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Abstract

The identification of miRNAs and their target mRNAs and the con-
struction of their regulatory networks may give new insights to biological
procedures. This study proposes a computational method to discover the
functional miRNA-mRNA regulatory modules (FMRMs), that is, groups
of miRNAs and their target mRNAs that are believed to participate coop-
eratively in post-transcriptional gene regulation under specific conditions.
The proposed method identifies negatively regulated patterns of miRNAs
and mRNAs which associate with cancer and normal conditions respec-
tively in a prostate cancer data set. GO and the literature also suggest
that they may relate with prostate cancer. It can potentially identify the
biologically relevant chains of 'miRNA — target gene — condition’.

1 Introduction

MicroRNAs (miRNAs) are a group of single-stranded, non-coding RNAs with
"21-23 nucleotides in length. The mature miRNAs are cleaved from 70-110
nucleotide ’hairpin’ like precursors with a double-stranded region containing
one or more single-stranded loops [1]. miRNAs target protein coding mRNAs
through complementary base-pairing for cleavage, repressing translation and
causing protein degradation [2, 3]. Since the first miRNA, lin-/, was discovered
in 1993, hundreds of miRNAs have been identified and sequenced in plants,
animals, and viruses [4, 5]. As a group, miRNAs may directly regulate at least
30% of the genes in the human genome [6].

Increasing number of evidences suggest that miRNAs play important roles
in cell differentiation, proliferation, growth, mobility, and apoptosis [7, 8, 9].
miRNAs negatively regulate their target mRNAs [10], and act as rheostats to
make fine-scale adjustments to protein output [11]. Consequently, misregulation



of miRNA function may lead to human diseases, including cancers [12]. Recent
studies have reported differentially regulated miRNAs in diverse cancer types
such as breast cancer [13], lung cancer [14], prostate cancer [15], colon cancer
[16] and ovarian cancer [17]. Thus, identifying miRNAs and their target mR-
NAs, and further building their regulatory networks may give new insights to
biological procedures.

Several computational methods have been proposed for miRNA studies. Pre-
vious works largely focus on the genome-wide discovery of miRNAs [5] and
prediction of putative target mRNAs [18]. For comprehensive reviews of these
methods, we should like to refer readers to works of Zhang et al.[19] and Yoon
et al. [20]. These methods have identified a large number of miRNAs and their
target genes. For example, miRBase has deposited 5071 miRNAs and their
target genes from 58 species [21] up to date.

An open question is how miRNAs associate with different conditions by reg-
ulating their bona fide target mRNAs. An answer to this question may also
solve several problems in miRNA research. First, most target prediction meth-
ods search different parts of the miRNA-target space heuristically with different
criteria [22]. They usually have very different results as Praveen et al. showed
in their work [22]. However, only a small number of predicted miRNA-target
interactions have been validated by interventional experiments in the laboratory
[22]. Second, the computational algorithms used to predicate miRNA targets
have limited accuracy. The complementarity between miRNAs and the bind-
ing sites of their target mRNAs is usually not long enough to be statistically
significant. Again, there are relatively few miRNA targets which have experi-
mental supports [22]. miRNAs and the predicted target mRNAs simply relying
on the sequence complementarity may not be biologically relevant. Therefore,
empirical methods are in need to find out true miRNA targets and reduce the
false discovery rate. Third, according to the biological observation, multiple
miRNAs regulate one message and one miRNA may have several target genes
conversely [23]. It reflects that multiple miRNAs control the translation coop-
eratively, while single miRNA may involve several regulatory networks. This
multiplicity of targets and cooperative signal integration on target genes are
key features of the control of translation by miRNAs [24]. Thus, the discovery
of the functional regulation networks which associate miRNAs and their target
mRNAs with conditions is crucial for understanding the regulatory mechanism
of miRNAs in complex cellular systems. It also will help depict the regulatory
pathways of 'miRNA — target gene — condition’.

Some related works have been done previously at different levels. Yoon et
al. [25] proposed a prediction method for miRNA regulatory modules (MRMs)
at the sequence level. Their method is based on an observation that the binding
strength of miRNAs and target mRNAs is modest and similar when multiple
binding sites exist on a target. Predictions based on sequence only may lead to
high false discovery rates. More precise predictions need more information like
expression profiles.

Huang et al. [26] and Joung et al. [27] integrate both sequence information
and expression profiles of miRNAs and mRNAs to identify the relevant miRNA-



mRNA pairs. The integrated approaches potentially reduce false discovery rate
and facilitate the interventional experiments to validate the bona fide targets of
miRNAs. Huang et al. [26] adopted Bayesian networks to model the regulatory
mechanism of miRNAs. They found the miRNA target pairs through multiple
tissues with relatively low false discovery rate. Joung et al. [27] utilized a bi-
clustering approach to discover MRMs. The binding strength between miRNAs
and mRNAs based on complementary base pairing as well as their expression
profiles across various conditions are taken into account. They demonstrated
that utilizing diverse resources including sequence information and expression
profiles of miRNAs and mRNAs can achieve better prediction.

Unlike previous works as discussed above, this work identifies miRNAs and
mRNAs regulatory modules within differentiated conditions. Specifically, this
study proposes a computational method to discover the functional miRNA-
mRNA regulation modules (FMRMs), that is, groups of miRNAs and their tar-
get mRNAs which are believed to participate cooperatively in post-transcriptional
gene regulation under specific conditions, prostate cancer for example. The con-
cept of FMRMs is an extension of MRMs introduced by Yoon et al. [25] but
distinct from their works by associating MRMs with conditions. Many miRNAs
have unique tissue-specific or developmental expression patterns such that each
human tissue characterized by a specific set of miRNAs that may form a defining
characteristic of that tissue [28]. Also, a large number of researches [29, 30] have
suggested that the expression patterns of miRNAs are highly distinct in different
tissues and cancers. We intend to discover the group of miRNA-mRNA target
pairs which associate with certain condition, like prostate cancer and normal
condition demonstrated in our study. It involves how each miRNA-mRNA pair
expresses in certain modules besides the simple target. It is not general target
prediction like many other researches (Huang et al., 2006 [26]). By associating
the miRNA-mRNA modules with conditions in the model may help identify the
functional groups which are involved in conditions directly, thus to reduce the
false discovery rate of target prediction as well as to build the miRNA-mRNA
regulatory networks.

2 Method

The goal of this study is to discover biologically relevant targets of miRNAs,
and further to identify FMRMs for conditions with computational methods. It
makes use of computationally predicted miRNA target information and corre-
sponding expression profiles. The integration of expression information of miR-
NAs and mRNAs with their target information may discover the biologically
relevant miRNA-mRNA duplexes. It can further identify functional miRNA-
mRNA regulatory networks. The target information derived from sequence
complementary base-pairing between miRNAs and mRNAs defines their puta-
tive networks. According to the biological observation that miRNAs negatively
regulate their target mRNAs, their expression profile then will be applied to
discover the condition related miRNA-mRNA modules within the putative net-



works. Thus, this problem can be divided into two sub-problems: i) to discover
all the putative networks given the target information of miRNAs and mRNAs;
ii) to derive FMRMs on expression data given the putative networks.

2.1 Modeling of the problem

Given the target information of miRNA, the relation between miRNAs and
their targeted genes can be defined by a bipartite graph. Let S be a set of
miRNAs and T a set of target mRNAs. The targeting relation is a bipartite
graph G = (5,T, E) with the edge set E = {(s,t)| miRNA s € S binds target
t € T} [25]. We further define the putative networks with at least m miRNAs
and n mRNAs by a set of maximal bicliques G, .

Definition 1: Putative networks G, , = {U,V, E'}, where U C S and |U| >
m, V CT and |V| > n, and E' C E are a set of maximal bicliques in G. They
are subgraphs derived from G where miRNAs are fully connected with mRNAs.
The numbers of miRNAs and mRNAs are no less than m and n respectively.

Given a bipartite graph derived from the target information between miR-
NAs and mRNAs, the solution for the first problem is to enumerate the maximal
bicliques in which the numbers of the vertices from two sets are no less than m
and n. Each maximal biclique consists of two sets of vertices U and V', denoting
miRNAs and mRNAs respectively. They exhibit a full connectivity between
vertex groups.

According to the biological observation that miRNAs negatively regulate
their target genes, the second problem is to discover the co-regulated miRNA
and mRNA groups on their expression data within each putative network.

Let PS and PT be the expression profiles of miRNAs and target mRNAs
respectively. Both are profiled from L samples under K conditions C' = {¢;|¢; €
(c1,¢2,---ci)}. If the data sets are about two states of samples, then K = 2.
For example ¢; refers to normal, and ¢, to cancer tissues. P° can be denoted as
a matrix in the size of L x |S| where the rows are samples and the columns are
miRNAs. Correspondingly, PT is denoted as a L x |T| matrix where the rows
are samples and columns are mRNAs. Now we can define FMRM on expression
profiles given the putative networks.

Definition 2: Functional miRNA-mRNA regulatory module (FMRM) G%
is subgraph of G,,, associating with condition ¢;,¢; € (c1,c¢o,---cx) where
the expressions of mRNAs and miRNAs are negatively regulated. That is,
Gt = {U',V',E"}, where U’ C U, V' C V, E” C E’, and U’ negatively
regulates V' associating with condition c¢;.

From the view of association rule mining [31], the second problem can be
related with discovering the associations between conditions and miRNA-mRNA
duplexes on their expression profiles. Association rule mining is a data mining
technique to discover the frequent items that occur together frequently in a
database. Given putative networks, the frequent items denoted by miRNAs
and mRNAs with opposite patterns on expression profiles could be biologically
relevant miRNA-mRNA modules. They potentially participate same biological
process leading to the condition, cancer for example.



Ezample 1: Given G is a targeting relation between miRNAs {s1, $2, 83, $4}
and mRNAs {¢1, 92, 93,94, 95,96} (Figure 1 (a)), its putative networks with
m > 2 and n > 2 are maximal bicliques denoted by miRNAs-mRNAs pairs
{(s1,52), (91,93, 95)}, {(52,84), (92, 93, 96) }, { (51, 82, 83), (93, 95)}, and {(s3, 54), (93, 94) }
(Figure 1 (b)). Each maximal biclique defines a sub-data set from expression
profiles of miRNA and mRNA. We further categorize their expression values to
up-regulation and down-regulation, denoted by ’T” and ’|’ respectively. It al-
lows frequent itemset mining to discover the association between miRNA-mRNA
duplexes and conditions on the reduced expression data sets. We are only in-
terested in the association that miRNAs and mRNAs have opposite expression
patterns. Suppose that from the sub-data set defined by the first maximal bi-
clique {(s1,s2), (g1, 93,95)} in Figure 1 (b), if frequent itemset mining discovers
that the frequent itemset {s; |,s2 [, g1 1,95 T} associates with cancer, we can
construct relation {(s1,s2) |, (g1,95) 1= cancer} (Figure 2 (a) top panel). It
suggests that miRNA s; and so target mRNA ¢; and g5. The down-regulation
of s; and sy potentially leads to the up-regulation of their targets g; and gs.
As a group, this regulation associates with cancer. Similarly, suppose associ-
ations discovered on expression profiles for other three maximal bicliques are
{s2 1,96 1= cancer}, {s1 |,(g3,95) 1= cancer and s3 |,gs 1= cancer}, and
{s3 |,g4 1= cancer}. Finally, the individual patterns discovered from each
putative network can be merged in terms of the common patterns of miRNAs
and mRNAs, that is, the similar regulation of miRNAs and mRNAs. Thus, the
functional regulatory module of miRNAs and their target mRNAs associating
with cancer can be discovered (Figure 2 (b)).

3 Results

This method makes use of both miRNA target information and expression pro-
files of miRNAs and mRNAs. miRNA target information gives the basic relation
between miRNAs and mRNAs. FMRMs are discovered on expression profiles
given the putative networks which are derived from the target information. We
tested this method with the public data including the miRNA target information
and expression profiles.

3.1 Preparation of the data set

Several algorithms can predict miRNAs target mRNAs [22]. To demonstrate
this method, we used the miRBase Targets Version 5.0 [21].

Expression profiles of miRNAs and mRNAs are extracted from an experi-
ment conducted by Lu et al. [29]. We used 12 prostate samples where 6 samples
were from cancer tissues and the other 6 samples were from normal tissues. We
are interested in the functional miRNA-mRNA regulatory modules which are
associated with conditions, cancer and normal in this case. Differentially ex-
pressed miRNAs and mRNAs are identified first for FMRM discovery. Among
217 miRNAs and 16063 mRNAs from the 12 samples, 159 miRNAs and 780
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Figure 1: An Example of the bipartite graph and all its possible maximal
bicliques with the number of nodes of both sides no less than 2. (a) A
bipartite graph showing the putative targeting constructed by complementary
base-pairing of miRNAs and mRNAs; (b) maximal bicliques with m > 2 and
n > 2 of the putative networks in (a).

mRNAs are identified as differentially expressed with p-value< 0.05 (see the
additional file 1). Of these, 94 miRNAs and 152 mRNAs are linked together in
miRBase. They constitute 623 binding pairs which were used in our experiments
(see the additional file 2).

In order to integrate the expression profiles of miRNAs and mRNAs, we fur-
ther categorized their expression values into up-regulation and down-regulation
by discretization. The mean of miRNA(mRNA) expression values across the
samples is the cutoff for each miRNA(mRNA). Values greater than the mean
are categorized to up-regulation, otherwise down-regulation. It allows to com-
bine expression profiles of miRNAs and mRNAs together and discover their
regulatory pattern with association rule mining methods.
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Figure 2: Example of FMRMs. (a) Association patterns discovered on exprssion
profiles for each putative network. (b) FMRM associated with cancer can be
identified by merging the redundant patterns. The down-regulation of sy, s2,
and ss (colored in green) potentially leads to the up-regulation of their targets
91, 93, 94, g5, and gg (colored in red). As a group, this regulation associates
with cancer.

Module \#miRNA-mRNA pairs #miRNAs #mRNAs

Cancer module 158 69 39
Normal module 166 60 38

Table 1: Numbers of miRNAs, mRNAs, and miRNA-mRNA pairs in Discovered
FMRMs. General down-regulation of miRNAs and up-regulation of mRNAs are
showed in cancer module, while the opposite regulation patters are discovered
in normal module. Details in the additional file 3.

3.2 Discovery of FMRMs

In this test, 158 putative networks are identified. Association are further dis-
covered on expression profiles within each putative network. After pruning
the redundant relations, there are 158 pairs of miRNAs and mRNAs associ-
ating with cancer, and 166 pairs associating with normal (Table 1). A large
amount of mMiIRNA-mRNA pairs from cancer and normal modules are common
but with opposite regulation patterns corresponding to cancer and normal re-
spectively. Of these, miRNAs show down-regulation while their target mRNAs
are up-regulated in the prostate cancer modules. On the contrary, miRNAs are
up-regulated while their target mRNAs are down-regulated in normal modules
in general.



miRNAs \ Targeted mRNAs p-Value

. MRPS16, C12orfi1, BCAM, ABHDI12,
hsa-miR-107 | 11y ieop PTXS, APOBECSB 1.80e-04
_ SLC12A46, MSTIR, ABHD12, CHKD,
hsa-miR-2/4 PROC, DDX56, PVRL2 1.90e-04

Table 2: miRNA targets in the cancer module queried from g:Profiler. The
targeted genes discovered are highlighted.

3.3 Demonstration of negative correlation

We expect the miRNA-mRNA pairs identified in FMRMS are negatively corre-
lated, thus we calculated the Pearson’s correlation coefficients between miRNAs
and mRNAs identified in the modules. It is supposed that the miRNAs neg-
atively correlate with their target mRNAs on the expression profiles, while no
correlation if there is no regulation between them. To compare with them,
we also calculated the correlation of random miRNA-mRNA pairs. As dis-
played in Figure 3, the correlation coefficient of random pairs distribute around
0 randomly, while the identified pairs in cancer and normal modules are largely
different from it. The t-test shows the difference with p-values at 6.64 x 10~4°
for cancer module and 6.91 x 10~°! for normal module. Furthermore, we esti-
mated the distribution of mean of correlation of random modules by sampling
miRNA-mRNA pairs randomly for 10000 times. The mean of the correlation
is largely around 0 to 0.05, while those of cancer and normal modules are less
than -0.5 (Figure 4). It clearly shows that the pairs identified in the FMRMs
are largely negatively correlated in both modules.

3.4 Validation with Gene Ontology

To validate the FMRMSs discovered by this method, we queried the Gene Ontol-
ogy the identified genes of FMRMSs by g:Profiler [32] and GO::TermFinder [33]
for annotation. They are tools to find common high-level knowledge including
pathways, biological processes, molecular functions, and subcellular localiza-
tions accompanied by statistical significance to the list of given genes. They
derive the annotations from several databases including Gene Ontology [34].

From the cancer module, it suggests that hsa-miR-107 targets MRPS16,
C12orf11, BCAM, ABHD12, and FAM82B. hsa-miR-2/j targets SLC12A6, MST1R,
ABHD12, and CHKB. They are largely consistent with the query results of
g:Profiler (Table 2). Similarly, the target pairs of normal modules are also con-
sistent with the query results at significant levels (Table 3).

In addition, we queried the genes in the modules with GO::TermFinder to
find significantly over-expressed GO terms. From both cancer and normal mod-
ules, it consistently shows that NAB2 and LSM?7 participate in mRNA process-
ing and mRNA metabolic process (Table 4) while they display opposite regula-
tion patterns in different modules (up-regulation in cancer and down-regulation
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Figure 3: Comparison of correlation of miRNA-mRNA pairs. Correlation of
miRNAs-mRNAs identified in cancer module (top-left) and normal module
(bottom-left) are colored in red, while that of random pairs are colored in
blue. The corresponding distributions are given at the right sides. It shows
the miRNA-mRNA paris identified in both modules are largerly negatively
correlated. They are differentiated from the random pairs with p-value at
6.64e — 45 for cancer module and 6.91e — 51 for normal module.

in normal). It suggests that NAB2 and LSM7 targeted by miRNAs identified
in FMRMs may participate in the mRNA metabolism which is very important
to tumor development.

3.5 Supports from the literature

Further supports from the literature indicate that NA B2 functions together with
another gene to modulate mRNA stability and strengthen a model where nuclear
events are coupled to the control of mRNA turnover in the cytoplasm [35]. In
addition, LSM7 has been reported a role in mRNA degradation [36]. They are
targeted by a group of miRNAs in our FMRMs. Given the regulation roles of
miRNAs, NAB2 and LSM7 may be two of the genes triggered by miRNAs and
function in mRNA degradation.

Several evidences suggest that many miRNAs in the identified FMRMs may
be related with cancers. Among the miRNAs which target NAB2 and LSM7
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Figure 4: Distribution of the mean of the correlation of randomly chosen
miRNA-mRNA modules. It was estimated by 10000 random sampling of
modules including 160 miRNA-mRNA pairs.

miRNAs \ Targeted mRNAs p-Value
hsa-miR-10a iﬁjggji j?,] A%ff ’ ﬁgggg C19orf10, 1.78¢-04
it | DS A MU O

Table 3: miRNA targets in the normal module queried from g:Profiler. The
targeted genes discovered are highlighted.

in FMRMs, hsa-miR-15a and hsa-miR-16 have been strongly suggested the in-
volvement of human cancers, including prostate cancer. They are frequently
deleted or down-regulated in prostate cancer as well as other cancers [37, 38].
Our FMRMs display that hsa-miR-15a and hsa-miR-16 have the consistent
down-regulation patterns with these studies. In addition, it suggests that let-7
family members may act as tumor suppressors [39]. In the discovered FM-
RMs, let-7a, let-7c, let-7d, let-Te, let-Tf, let-7g, and let-7i show general down-
regulation in cancer module, but up-regulation in normal module, suggesting
that they play important roles in prostate cancer as well.

Several genes targeted by miRNAs in FMRMs may related with cancers.
Oncogene PIM3, one of targets of hsa-miR-15a identified in FMRMSs, belongs
to a family of protooncogenes. It has been reported that PIM3 was detected
to be expressed in human pancreatic cancer tissue and pancreatic cancer cell
lines, but not in normal tissue [40]. It is mapped to chromosome 22q where
recently received great interest for prostate cancer. It has been shown that
this region is related with prostate cancer [41]. Our modules suggest that hsa-

10



Annotated Genes \ Item Value

GO ID G0:0006397
Term mRNA processing
p-value 0.01573
NAB2 Genome frequency of use 151 out of 7150 genes
LSM7 GO ID G0:0016071
Term mRNA metabolism
p-value 0.03118
Genome frequency of use 213 out of 7150 genes

Table 4: Enriched GO terms. Significantly over-expressed GO terms are mRNA
processing and mRNA metabolism. Given the regulation roles of miRNAs,
NAB2 and LSM7 may be two of the genes triggered by miRNAs and function
in mRNA degradation.

miR-15a targets PIMS3 and their dysregulation may associate with prostate
cancer. Similarly, JUNB, one of the genes identified in the FMRMs shows up-
regulation in cancer but down-regulation in normal. It has been identified as a
key transcriptional regulator of myelopoiesis and a potential tumor suppressor
gene [42]. In addition, FAT, another identified gene in the FMRMs, encodes a
tumor suppressor gene. Its recessive mutations lead to hyperplastic overgrowth
of the imaginal discs, indicating that contact-dependent cell interactions may
play an important role in regulating growth [43]. These genes are identified in
FMRMs by our method, suggesting they may associate with prostate cancer.

4 Discussion

miRNAs comprise one of abundant classes of gene regulatory molecules in mul-
ticellular organisms. They potentially influence the output of many protein-
coding genes by binding to and inhibiting mRNAs. Increasing number of ev-
idences suggest that miRNAs have critical roles in diseases including cancers.
Computational methods modeling miRNA-mRNA regulatory modules will help
understand the complex biological procedures.

Many models have been proposed to predict miRNA-mRNA regulatory mod-
ules. Yoon et al. [25], Huang et al. [26], and Joung et al. [27] proposed models
at different levels for prediction. Based on different biological observation, their
models are either on sequence level or integration of sequence and expression
profiles of miRNAs and mRNAs. Among them, Huang et al. [26] and Joung
et al. [27] demonstrated that utilizing diverse resources including sequence and
expression profiles of miRNAs and mRNAs can achieve better prediction.

The method proposed in this study goes further by associating the condi-
tions with miRNA-mRNA regulatory modules. The FMRMs defined in this
work consist of miRNAs, target mRNAs, and associated conditions, cancer and
normal in the demonstrated case. The miRNAs and mRNAs identified in FM-

11



RMs show many meaningful discoveries supported by GO and the literature. By
associating the miRNA-mRNA pairs with conditions, the method may eventu-
ally identify the regulatory networks of 'miRNA — target gene — condition’.
It will bring new chance to the treatment for genetic diseases, such as cancer.

This method is independent of sequence target information and expression
profiles. It is possible to refine the FMRMs with the continued update of target
information. It also can be applied to different expression profiles when they
are available.

5 Conclusions

We proposed a computational method for identifying functional regulatory miRNA-
mRNA modules using predicted miRNA targets as well as expression profiles
of miRNAs and mRNAs. It incorporates heterogeneous information to discover
the biologically relevant miRNA-mRNA groups. The FMRMSs identified in this
study include the negatively correlated miRNA-mRNA pairs which associate
with prostate cancer and normal condition. They display many meaningful dis-
coveries supported by GO and the literature. By associating miRNA-mRNA
pairs with conditions, it potentially can identify the biologically relevant tar-
gets of miRNAs and chains of 'miRNA — target gene — condition’. It will give
new insight into the biological procedures at the molecular level.

6 Implementation

Differentially expressed miRNAs and mRNAs were identified using the empiri-
cal Bayes approach which ranks genes on a combination of magnitude and con-
sistency of differential expression [44]. miRNAs and mRNAs with p-values less
than 0.05 were identified as differentially expressed. It was analyzed in the freely
available statistical programming and graphics environment R (http://cran.r-
project.org). MICA algorithm [45] was used to enumerate maximal bicliques
which were used to define the putative networks in this method. Cut-off val-
ues for the number of miRNA and mRNA were set at 2. Association between
miRNA-mRNA and conditions were mined using the Apriori algorithm [46].
The minimum support was set at 0.3. Only class association rules were mined
instead of general association rules. It was implemented on Matlab 7.1 with
weka APIT [47].
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BL conceived of the study and carried out the computational experiment. BL,

JYL and AT drafted the manuscript. All authors read and approved the final
manuscript.
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