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ABSTRACT
Motivation: MicroRNAs (miRNAs) are small non-coding RNAs,
that cause mRNA degradation and translational inhibition. They
are important regulators of development and cellular homeostasis
through their control of diverse processes. Recently, great efforts
have been made to elucidate their regulatory mechanism, but the
functions of most miRNAs and their precise regulatory mechanisms
remain elusive. With more and more matched expression profiles
of miRNAs and mRNAs having been made available, it is of great
interest to utilize both expression profiles to discover the functional
regulatory networks of miRNAs and their target mRNAs for potential
biological processes that they may participate in.
Results: We present a probabilistic graphical model to discover
functional miRNA regulatory modules at potential biological levels
by integrating heterogeneous data sets, including expression profiles
of miRNAs and mRNAs, with or without the prior target binding
information. We applied this model to a mouse mammary data set.
It effectively captured several biological process specific modules
involving miRNAs and their target mRNAs. Furthermore, without
using prior target binding information, the identified miRNAs and
mRNAs in each module show a large proportion of overlap with
predicted miRNA target relationships, suggesting that expression
profiles are crucial for both target identification and discovery of
regulatory modules.
Contact: Bing.Liu@unisa.edu.au; Jiuyong.Li@unisa.edu.au

1 INTRODUCTION
MicroRNAs (miRNAs) are non-protein-coding RNAs that are
expressed from longer transcripts encoded in animals, plants,
viruses, and single-celled eukaryotes (Zhao and Srivastava, 2007).
They cause mRNA degradation, translational inhibition, or a
combination of the two by completely or partially complementary
base binding to their target mRNAs (He and Hannon, 2004).

∗To whom correspondence should be addressed

miRNAs are pivotal regulators of development and cellular
homeostasis through their control of diverse processes, including
cell differentiation, proliferation, growth, mobility, and apoptosis
(Du and Zamore, 2007). Consequently, dysregulation of miRNA
functions may lead to diseases. Recent studies have reported
differentially expressed miRNAs in diverse cancer types such
as breast cancer (Iorio et al., 2005), lung cancer (Yanaihara,
2006), prostate cancer (Porkka et al., 2007), colon cancer (Akao
et al., 2007), and ovarian cancer (Yang et al., 2008). Therefore,
the understanding of miRNA is critical in understanding basic
biological processes, elucidating the development and inhibition
of pathogenesis of many diseases, and facilitating biotechnology
projects.

Many computational approaches have been proposed to elucidate
miRNA functions in recent years. We classify these works into
three categories: i) miRNA target prediction (Bentwich et al., 2005;
Griffiths-Jones et al., 2008; Hatzigeorgiou., 2007; Krek et al., 2005),
that is, to identify which mRNAs are targeted by which miRNAs;
ii) discovering miRNA regulatory modules (MRMs), that is, to
identify a group of co-expressed miRNAs and mRNAs, either at
sequence level (Yoon and De Micheli, 2005), or by integrating
sequence and expression profiles of miRNAs and mRNAs (Huang
et al., 2007; Joung et al., 2007; Tran et al., 2008; Peng et al., 2009);
iii) prediction of functional miRNA regulatory modules (FMRMs),
which are regulatory networks of miRNAs and their target miRNAs
for specific biological processes (Joung and Fei, 2009; Liu et al.,
2009a,b).

The identification of FMRMs is critical in understanding
the biological pathways and the development and inhibition of
pathogenesis of many diseases. It also has a great potential for
the development of gene therapeutic treatments and miRNA based
drugs (Croce, 2009).

For FMRM discovery, Liu et al. (Liu et al., 2009a) proposed
a method based on association rule mining. It associates the
reverse expression patterns of miRNAs and mRNAs with biological
conditions. A novel method is further proposed (Liu et al., 2009b)
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using Bayesian Network structure learning. This method was
designed to explore all the possible miRNA regulatory patterns for
biological conditions under the comparative experiment designs.
These two methods are supervised methods where biological
conditions are directly applied to the search for the FMRMs. An
unsupervised method was proposed by Joung and Fei (2009) for
FMRM discovery. It is an innovative application of the author-
topic model (Steyvers et al., 2004) in bioinformatics that makes
use of the expression profiles of mRNAs and the putative miRNA
target information, without considering the expression profiles
of miRNAs. Therefore, the regulatory relationships of miRNAs
and mRNAs are determined largely based on the miRNA target
information which is predicted at the sequence level. Thus, it
encounters difficulties in answering the question of how miRNAs
regulate their target mRNAs in the identified modules.

In recent years, more and more sample matched expression data
having been profiled for multiple classes of conditions or tissues
with both miRNAs and mRNAs, providing the opportunity to
investigate potential FMRMs systematically for various biological
processes by integrating the available data. In addition, some
researchers have suggested that algorithms that do not consider
known targets may avoid biases (Lewis et al., 2003, 2005; Bartel,
2009). Hence, it is of great interest to discover FMRMs with
expression profiles of miRNAs and mRNAs without using target
binding information. Therefore, in this paper, we propose a FMRM
discovery method that integrates heterogeneous data sets, including
expression profiles of both miRNAs and mRNAs, with or without
using the prior target binding information.

Our method is inspired by the Correspondence Latent Dirichlet
Allocation (Corr-LDA) (Blei and Jordan, 2003), a probabilistic
graphical model that has been successfully applied to automatic
image annotation with caption words. Given observations of
image and caption words, Corr-LDA captures the correspondence
between them by modeling topics described by both images and
caption words with latent variables. In our question, FMRMs
are dependent groups of miRNAs and mRNAs linked to latent
functions. Our aim is to capture the correspondence between
miRNAs and mRNAs, assuming that they participate in the same
latent functions. Therefore, we apply the idea of annotating images
with caption words to FMRM discovery by mapping topics to
functional modules, images to miRNAs, and words to mRNAs,
respectively.

In this work, we firstly modify the Corr-LDA and derive
the solution to discover FMRMs. Then, we apply our method
to mouse model expression data sets for human breast cancer
research. The result shows that our model is able to capture several
biologically meaningful modules. Furthermore, without using the
prior target binding information, the identified miRNAs and mRNAs
in each FMRMs show a large proportion of overlap with predicted
miRNA target relationships, suggesting that targets and FMRMs
can be predicted from expression profiles alone, and providing an
independent verification of the underlying strategy.

2 METHODS
We begin with the assumption that functional modules governing miRNA
and mRNA expression, which are associated with a variety of biological
functions, are reflected by the data from microarray experiments. We model

Fig. 1. Generative model of FMRM discovery. Given expression data of
miRNAs and mRNAs of D samples, each sample d is a mixture of random
miRNAs and mRNAs. Each miRNA rd,n and mRNA gd,m are generated
from one of the K latent functional modules, selected by zd,n.

functional modules with latent random variables which act as a bridge
between miRNAs and mRNAs. By inferring the latent variables, we can
identify FMRMs.

2.1 Modeling FMRM discovery
More specifically, we model FMRMs with a probabilistic generative process.
Given theK latent functions presented in the samples, our method considers
miRNAs and mRNAs as observations generated from a probabilistic process
over these K functions. Thus, each sample is a random mixture of miRNAs
and mRNAs associated with K functional modules. By inferring the
probability distributions of the latent variables, we are able to obtain the
probabilities of how samples, miRNAs, and mRNAs are related to functional
modules.

We depict the model in Figure 1 with a plate notation. In this notation,
nodes stand for random variables (observed variables are shaded and latent
ones are unshaded); edges denote conditional dependency between random
variables; and plates denote replications of a substructure with the number
of repetitions given in the bottom corner (either right or left side).

In Figure 1, the D samples were profiled with a set of miRNAs V and
a set of mRNAs T . Random variable rd,n and gd,m denote the indexes
of a miRNA and mRNA expressed in the d-th sample, respectively, with
d ∈ {1, · · · , D}, n ∈ {1, · · · , Nd}, and m ∈ {1, · · · ,Md}. Nd and Md

are the total numbers of times the miRNAs and mRNAs which are expressed
in the d-th sample. Random variable zd,n stands for the latent functional
module associating with the n-th miRNA in the d-th sample. We assume that
zd,n, rd,n, and gd,m all have multinomial distributions with parameters
θd, ϕk , and ωk , respectively. Each parameter has a Dirichlet prior with
hyperparameters α, β, and γ, correspondingly.

Without considering the putative target constraints, the generative
procedure for each sample d can be illustrated by the following hierarchical
sampling process: to generate the d-th sample, i) a latent module zd,n
is drawn from its multinomial distribution θd; ii) then, a miRNA rd,n
is drawn from its multinomial distribution ϕk , given the selected module
zd,n; iii) for each mRNA gd,m, one of the miRNAs, indexed by yd,m, is
selected from Rd = {rd,n} and a corresponding mRNA gd,m is drawn
from its multinomial distribution ωk , conditional upon the same module that
generates the selected miRNA rd,n.

When the constraint of the putative target relationship between miRNAs
and mRNAs is preferred, for each mRNA, one of the miRNAs from the set
of hosting miRNAs of that mRNAs is selected, and a corresponding mRNA
is drawn from the multinomial distribution of mRNAs, conditional upon the
same module that generates the selected miRNA.

From the above generative process, the parameter Θ = {θd} associates
samples with modules, Φ = {ϕk} assigns the probability of miRNAs
expressed in module Z = {zd,n}, and Ω = {ωk} indicates the probability
of mRNAs expressed in Z corresponding to the miRNAs. Therefore, by
estimating Θ, Φ, and Ω, we can identify FMRMs (details in Sections 2.3 to
2.5).
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Under this model, miRNAs can associate with any modules, but mRNAs
may only associate with the modules that produce the miRNAs. In effect,
this model captures the hierarchical notion that miRNAs are generated under
specific FMRMs, and mRNAs are regulated by the miRNAs.

2.2 Data Conversion
In order to apply the above model to the expression profiles of miRNAs and
mRNAs, we convert the expression values to the counts of miRNAs and
mRNAs present in the samples.

Given a microarray experiment profiled D′ samples, similar to Joung and
Fei (2009), we considered that miRNAs and mRNAs have events of their
expression in every sample that are likely to be associated with functional
modules. Therefore, each miRNA or mRNA can be represented as a vector
of variables, {s+1 , s

−
2 , · · · , s

+
D−1, s

−
D}. It corresponds to the expression

events of a miRNA or mRNA in all samples, where duplex {s+2d−1, s
−
2d}

indicates an over- and under- expressed miRNA or mRNA of sample d, d ∈
{1, · · · , D′}, thus, D = 2D′. To get the integer counts (σ2d−1,i, σ2d,i)
for the duplex expression status, we convert the expression value of a miRNA
or mRNA of sample d with,

σ2d−1,i, σ2d,i =

⌈
ε ·
∣∣ed,i∣∣⌉ , 0, if ed,i ≥ medd

0,
⌈
ε ·
∣∣ed,i∣∣⌉ , if ed,i < medd

(1)

where ed,i is the expression value of a miRNA or mRNA in the d-th sample,
ε is a scaling constant, and medd denotes the median of all miRNAs or
mRNAs in the d-th sample.

Then, the counts of miRNAs and mRNAs are replaced by the indexes from
the set of miRNAs, V and the set of mRNAs, T . The indexes, therefore, are
the random variables rd,n and gd,m used in the model (Figure 1).

2.3 Estimating model parameters
Because the exact inference for the parameters of our model is intractable,
we used the collapsed Gibbs sampling method (Liu, 1994) to estimate
parameters.

This method iteratively generates samples that converge to draws from
a target distribution of random variables Z through integrating out the
parameters Θ, Φ, and Ω for each sampling. For the d-th sample and the
n-th miRNA, the sampling is expressed as a conditional probability:

p(zd,n = k|Z−(d,n), Yd, Rd, Gd) ∝
p(zd,n|Z−(d,n))p(rd,n|zd,n)

∏Md
m=1 p(gd,m|yd,m, Zd) ∝

nk
d,−(d,n)+αk

(
∑K

k=1
n
(k)
d

+αk)−1
·

nv
k,−(d,n)+βv

(
∑vP

v=v1
n
(v)
k

+βv)−1
·

mt
k,−(d,n)+γt

(
∑tQ

t=t1
m

(t)
k

+γt)−1

(2)
where zd,n is the current module assignment of the n-th miRNA of the

d-th sample. Z−(d,n) is the current module assignment of all miRNAs in all
samples excluding that of the n-th miRNA of d-th sample. nk

d,−(d,n)
is the

number of times that the k-th FMRM has been observed with miRNAs across
samples excluding that of the n-th miRNA of the d-th sample. nv

k,−(d,n)
is

the number of times that miRNA v is assigned to the k-th FMRM excluding
that of the n-th miRNA of d-th sample. mt

k,−(d,n)
is the number of

times that mRNA t is assigned to the k-th FMRM excluding the current
assignment.

After sufficient sampling, the distribution of zd,n converges to the target
distribution of Z, then we estimate the parameters Θ, Φ, and Ω based on the
values of the module assignments produced from the sampling:

θd,k =
nk
d+αk∑K

k=1
n
(k)
d

+αk

, ϕk,v =
nv
k+βv∑vP

v=v1
n
(v)
k

+βv
,

ωk,t =
mt

k+γt∑tQ
t=t1

m
(t)
k

+γt
(3)

Unlike the preceding sampling procedure, here n(k)
d ,n(v)

k , and m(t)
k are

calculated from the assignment results for all data without excluding the
current module. Using Eq. 2 and 3, the Gibbs sampling procedure can

be designed. The algorithm includes three stages: initialization, sampling,
and reading out of parameters. It is provided in Supplementary File 1 –
Algorithm 1.

2.4 Assigning biological conditions to modules
The parameters inferred from this model provide insights into the data sets
at several levels. Θ clusters samples into modules that should relate to the
biological conditions of the experiments.

We conceive a statistic model to identify the connection between
biological conditions and modules. Let C be the number of biological
conditions of the D samples in the data set, and ci be the number of
samples belonging to condition i, where

∑C
i=1 ci = D. For each module,

assume there are x samples among the n highest probability samples that
belong to same condition i. The random variable x follows a hypergeometric
distribution with parameters D, ci, and n, denoted as

p(x) ∼ hypergeometric(x;D, ci, n) (4)

We assign the biological condition i to module k when x is at a
statistically significant level, for example, p-value< 0.05.

2.5 Identifying miRNAs and mRNAs for modules
The parameters Φ and Ω indicate the probabilities of each miRNA and
mRNA participating in a FMRM. For a K-FMRMs, Φ is a K × P

probability matrix where the element ϕk,v indicates the likelihood that
miRNA v belongs to the k-th FMRM. Similarly, Ω is a K ×Q probability
matrix where the element ωk,t indicates the belief of mRNA t participating
in the k-th FMRM, and Q is the number of mRNAs under investigation.

For each FMRM, we consider the top ranked miRNAs and mRNAs with
the highest probabilities to be the participants of the FMRM.

2.6 Reconstructing miRNA-mRNA target relationships
We query a miRNA target database to reconstruct the target relationship of
the miRNAs and mRNAs in each module. Hypothesis tests are conducted
on the identified miRNAs and mRNAs to evaluate whether they are likely to
have been identified by chance or not.

2.7 Function and pathway analysis of FMRMs
Function and pathway analysis of the identified FMRMs is conducted by
reviewing literature and querying the Ingenuity Pathway Analysis (IPA,
www.ingenuity.com) database of functional biological pathways to identify
the significantly enriched functions and pathways.

3 RESULTS
In this section, we present the results and analysis of applying our
model to a mouse mammary dataset (Zhu et al., 2010).

The data set were profiled with 46 samples derived from 9
classes of mouse models, representing one normal type and two
breast cancer subtypes: basal and luminal. The expression data
were screened with 1,336 probes of miRNAs (corresponding to 334
unique miRNAs) and 22,626 probes of mRNAs. For each type of the
conditions, 3-7 samples were profiled with miRNAs and mRNAs
(details in Supplementary File 1).

In order to compare with the target prediction, the expression data
sets of miRNAs and mRNAs were further filtered with MicroCosm
Targets V5.0 (Griffiths-Jones et al., 2008), and only those in
MicroCosm were maintained for analysis. Consequently, 1,112
probes of miRNAs and 19,223 probes of mRNAs were used in our
experiment.

3

 at K
anazaw

a U
niversity on O

ctober 17, 2010
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


3.1 Implementation
Given the above expression data of miRNAs and mRNAs, the
input data for our model include a 1,112×46 matrix of miRNA
expression values and a 19,223×46 matrix of mRNA expression
values. In the following discussion, we do not consider the putative
target information to avoid the bias probably incurred by the prior
prediction (Bartel, 2009).

In the experiment, the constant ε for converting the expression
values was 30. After the data conversion, the number of samples
D is 92. We set the number of FMRMs, K, to 20. This value
is determined by the number of sample types. Our data sets were
profiled with 9 classes of mouse models. miRNAs and mRNAs
could be over- or under- expressed in the samples so the number
of sample types is 18. In addition, 2 extra types were added to allow
the redundancy as our model could discover subtypes of classes.
We set the hyperparameters α, β, and γ to 10. The number of
iterations of Gibbs sampling is 2,500. These value settings are based
on empirical experiments.

3.2 Associating FMRMs with biological conditions
The parameter Θ obtained with our method is a 92×20 probability
matrix. Referring to section 2.4, the element θd,k of Θ is the
belief of sample d belonging to module k. We extracted the top 5%
(5) ranked samples with highest probabilities in each module, and
assigned biological conditions to each module according to these
samples as discussed in section 2.4. Figure 2 illustrates this mapping
procedure. The 5 highest probability samples extracted from each
module are arranged on the y-axis. Their associations with other
modules are also shown in the map.

In order to assign biological conditions to modules at the
statistically significant level, we conceived a statistical model to
map modules to biological conditions by using the mouse model
classes instead of tumor types directly (Table 1). From Table 1,
7 modules have been mapped to specific mouse model classes at
a significant level (p-value < 0.05). These mouse models can be
further mapped to two human breast tumor subtypes (Desai et al.,
2002; Blenkiron et al., 2007; Herschkowitz et al., 2007), suggesting
that the identified modules are associated with those biological
conditions. Other modules are clustered by samples with mixed
biological conditions, suggesting that they may participate in several
cellular processes.

Furthermore, the top 5% (56) ranked probes of miRNA and
the top 0.1% (192) ranked probes of mRNA with the highest
probabilities in each module were also extracted from the inferred
parameters Φ and Ω. They are assigned to the same biological
conditions according to the modules they belong to, respectively.
The detailed information of each FMRM is given in Supplementary
File 2, including the miRNAs, predicated target mRNAs, and the
associated biological condition for each FMRM.

3.3 Target reconstruction
To reconstruct the target relationships between miRNAs and
mRNAs, we use MicroCosm to link miRNAs and mRNAs identified
in each FMRM. The numbers of linked miRNAs and mRNAs are
given in Table 2.

To investigate whether the miRNAs and mRNAs in each module
were identified by chance, we randomly selected a group of
miRNAs and a group of mRNAs from MicroCosm with the same

Fig. 2. Assigning biological conditions to FMRMs. The y-axis on the right
side of the figure denotes sample names, mouse model types, and breast
cancer subtypes in three columns. Using the parameter Θ, the likelihood
that a particular sample is associated with a specific module, the top 5%
samples associated with each module are displayed using the grey scale.
These samples are considered to map modules to biological conditions.
Samples may occur more than once in the y-axis because some samples are
significantly associated with more than one module. Some modules, such
as module-11, have only rather low probability of association with samples,
and thus have nearly white shading even for their top 5 samples. Significant
mapping of FMRMs to conditions is highlighted.

numbers as those in the identified modules, and queried how many
pairs that can be linked by MicroCosm. The distribution of the
number of matched pairs was estimated by a simulation which was
executed 10,000 times. Illustrated with Figure S1 in Supplementary
File 1, the estimated distribution shows that the numbers of target
relationships of the randomly chosen miRNAs and mRNAs are
significantly different from those of the identified miRNAs and
mRNAs in each module (p-value < 0.05). It indicates that the
miRNAs and mRNAs in each module are not identified by chance.
The linked miRNAs and mRNAs of each FMRM are given in
Supplementary File 3.
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Table 1. Assigning biological conditions to FMRMs.

FMRM# ci x Mouse model class Tumor subtype p-value

3 10 3 C3TAg Basal 0.0081
4 8 3 MMTV-Wnt Luminal 0.004
5 10 3 Hras Luminal 0.0081
6 14 3 p53 Basal 0.0222
11 10 3 C3TAg Basal 0.0081
13 14 3 p53 Basal 0.0222
19 10 3 BRCA p53 Basal 0.0081

According to Eq. 4, biological conditions are assigned to FMRMs based on a
hypergeometric distribution. The significant results are given in this table. The
size of population is 92, the number of each draw is 5% of the population, i.e.
5. ci is the number of samples belonging to each condition, which include both
over- and under expressed status. x denotes the observed number of samples with
the assigned biological condition in each draw. FMRM# is the module number
corresponding to the number in Figure 2.

Table 2. Numbers of miRNA-mRNA pairs identified in FMRMs.

FMRM# Subtype miRNA# mRNA# target pair# p-value

3 Basal 33 190 273 1.70E-07
4 Luminal 18 190 147 3.23E-08
5 Luminal 16 191 144 2.98E-07
6 Basal 16 189 146 1.48E-06
11 Basal 17 190 122 1.13E-11
13 Basal 18 186 136 1.29E-10
19 Basal 18 188 133 2.71E-12

The miRNAs and mRNAs identified in each module are linked by MicroCosm.
Compared with the number of pairs linked by MicroCosm given the same number
of randomly chosen miRNAs and mRNAs, the miRNAs and mRNAs identified in
each module are not identified by chance.

3.4 Functional validation of miRNAs
To further validate that the identified miRNAs are relevant to
cancers, we investigated the implications of miRNAs for cancers
through literature review. We built a benchmark based on the current
knowledge (details in Supplementary File 4), and compared it with
the miRNAs identified in the modules.

From the literature, 42 miRNAs have been validated to have
implications for cancers. We identified a significant number of
miRNAs covered by the benchmark shown in Table 3. The
comparison shows that the miRNAs identified by our method
are largely consistent with the current knowledge of miRNAs for
cancers.

It is worth noting that several miRNAs, such as the let-7 family
and miR-21, are identified in multiple modules, suggesting they
could be involved in multiple biological processes. The frequent
occurrence of these particular miRNAs is consistent with their
known strong association with multiple cancer types, including
breast cancers. The identification of multiple modules containing
different but overlapping sets of miRNAs is likely to be the
consequence of activation of distinct subsets of common gene
interaction networks in specific cancer subtypes. For example,
Blenkiron et al. (2007) identified 31 miRNAs differentially

Table 3. Validation of identified miRNAs in the FMRMs.

FMRM# Supported miRNAs Coverage p-value

3 let-7a, let-7b, let-7c, 8/33(22.24%) 0.02641
let-7d, let-7e, let-7f,
miR-221,miR-29a

4 let-7a, let-7b, let-7c,let-7d, 10/18(55.56%) 6.68E-06
let-7e, let-7f, let-7g, let-7i,
miR-21,miR-221

5 let-7b, let-7c, let-7d, 9/17(52.94%) 3.56E-05
let-7i, miR-200b, miR-200c,
miR-29a, miR-29b, miR-30c

6 let-7a, let-7b, let-7c, 8/16(50.00%) 1.76E-04
let-7d, let-7i, miR-103,
miR-21, miR-221

15 let-7a, let-7c,let-7f, 9/17(52.94%) 3.56E-05
let-7g, miR-141, miR-19b,

miR-21, miR-200a,miR-200b
19 let-7a, let-7b, let-7c, 11/18(61.11%) 5.45E-07

let-7d, let-7e, let-7f,
miR-143, miR-145,
miR-21, miR-29a, miR-29b

The comparison shows that significant numbers of miRNAs identified in the FMRMs
are relevant to cancers. From the literature, 42 miRNAs have been validated as
either oncogenes or tumor suppressors (details in Supplementary File 4). Among
the 334 miRNAs under investigation, a significant number of miRNAs in identified
modules are supported by the current knowledge. The coverage is the percentage of
the number of miRNAs in each module supported by literature. p-value is calculated
by a hypergeometric probability density function at each of the numbers of miRNAs
supported by the literature, using the corresponding size of the total miRNAs under
investigation (334), numbers of miRNAs in each module, and numbers of miRNAs
identified from the literature (42). The modules with significant supports are given in
this table.

expressed between basal and luminal tumors. Among them, let-7a,
b, and f are under-expressed in basal tumors but over-expressed in
luminal tumors. These miRNAs were identified in module 3, 4, 5,
and 6 using our method and show patterns that are consistent with
their reported involvement in these tumors.

3.5 Functional validation of miRNA target genes
It is expected that the miRNA target genes are also relevant to the
specific biological processes. To validate that the identified mRNAs
are relevant to basal and luminal tumors, firstly we compared the
identified mRNAs with a work conducted by Adelaide et al. (2007).
Their results suggest the existence of potential oncogenes and tumor
suppressor genes differentially associated with the basal and luminal
subtype. As their results are largely consistent with many previous
researches (Bergamaschi et al., 2006; Chin et al., 2006; Neve et al.,
2006), we validate our analysis based on their results.

In our results, 18 genes have been identified by Adelaide et al.
(2007) as in Table S1 of Supplementary File 1. Among these genes,
Ccdc77 identified in module-3 also is targeted by miR-29a and
miR-221, Hspa14 identified in module-4 is targeted by miR-21,
and Cox4i1 identified in module-19 is targeted by let-7c and let-
7e. It further confirms that let-7e, miR-21, miR-29a, and miR-221
may have important regulatory functions towards basal and luminal
tumors. In addition, Rbm4b identified in module-3 is targeted by
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Fig. 3. A network with the function of cancer, cellular compromise, DNA
replication, and repair. It is participated by a group of miRNAs and their
target mRNAs identified by our method, suggesting these miRNAs and their
target mRNAs have the function of cancers.

miR-697 and miR-700, Rbx1 identified in module-5 is targeted by
miR-709, Gspt1 identified in module-11 is targeted by miR-669c
and miR-710, and Cox4i1 identified in module-19 is targeted by
miR-709. It suggests that miR-669c, miR-697, miR-709, and miR-
710 may also play important roles in regulating basal and luminal
tumors. It is worth noting that many previously reported results
were not recovered in the current study because the investigated data
were profiled with mouse model while the results of Adelaide et al.
(2007) were produced on breast cancer samples of humans.

Furthermore, we have queried the mRNAs identified in each
module against the Ingenuity Pathway Analysis (IPA) Database.
We specifically focused on human species as we are interested in
the networks of human cancers. The networks participated by the
mRNAs identified in FMRMs are highly associated with cancers.
Many genes are directly related to cancers and genetic disorders.
They are co-targeted by a group of miRNAs identified from our
method, suggesting the identified miRNAs and their target mRNAs
have implications for cancers. For example, a network participated
by the miRNAs and mRNAs identified by our method are associated
with cancer, cellular compromise, DNA replication, and repair
(Figure 3). The networks which are explicitly associated with
cancers and within the top five networks of each module are given
in Table S2 of Supplementary File 1. The detailed networks are
also given in Figure S2 to S6 of the Supplementary File 1. The
identified genes of FMRMs, which are relevant to cancers, are
given in Table 4. The results indicate that our methods effectively
identified many cancer related genes. Those genes are targeted by a
group of miRNAs, suggesting those miRNAs also participate in the
networks of cancers.

4 CONCLUSION AND DISCUSSION
miRNAs have been regarded as one of the most important
regulators. Identifying their functions and regulatory mechanisms

Table 4. Cancer associated genes of FMRMs.

FMRM# mRNAs mRNA# p-value (adj.)

3 CALR, RBP4, VIM, NDUFV2, 12 4.89E-03 -
SDCBP, MCTS1, AP2S1, PRPF8, 2.54E-02
COL18A1, AK2, ARNT, RPS15

4 DNMT1, NF2, RRM2 3 2.13E-03 -
3.05E-02

5 CEBPB, DDX39, HSP90AB1, 8 2.01E-03 -
MT2A, NUP62, SQLE, TCP1, TRIO 4.84E-02

11 DICER1, ENO1, HSP90B1, 5 5.26E-03 -
RXRB, SPRY2 4.84E-02

13 IGF2R, LSM14B, NCOR2, SP110, 14 6.88E-03 -
STX5, TOR2A, ACHE, HDAC3, 4.56E-02
PARP1, POSTN, SMAD4, UBE2I,
RNF6, BAK1

Many genes identified in FMRMs are relevant to cancers. Genes identified in FMRMs are
directly assigned to diseases and disorders. The cancer related genes of FMRMs within
their top five bio-functions are listed.

is critical in understanding biological processes of organisms. Great
efforts, in both biological experiments and computational methods,
have been made to illustrate their functions. However, the precise
regulatory functions of most miRNAs remain elusive due to the
complexity of the regulatory mechanisms.

In this paper, we have presented a model to discover functional
miRNA regulatory modules (FMRMs), which are groups of
miRNAs and mRNAs for specific biological conditions. This model
is inspired by the Corr-LDA, which has been used to extract the
correspondence patterns from heterogeneous data. We modified
Corr-LDA and derived the solution for FMRM discovery.

Our method models FMRMs with a generative process. It makes
use of the expression profiles of miRNAs and mRNAs, with or
without using the target relationships between miRNAs and mRNAs
based on the sequence binding information. It simultaneously
identifies groups of interactive miRNAs and mRNAs, which are
believed to participate in specific biological functions.

We have applied this method to a mouse model data set for human
breast cancer research. The method has effectively identified several
modules related to breast cancer subtypes: basal and luminal. Since
the data sets used were profiled from mouse tissues, many genes
have been filtered out because we focus on human genes. Thus,
previously reported results were not fully recovered in this work.
However, a large proportion of miRNAs and mRNAs identified in
the modules have been reported to have associations with basal and
luminal subtypes. Many others have direct indications on cancers
and genetic disorders. Furthermore, many novel associations among
miRNAs, mRNAs, and biological processes have been predicted
by our model. Several miRNAs and mRNAs are highly related to
cancers as reported by previous works, suggesting those modules
may have roles in the corresponding development processes.

Our model allows discovering the FMRMs with or without
using the target relationship between miRNAs and mRNAs. Some
researchers have suggested that algorithms that do not consider
known targets may avoid biases (Lewis et al., 2003, 2005; Bartel,
2009). Bonnet et al. (2010) also showed that expression profiles
only can be used to infer miRNA regulatory networks. Our method
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provides the flexibility of inferring FMRMs with or without target
relationships of miRNAs and mRNAs. We have demonstrated this
model without using the prior target prediction. The results suggest
that expression profiles of miRNAs and mRNAs are crucial for both
target identification and regulatory module discovery.
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