causal regulatory relationships from indirect
ones, while knowing whether a possible regulatory relationship
is direct or indirect is essential for biologists when setting up lab
experiments. On the other hand, miRNA target prediction based
on sequence data is expected to provide the evidence of direct reg-
ulation of miRNAs on mRNA, but most target prediction methods
based on sequence data have high false discovery rates and output
too many possible targets, which makes the results less valuable in
experiment design.

In this paper, we exploit the advantages of the causal discovery
approach and sequence data based target prediction. DirectTarget
firstly uses causal discovery to identify causal regulatory relation-
ships between miRNAs and mRNAs with high accuracy, then we
use predicted target information to guide the selection of direct
regulatory relationships from the causal relationships identified
in the first step. When applying DirectTarget to the EMT datasets,
the validation results indicate that DirectTarget can effectively
infer the direct causal relationships between miRNAs and their
target genes. Moreover, the functional validations of the causally
regulated target genes show that a significant number of target
genes are highly associated with EMT. The experimental valida-
tions show that DirectTarget can be a useful tool to assist the
experimental design for gene regulatory studies. Apart from the
experimentally confirmed miRNA–mRNA relationships, the results
generated by DirectTarget for other miRNAs still need further
research and follow-up experiments.

Several methods [57–59] have been proposed to infer the regu-
latory relationships involving the three components, miRNAs, TFs,
and mRNAs. However, to the best of our knowledge, there is no
study specifically examining the direct causal regulatory relation-
ships of TF–miRNA and miRNA–mRNA simultaneously and how
these two types of direct regulatory relationships are connected.
As a first attempt to this challenging problem, in this paper, we
have also applied DirectTarget to explore the causal feedforward
patterns of TF–miRNA–mRNA. The results show that TFs can indi-
rectly regulate their target genes by directly regulating miRNAs.

DirectTarget provides a means to identify direct miRNA–mRNA
causal regulatory relationships in heterogeneous data. The method
is based on causality discovery and thus is different from existing
correlation/association based approaches. As gene regulatory rela-
tionships are causal relationships, theoretically, DirectTarget is
designed to return a correct set of miRNA–mRNA interactions
when the number of samples is large. However, the large sample
size requirement is often violated in real world datasets, and there-
fore the predictive power of DirectTarget is decreased.

The experimental results show that DirectTarget demonstrates
some advantages over the other existing methods. Note that the
validation results are based on currently available experimentally
confirmed miRNA targets which are still far from complete. More-
over, each method discovered a unique set of validated interactions
that other methods failed to identify, indicating that DirectTarget
and other existing methods have their own merits in predicting
miRNA targets.

In the future, we plan to tackle the small sample problem by
integrating domain knowledge in causal structure learning. In this
way, we may reduce the false identification of edges in a causal
Bayesian network introduced by conditional independence tests
with a small number of samples. The improved causal network will
help achieve more accurate estimation of causal effects. We also
plan to evaluate the performance of DirectTarget and other existing
Please cite this article in press as: Zhang J et al. Identifying direct miRNA–mRN
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methods on larger cancer datasets from The Cancer Genome Atlas
(TCGA, https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp), where
the number of samples for each cancer type is larger than what
we used in this paper and the causality discovery based method will
have more advantages than other methods.

Based on the results of this paper, nonetheless DirectTarget is a
promising and complementary alternative to other existing meth-
ods for discovering target genes of miRNAs. In the future, we will
further improve the computational efficiency of the method, and
use more comprehensive miRNA target binding information to
identify direct miRNA–mRNA causal regulatory relationships. Fur-
thermore since many diseases are more likely caused by the effects
of several miRNAs rather than a single miRNA [60], it is useful to
infer the miRNAs synergistic effects and investigate gene regulation
mechanisms at a system-wide level in the miRNA–miRNA synergis-
tic networks. In the future we will construct miRNA–miRNA syner-
gistic causal networks that reflect the co-regulation of miRNAs.
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