
Anonymisation by Local Recoding in Data with

Attribute Hierarchical Taxonomies

Jiuyong Li+, Raymond Chi-Wing Wong∗, Ada Wai-Chee Fu∗ and Jian Pei�

+School of Computer and Information Science, University of South Australia, Australia

∗Department of Computer Science and Engineering, The Chinese University of Hong Kong

�School of Computing Science, Simon Fraser University, Canada

jiuyong.li@unisa.edu.au, cwwong,adafu@cse.cuhk.edu.hk, jpei@cs.sfu.ca

March 3, 2008

Abstract

Individual privacy will be at risk if a published data set is not properly de-

identified. k-anonymity is a major technique to de-identify a data set. Among a

number of k-anonymisation schemes, local recoding methods are promising for

minimising the distortion of a k-anonymity view. This paper addresses two ma-

jor issues in local recoding k-anonymisation in attribute hierarchical taxonomies.

Firstly, we define a proper distance metric to achieve local recoding generalisa-

tion with small distortion. Secondly, we propose a means to control the incon-

sistency of attribute domains in a generalised view by local recoding. We show

experimentally that our proposed local recoding method based on the proposed

distance metric produces higher quality k-anonymity tables in three quality mea-

sures than a global recoding anonymisation method, Incognito, and a multidi-

mensional recoding anonymisation method, Multi. The proposed inconsistency

1

handling method is able to balance distortion and consistency of a generalised

view.

Key words: k-anonymisation, local recoding, generalisation distance, inconsistency.

1 Introduction

A vast amount of operational data and information has been stored by different vendors

and organizations. Most of the stored data is useful only when it is shared and analysed

with other related data. However this kind of data often contains some personal de-

tails and sensitive information. The data can only be allowed to be released when

individuals are unidentifiable. k-anonymity has emerged as an effective approach in

anonymisation [18, 19, 20].

1.1 K-anonymisation and various methods

The key idea of k-anonymisation is to make individuals indistinguishable in a released

table. A tuple representing an individual within the identifiable attributes has to be

identical to at least (k−1) other tuples. The larger the value of k is, the better the

protection. One way to produce k identical tuples within the identifiable attributes

is to generalise values within the attributes, for example, removing day and month

information in a Date-of-Birth attribute. A general view of attribute generalisation is

the aggregation of attribute values. k-anonymity has been extensively studied in recent

years [4, 7, 9, 10, 22].

Various approaches for generalisation have been studied, such as global recoding

generalisation [4, 7, 9, 18, 19, 22], multidimensional recoding generalisation [10],

and local recoding generalisation [6, 15, 24]. Global recoding generalisation maps

the current domain of an attribute to a more general domain. For example, ages are

mapped from years to 10-year intervals. Multidimensional recoding generalisation (or

multidimensional global recoding generalisation by LeFevre et al. [10]) maps a set

2

Figure 1: An illustration of different methods to achieve k-anonymity. A table has two
attributes Att1 and Att2. {a, b, c, d} and {α, β, γ} are the original domains for Att1 and
Att2. Top tables summarise the number of data points in separate regions of the two
dimensional space. The bottom tables summarise frequencies of identical tuples. (a)
the original data; (b) generalisation by a global recoding approach; (c) generalisation
by a multidimensional recoding approach; and (d) generalisation by a local recoding
approach.

of values to another set of values, some or all of which are more general than the

corresponding pre-mapping values. For example, {male, 32, divorce} is mapped to

{male, [30,40), unknown}. Local recoding generalisation modifies some values in one

or more attributes to values in more general domains. We will illustrate differences

between multidimensional recoding generalisation and local recoding generalisation

in the following.

A general view of k-anonymity is clustering with the constraint of the minimum

number of objects in every cluster. Data records are mapped to data points in a high

dimensional space. When a region partitioned by attribute values has fewer than k

data points, individuals represented by data points are at risk of being identified. The

region needs to be merged with other regions by generalising attribute values so that

the merged region contains at least k data points.

3

Global, multidimensional and local recoding generalisation can be explained in

this way. Consider the two dimensional example in Figure 1(a) and let k = 5. At-

tribute values (a, b, c, d) and (α, β, γ) partition the data space into 12 regions in Figure

1(a). Two regions, [a, α] and [b, β], contain less than 5 but more than zero data points.

Individuals in these two regions are likely to be identified. Therefore, they need to

be merged with other regions to make the number of data points at least 5. In the

global recoding generalisation scheme, a merged region stretches over the range of

other attributes. For example, the merged rectangle in Figure 1(b) covers all values of

Attribute 1 since all occurrences of α and β in Attribute 2 have to be generalised. The

merged regions and the summary of the corresponding generalised table are listed in

Figure 1(b). In a table view, domain (α, β, γ) is mapped to domain (α, [β, γ]). The

global recoding generalisation causes some unnecessary mergers, for example, regions

[c, (α, β)] and [d, (α, β)]. This is the over generalisation problem of global recoding

generalisation. For the multidimensional generalisation scheme, any two or more re-

gions can be merged as long as the aggregated attribute value such as [β, γ] makes

sense. For example, regions [a, α] and [a, β] merge into region [a, (α, β)], and regions

[b, α] and [b, β] merge into region [b, (α, β)]. Regions [c, α], [c, β], [d, α] and [d, β]

keep their original areas, see Figure 1(c). In a table view, all tuples (a, α) and (a, β)

are mapped to (a, [α, β]) and all tuples (b, α) and (b, β) are mapped to (b, [α, β]), but

tuples (c, α), (c, β), and (d, β) remain unchanged. A local recoding generalisation

method is even more flexible, see Figure 1(d). It does not merge whole regions. A

dense region can be split into two or more overlapping regions, and some merge with

other regions. For example, region [a, β] is split into two overlapping regions contain-

ing 3 and 7 data points each. The 3 data point region is merged with region [a, α] to

form region [a, (α, β)] with 5 data points. Both multidimensional and local recoding

approaches do not over generalise a table. In a table view, some tuples of (a, α) and

(a, β) are mapped to (a, [α, β]), and some tuples of (b, α) and (b, β) are mapped to

(b, [α, β]), but some remain unchanged in their original forms.

4

1.2 Existing problems and our contributions

Multidimensional and local recoding methods can improve the quality of anonymisa-

tion by reducing the amount of generalization. A number of research works have been

conducted in this direction [1, 6, 10, 15, 24]. However, most works focus on numerical

and ordinal attributes. Two works [1, 15] handle unordered categorical attributes, but

both employ a simplified suppression model: values either exist or are unknown. They

do not consider attribute hierarchical structures. Work in [24] touches upon attribute

hierarchical structures, but the approach is fundamentally an numerical one. More

discussions on the work are given in Section 2.

There is an opportunity for studying multidimensional and local recoding k-anonymisation

in attribute hierarchies. When attributes are numerical or ordinal, their distances can

be measured by the Euclidean distance or other similar metrics. However, not every

attribute can be ordered. Attribute hierarchial taxonomies provide meaningful groups

in a released table. Two immediate questions will be: How can we measure distances

of data objects in attribute hierarchies? And how can we link the metric to the quality

objective of k-anonymisation? This paper will discuss these problems.

One major drawback of multidimensional and local recoding generalisation meth-

ods is that they produce tables with inconsistent attribute domains. For example, gen-

eralised values (α, β), and un-generalised values α and β co-exist in Attribute 2 in

Figure 1(c) and 1(d). This may cause difficulty when analysing the table in many

real world applications. We will initiate discussions of inconsistency problem of lo-

cal recoding generalisation, and study a approach to handle inconsistent domains of a

generalised table.

This paper extends our work reported in [13]. In addition to defining a distance

metric and splitting an equivalence class to a stub and a trunk for local recoding, we

add comprehensive discussions on the inconsistency problem of local recoding and

possible solutions. We also upgrade the experimental comparisons from comparing

with a global recoding method based on one quality metric to comparing with both

5

global and multidimensional recoding methods based on four quality metrics.

2 Related work

In general, there are three categories of privacy preserving methods in the data mining

literature. The first category consists of perturbation methods, typified by [2, 3, 17].

These methods make use of randomised techniques to perturb data and statistical tech-

niques to reconstruct distribution of data. The second category comprises of crypto-

graphic methods, such as [14, 21, 23]. Cryptographic techniques have been used to en-

crypt data so that neither party can see other parties’ data when they share data to work

out common interesting solutions. The third category includes k-anonymity methods,

such as [18, 20]. A k-anonymity method de-identifies a data set so that individuals in

the data set cannot be identified. Our study belongs to this category.

k-anonymisation methods are generally divided into two groups: task-specific and

non-specific methods. For task-specific k-anonymisation, the released tables are un-

dergoing some specific data mining processes (e.g. building decision tree models). The

purpose of anonymisation is to keep sufficient protection of sensitive information while

maintaining the precision for data mining tasks, such as classification accuracy. There

have been a number of proposals in this group [7, 8, 22]. In most cases, data owners do

not know the ultimate use of the released tables. Therefore a general anonymisation

goal should not be associated with a specific data mining task, but should minimise

distortions in the released table. The methods in this category are called non-specific

k-anonymisation methods (e.g. [1, 4, 9, 15, 18, 19]).

An alternative taxonomy of k-anonymisation methods includes three groups: global,

multidimensional and local recoding methods. LeFevre et al. [10] divide multidimen-

sional recoding methods into global and local methods. In this paper, multidimensional

recoding means multidimensional global recoding. Local recoding includes multidi-

mensional and single dimensional local recoding. Justifications for our classification

are provided in Section 3.

6

Global recoding methods generalise a table at the domain level. Many works of k-

anonymisation are based on the global recoding model, such as [4, 7, 8, 9, 18, 19, 22].

A typical global recoding generalisation method is Incognito [9]. Incognito produces

minimal full-domain generalisations. Incognito is the first algorithm for the minimal

full-domain generalization on large databases. A global recoding method may over-

generalise a table. For example, to protect a male patient in a specific region, postcodes

of thousands of records are generalised even though there are a lot of male patients in

other regions which can have their original postcodes.

Both multidimensional and local recoding methods generalise a table at cell lev-

els. They do not over generalise a table and hence may minimise the distortion of

an anonymity view. LeFevre et al. first studied the multidimensional recoding prob-

lem [10], and proposed an efficient partition method, Multi, for multidimensional re-

coding anonymisation. Aggarwal et al. [1] and Meyerson et al. [15] analysed the com-

putational complexity of local recoding methods on a simplified model: suppressing

values only. Both conclude that optimal k-anonymisation, minimising the number

of cells being suppressed, is NP-hard. Some new local recoding works are reported

in [6, 24]. These works mainly deal with numerical and ordinal attributes. Although

work in [24] touches on hierarchical attributes, its quality metric for hierarchical at-

tributes is a direct extension of that for numerical attributes. The quality of general-

ising categorical values in [24] is determined by the number of distinct values in a

generalised category and the total number of distinct values of the attribute, but not

by hierarchical structures. Consider two attributes with the same number of distinct

values. Information losses of two generalisations are the same if the generalised cat-

egories include the same number of distinct values, although their hierarchical struc-

tures are different. In contrast, the generalisation distance in this paper is determined

by hierarchical structures.

Other typical approaches to achieve k-anonymity are through clustering [2, 5].

These methods normally handle numerical and ordinal attributes, and are not global

recoding methods. They use different representations, such as mean values instead of

7

intervals as in generalisation. For data sets with numerical attributes, there are rarely

identical tuples in the quasi-identifier attribute set, defined in Section 3, (overlapping

data points in a data space) since there are too many distinct values in each attribute.

Therefore, there is not a point to distinguish local recoding and multidimensional re-

coding. In general, most k-anonymity methods can be interpreted as variant clustering

approaches, either through division or agglomeration. Local and multidimensional

recoding methods are differentiated by whether overlapping clusters are allowed.

3 Problem Definitions

The objective of k-anonymisation is to make every tuple in identity-related attributes

of a published table identical to at least (k − 1) other tuples. Identity-related attributes

are those which potentially identify individuals in a table. For example, the record

describing a middle aged female in the suburb with the postcode of 4352 is unique

in Table 1, and hence her problem of stress may be revealed if the table is published.

To preserve her privacy, we may generalise Gender and Postcode attribute values such

that each tuple in attribute set {Gender, Age, Postcode} has at least two occurrences.

A view after this generalisation is given in Table 1(b). We provide running examples

based on Table 1.

Since various countries use different postcode schemes, in this paper, we adopt a

simplified postcode scheme, where its hierarchy {4201, 420*, 42**, 4***, *} corre-

sponds to {suburb, city, region, state, unknown}, respectively. A tuple for an attribute

set in a record is an ordered list of values corresponding to the attribute set in the

record.

Definition 1 (Quasi-identifier attribute set) A quasi-identifier attribute set (QID) is

a set of attributes in a table that potentially identify individuals in the table.

For example, attribute set {Gender, Age, Postcode} in Table 1(a) is a quasi-identifier.

Table 1(a) potentially reveals private information of patients (e.g. the problem of stress

8

No. Gender Age Postcode Problem
1 male middle 4350 stress
2 male middle 4350 obesity
3 male middle 4350 obesity
4 female middle 4352 stress
5 female old 4353 stress
6 female old 4353 obesity

No. Gender Age Postcode Problem
1 * middle 435* stress
2 * middle 435* obesity
3 * middle 435* obesity
4 * middle 435* stress
5 * old 435* stress
6 * old 435* obesity

(a) (b)
No. Gender Age Postcode Problem
1 male middle 4350 stress
2 male middle 4350 obesity
3 male middle 4350 obesity
4 female * 435* stress
5 female * 435* stress
6 female * 435* obesity

No. Gender Age Postcode Problem
1 male middle 4350 stress
2 male middle 4350 obesity
3 * middle 435* obesity
4 * middle 435* stress
5 female old 4353 stress
6 female old 4353 obesity

(c) (d)

Table 1: (a) A raw table. (b) A 2-anonymity view by global recoding. (c) A 2-
anonymity by multidimensional recoding. (d) A 2-anonymity by local recoding.

of the middle-aged female). Normally, a quasi-identifier attribute set is specified by

domain experts.

Definition 2 (Equivalence class) An equivalence class of a table with respect to an

attribute set is the set of all tuples in the table containing identical values for the

attribute set.

For example, tuples 1, 2 and 3 in Table 1(a) form an equivalence class with respect

to attribute set {Gender, Age, Postcode}. Their corresponding values are identical.

Definition 3 (k-anonymity property) A table is k-anonymous with respect to a quasi-

identifier attribute set if the size of every equivalence class with respect to the attribute

set is k or more.

k-anonymity requires that every tuple occurrence for a given quasi-identifier at-

tribute set has a frequency of at least k. For example, Table 1(a) does not satisfy

2-anonymity property since the tuple {female, middle, 4352} occurs once.

Definition 4 (k-anonymisation) k-anonymisation is a process to modify a table to a

9

view that satisfies the k-anonymity property with respect to the quasi-identifier.

For example, Table 1(b) is a 2-anonymity view of Table 1(a) since the size of all

equivalence classes with respect to the quasi-identifier {Gender, Age, Postcode} is at

least 2.

A table may have more than one k-anonymity view, but some are better than others.

For example, we may have other 2-anonymity views of Table 1(a) as in Table 1(c)

and Table 1(d). Table 1(b) loses more detail than Table 1(c) and Table 1(d).

Therefore, another objective for k-anonymisation is to minimise distortions. We

will give a definition of distortion later in Section 4. Initially, we consider it as the

number of cells being modified.

There are three ways to achieve k-anonymity, namely global recoding, multidi-

mensional recoding, and local recoding. LeFevre divided multidimensional recoding

as having two subtypes [10]: global and local methods. Though the multidimensional

global recoding contains the word of global, its generalised tables are quite different

from those from the global recoding generalisation but are closer to those from the

local recoding generalisation. Both multidimensional and local recoding methods pro-

duce tables with mixed values from different domains in a field whereas all values are

from the same domain in a field of a globally generalised table. To avoid confusion, we

use the terminology ‘multidimensional recoding’ instead of ‘multidimensional global

recoding’. It is not significant to distinguish multidimensional and single dimensional

local recoding since it does not lead to different approaches to generalise one value or

more values in a tuple for local recoding. We call both local recoding.

Another name for global recoding is domain generalisation. The generalisation

happens at the domain level. A specific domain is replaced by a more general domain.

There are no mixed values from different domains in a table generalised by global

recoding. When an attribute value is generalised, every occurrence of the value is

replaced by the new generalised value. A global recoding method may over generalise

a table. An example of global recoding is given in Table 1(b). Two attributes Gender

10

and Postcode are generalised. All gender information has been lost. It is not necessary

to generalise the Gender and the Postcode attribute as a whole. So, we say that the

global recoding method over-generalises this table.

Multidimensional and local recoding methods generalise attribute values at cell

level. They generalise cell values when necessary for k-anonymity. Values from dif-

ferent domains co-exist in a field of a generalised table. They do not over generalise

a table, and hence they may minimise the distortion of an anonymous view. Tables

generalised by multidimensional and local recoding methods are given in Table 1(c)

and Table 1(d). Another interpretation of multidimensional and local recoding is that

they map a set of values to another set of values. The difference between multidi-

mensional recoding and local recoding generalisation is that the former does not allow

an equivalence class to be mapped to two or more equivalence classes while the lat-

ter does. For example, three equivalence classes in Table 1(a) are generalised to two

equivalence classes in Table 1(c). The two equivalence classes {female, middle, 4352}
and {female, old, 4353} are generalised to one equivalence class {female, *, 435*}.

No equivalence class is split, and this is a result of multidimensional recoding. Three

equivalence classes in Table 1(a) are generalised to three equivalence classes in Ta-

ble 1(d). The equivalence class {male, middle, 4350} is split into two identical equiv-

alence classes. One contains the first two tuples, t1 and t2, and the other contains the

third tuple, t3. The equivalence class containing t3 is generalised with the equivalence

class containing t4. The equivalence class containing t1 and t2 remains un-generalised.

Therefore, Table 1(d) is a result of local recoding. A large equivalence class may be

generalised into a number of equivalence classes in local recoding.

There are many possible ways for local recoding generalisation. Aggarwal et al. [1]

and Meyerson et al. [15] analyse a simplified local recoding model where values ei-

ther exist or are suppressed. When the optimisation goal is to minimise cells being

suppressed, both papers conclude that optimal k-anonymisation by local recoding is

NP-hard. Therefore, heuristic methods are typically employed in local recoding gen-

eralisation.

11

4 Measuring the Quality of k-anonymisation

In this section, we discuss metrics for measuring the quality of k-anonymisation gen-

eralisation.

There are a number of quality measurements presented in previous studies. Many

metrics are utility based, for example, model accuracy [7, 11] and query quality [10,

24]. They are associated with some specific applications. Two generic metrics have

been used in a number of recent works.

The Discernability metric was proposed by Bayardo et al. [4] and has been used

in [10, 24]. It is defined in the following:

DM =
∑

EquivClasses E

|E |2

where |E| is the size of equivalence class E. The cost of anonymisation is determined

by the size of equivalence classes. An optimisation objective is to minimise discern-

ability cost.

Normalised average equivalence class size was proposed by LeFevre et al. [10],

and has been used in [24]. It is defined as the following.

CAVG = (
total records

total equiv classes
)/(k)

The quality of k-anonymisation is measured by the average size of equivalence

classes produced. An objective is to reduce the normalised average equivalence class

size.

These measurements are mathematically sound, but are not intuitive to reflect

changes being made to a table. In this paper, we use the most generic criterion, called

distortion. It measures changes caused by generalisation.

A simple measurement of distortion is the modification rate. For a k-anonymity

view V of table T , the modification rate is the fraction of cells being modified within

12

the quasi-identifier attribute set. For example, modification rate from Table 1(a) to

Table 1(b) is 66.7% and modification rate from Table 1(a) to Table 1(c) is 33.3%.

This criterion does not consider attribute hierarchical structures. For example, the

distortion caused by the generalisation of Postcode from suburb to city is significantly

different from the distortion caused by the generalisation of Gender from male/female

to *. The former still keeps some information of location, but the latter loses all infor-

mation of sex. The modification rate is too simple to reflect such differences.

We first define a metric measuring the distance between different levels in an at-

tribute hierarchy.

Definition 5 (Weighted Hierarchical Distance (WHD)) Let h be the height of a do-

main hierarchy, and let levels 1, 2, . . . , h − 1, h be the domain levels from the most

general to most specific, respectively. Let the weight between domain level j and j − 1

be predefined, denoted by wj,j−1, where 2 ≤ j ≤ h. When a cell is generalised from

level p to level q, where p > q, the weighted hierarchical distance of this generalisation

is defined as

WHD(p, q) =

∑p
j=q+1 wj,j−1∑h
j=2 wj,j−1

Figure 2 show two examples of attribute hierarchies, and Figure 3 shows the num-

bering method of hierarchical levels and weights between hierarchical levels. Level 1

is always the most general level of a hierarchy and contains one value, unknown.

We have the following two simple but typical definitions for weight wj,j−1 in gen-

eralisation.

1. Uniform Weight: wj,j−1 = 1 where 2 ≤ j ≤ h

In this scheme, WHD is ratio of the steps a cell being generalised to all possible

generalisation steps (the height of a hierarchy). For example, let the Date-of-Birth

hierarchy be {day/month/year, month/year, year, 10year-interval, child/youth/middle-

13

age/old-age, *}. WHD of the generalisation from day/month/year to year is WHD(6, 4) =

(1 + 1)/5 = 0.4. In a Gender hierarchy, {male/female, *}, WHD from male/female

to * is WHD(2, 1) = 1/1 = 1. This means that distortion caused by the generalisa-

tion of five cells from day/month/year to year is equivalent to distortion caused by the

generalisation of two cells from male/female to *.

This scheme does not capture the fact that generalisations at different levels yield

different distortions. A generalisation nearer to the root of the hierarchy distorts a value

more than a generalisation further away from the root. For example, in the Date-of-

Birth hierarchy distortion caused by the generalisation of a value from day/month/year

to month/year is less than distortion caused by the generalisation from year to 10year-

interval. This example motivates us to propose another scheme.

2. Height Weight: wj,j−1 = 1/(j − 1)β where 2 ≤ j ≤ h and β is a real number ≥ 1

provided by the user.

The intuition is that generalisation nearer the root results in larger distortion than

generalisation further away from the root. In this scheme, weights nearer the root

are larger than weights further away from the root. For example, in the Date-of-

Birth attribute, let β = 1, WHD of the generalisation from day/month/year to year

is WHD(6, 5) = (1/5)/(1/5+1/4+1/3+1/2+1) = 0.087. In the Gender hierarchy

{male/female, *}, WHD from male/female to * is WHD(2, 1) = 1/1 = 1. Distortion

caused by the generalisation of one cell from male/female to * in the Gender attribute

is more than distortion caused by the generalisation of 11 (i.e. 1/0.087) cells from

day/month/year to month/year in the Date-of-Birth attribute. If a user wants to pe-

nalise more on the generalisation close to the root, β can be set to a larger value (e.g.

2).

There are other possible schemes for various applications. An immediate enhance-

ment is to assign weights by attribute. We adopt simple schemes for better illustration

in this paper. In the following, we define distortions caused by the generalisation of

tuples and tables.

14

Definition 6 (Distortions of generalisation of tuples) Let t = {v1, v2, . . . , vm} be a

tuple and t′ = {v′
1, v

′
2, . . . , v

′
m} be a generalised tuple of t where m is the number of

attributes in the quasi-identifier. Let level(vj) be the domain level of vj in an attribute

hierarchy. The distortion of this generalisation is defined as

Distortion(t, t′) =

m∑
j=1

WHD(level(vj), level(v
′
j))

For example, let weights of WHD be defined by the uniform weight scheme, the

attribute Gender be in the hierarchy of {male/female, *} and attribute Postcode be in

the hierarchy of {dddd, ddd*, dd**, d***, *}. Let t4 be tuple 4 in Table 1(a) and t′4 be

tuple 4 in Table 1(b). For attribute Gender, WHD = 1. For attribute Age, WHD = 0.

For attribute Postcode, WHD = 1/4 = 0.25. Therefore, Distortion(t4, t
′
4) = 1.25.

Definition 7 (Distortions of generalisation of tables) Let view D′ be generalised from

table D, ti be the i-th tuple in D and t′i be the i-th tuple in D′. The distortion of this

generalisation is defined as

Distortion(D, D′) =

|D|∑
i=1

Distortion(ti, t
′
i)

where |D| is the number of tuples in D.

For example, from Table 1(a) to Table 1(b), WHD(t1, t
′
1) = . . . = WHD(t6, t

′
6) =

1.25. The distortion between the two tables is Distortion(D, D ′) = 1.25 × 6 = 7.5.

5 Generalisation Distances

In this section, we map distortions to distances and discuss properties of the mapped

distances.

15

*

435*

43**

4***

*

most specific

most general

value

interval

38

30 - 40

unkown

Numerical valuesPostcode

4350suburb

city

region

state

unkown

Figure 2: Examples of domain hierarchies.

5.1 Distances between Tuples and equivalence classes

An objective of k-anonymisation is to minimise the overall distortions between a gen-

eralised table and the original table. We first consider how to minimise distortions

when generalising two tuples into an equivalence class.

Definition 8 (Closest common generalisation) All allowable values of an attribute

form a hierarchical value tree. Each value is represented as a node in the tree, and a

node has a number of child nodes corresponding to its more specific values. Let t1 and

t2 be two tuples. t1,2 is the closest common generalisation of t1 and t2 for all i. The

value of the closest common generalisation t1,2 is

vi
1,2 =

⎧⎨
⎩

vi
1 if vi

1 = vi
2

the value of the closest common ancestor otherwise

where, vi
1, vi

2, and vi
1,2 are the values of the i-th attribute in tuples t1, t2 and t1,2.

For example, Figure 3 shows a simplified hierarchical value tree with 4 domain

levels and 2(l−1) values for each domain level l. Node 0** is the closest common

ancestor of nodes 001 and 010 in the hierarchical value tree. Consider another ex-

ample. Let t1 = {male, young, 4351} and t2 = {female, young, 4352}. t1,2 =

{∗, young, 435∗}.

Now, we define the distance between two tuples.

16

ddd

hierarchy

and weights
hierarchical value tree

w

w

w

21

32

43

dd*

d**

* *

1**0**

00* 01* 10* 11*

level 4
cd

ba

root
level 1

level 2

level 3

111110101100000 001 010 011

Figure 3: An example of weights and a simplified hierarchical value tree.

Definition 9 (Distance between two tuples) Let t1 and t2 be two tuples and t1,2 be

their closest common generalisation. The distance between the two tuples is defined

as

Dist(t1, t2) = Distortion(t1, t1,2) + Distortion(t2, t1,2)

For example, let weights of WHD be defined by the uniform weight scheme, at-

tribute Gender be in the hierarchy of {male/female, *} and attribute Postcode be in

the hierarchy of {dddd, ddd*, dd**, d***, *}. t1 = {male, young, 4351} and t2 =

{female, young, 4352}. t1,2 = {∗, young, 435∗}. Dist(t1, t2) = Distortion(t1, t1,2)

+ Distortion(t2, t1,2) = 1.25 + 1.25 = 2.5.

We discuss some properties of tuple distance in the following.

Lemma 1 Basic properties of tuple distances

(1) Dist(t1, t1) = 0 (i.e. a distance between two identical tuples is zero)

(2) Dist(t1, t2) = Dist(t2, t1) (i.e. the tuple distance is symmetric), and

(3) Dist(t1, t3) ≤ Dist(t1, t2) + Dist(t2, t3) (i.e. the tuple distance satisfies triangle

inequality)

Proof The first two properties obviously follow Definition 9. We prove property 3

here.

We first consider a single attribute. To make notations simple, we omit the super-

script for the attribute. Let v1 be the value of tuple t1 for the attribute, v1,3 be the value

17

of the generalised tuple t1,3 for the attribute from tuple t1 and tuple t3, and so forth.

Within a hierarchical value tree, Dist(t1, t3) is represented as the shortest path

linking nodes v1 and v3 and Dist(t1, t2)+Dist(t2, t3) is represented as the path linking

v1 and v3 via v2. Therefore, Dist(t1, t3) ≤ Dist(t1, t2)+Dist(t2, t3). The two distances

are equal only when v2 is located within the shortest path between v1 and v3.

The overall distance is the sum of distances of all individual attributes. This proof

is true for all attributes. Therefore, the property 3 is proved. �

An example of Property 3 can be found in the hierarchial value tree of Figure 3. The

distance between 00* and 011 is (a + b + c), the distance between 00* and 010 is (a +

b + d), and the distance between 010 and 011 is (c + d). Therefore, Dist(00∗, 011) <

Dist(00∗, 010)+Dist(010, 011). In a special case, Dist(00∗, 011) = Dist(00∗, 01∗)+

Dist(01∗, 011).

Now, we discuss distance between two groups of tuples.

Definition 10 (Distance between two equivalence classes) Let C1 be an equivalence

class containing n1 identical tuples t1 and C2 be an equivalence class containing n2

identical tuples t2. t1,2 is the closest common generalisation of t1 and t2. The distance

between two equivalence classes is defined as follows.

Dist(C1, C2) = n1 × Distortion(t1, t1,2) + n2 × Distortion(t2, t1,2)

Note that t1,2 is the tuple that t1 and t2 will be generalised to if the two equivalence

classes C1 and C2 are generalised into one equivalence class. The distance is equivalent

to the distortions of the generalisation and therefore the choice of generalisation should

be those equivalence classes with the smallest distances.

We consider a property of merging equivalence classes.

Lemma 2 Associative property of generalisation

Let C1, C2, and C3 be equivalence classes containing single tuples t1, t2 and t3 respec-

tively, C1,2 be the equivalence class containing two generalised tuples t1,2 of t1 and t2

and C2,3 be the equivalence class containing two generalised tuples t2,3 of t2 and

18

t3. We have the following equality, Dist(C1, C2) + Dist(C1,2, C3) = Dist(C2, C3) +

Dist(C1, C2,3).

Proof We start with a single attribute, and consider the hierarchical value tree of the

attribute. To make the notations simple, we omit the superscript for the attribute. Let

v1 be the value of tuple t1 for the attribute, v1,3 be the value of the generalised tuple

t1,3 for the attribute, and so forth.

Within this hierarchical tree, let node v1,2,3 represent the closest common ancestor

of v1, v2 and v3. Each side of the equation is the sum of WHD from v1, v2 and v3

to v1,2,3. We use Dist(C1, C2) + Dist(C1,2, C3) as an example to show this. t1,2 is a

descendant of t1,2,3 (or is the same as t1,2,3, and in this case the proof is even simpler.).

Dist(C1, C2) sums the WHDs from v1 and v2 to v1,2. Dist(C1,2, C3) sums the WHDs

from v3 to v1,2,3 and twice the WHDs from v1,2 to v1,2,3, where one is for v1 and the

other is for v2. Therefore, Dist(C1, C2) + Dist(C1,2, C3) sums the WHDs from v1, v2

and v3 to v1,2,3.

The overall distance is the sum of the distances of individual attributes. The above

proof is true for all attributes. The lemma is proved. �

The lemma shows distortions do not relate to the order of generalisation, but only

relate to the elements in the generalised group.

6 Racing attributes and inconsistency

In local recoding generalisation, a decision of generalisation is made locally to min-

imise distortions. However, when there are a number of choices that cause the same

amount of distortions, they lead to different outcomes. Let us start with an example.

In Table 2(a), attributes Gender and Marriage form the quasi-identifier. The Gender

attribute is in the hierarchy of {male/female, *} and the Marriage attribute is in the

hierarchy of {married/unmarried/divorced/widowed, *}. In Table 2(a), Dist(t1, t2) =

Dist(t1, t3). If we choose to generalise t1 and t3 first, the resultant 2-anonymity view

19

is in Table 2(b). If we choose to generalise t1 and t2 first, the resultant 2-anonymity

view is in Table 2(c). Both views have the same distortions over the original table. If

users do not have preferences, both views in Table 2 are acceptable.

No. Gender Marriage Problem
1 male married stress
2 male unmarried obesity
3 female married stress
4 female unmarried obesity

(a)
No. Gender Marriage Problem
1 * married stress
2 * unmarried obesity
3 * married stress
4 * unmarried obesity

No. Gender Marriage Problem
1 male * stress
2 male * obesity
3 female * stress
4 female * obesity

(b) (c)

Table 2: An example of racing attributes. (a) A raw table. (b) A 2-anonymity view. (c)
An alternative 2-anonymity view.

When we consider a more complicated example as in Table 3, Table 3(c) is better

than Table3(b). Although their distortions are identical, we may not be able to use both

attributes Gender and Marriage in Table 3(b) since no reliable statistical or data mining

results can be derived from both attributes, whereas Gender attribute in Table 3(c) is

complete.

We call this phenomenon racing attributes. More precisely, we have the following

definition.

Definition 11 (Racing attributes) If Dist(C1, C2) = Dist(C1, C3) = min∀i,j Dist(Ci, Cj),

we call attributes involved in the generalisation of t1 and t2 and the generalisation of

t1 and t3 racing attributes.

When the smallest distance is between two or more equivalence class pairs and we

are going to choose one pair to generalise, the attributes involved in generalising the

tuples of equivalence classes are called racing attributes.

20

No. Gender Marriage Problem
1 male married stress
2 male unmarried obesity
3 female married stress
4 female unmarried obesity
5 male divorced stress
6 male widowed obesity
7 female divorced stress
8 female widowed obesity

(a)
No. Gender Marriage Problem
1 * married stress
2 * unmarried obesity
3 * married stress
4 * unmarried obesity
5 male * stress
6 male * obesity
7 female * stress
8 female * obesity

No. Gender Marriage Problem
1 male * stress
2 male * obesity
3 female * stress
4 female * obesity
5 male * stress
6 male * obesity
7 female * stress
8 female * obesity

(b) (c)

Table 3: Another example for racing attribute. (a) A raw table. (b) A 2-anonymity
view. (c) An alternative 2-anonymity view. View (c) is more consistent than view (b).

To facilitate the following discussions on racing attributes, we introduce a mea-

surement.

Definition 12 (Inconsistency) Let inconsistency of attribute i be inconsisti = (1 −
maxj(pij)) where pij is the fraction of values in domain level j of attribute i over all

values in attribute i. Let the inconsistency of a data set be inconsistD = maxi(pi)

where 1 ≤ i ≤ m where m is the number of attributes in the quasi-identifier.

Low inconsistency means that attribute values are mostly from one domain. High

inconsistency indicates that attribute values are mixed from more than one domain.

For example, inconsistency of the Gender attribute in Table 3(b) is 50% because four

unknown values (*) are from domain level 1 and four values of male and female are

from domain level 2. Inconsistency of the attribute Marriage in Table 3(b) is 50% too.

As a result, inconsistency of Table 3(b) is 50%. Inconsistency of Table 3(c) is 0%.

21

An anonymity table is normally used for data mining or statistical analysis. Most

data mining and statistical tools assume that values are drawn from the same domain

of an attribute. When values are drawn from more than one domain, values from a

more general domain do not provide the same detailed information as values from a

more specific domain. There are two ways to handle the situation without changing

data mining or statistical software tools. When the number of values from a more

general domain is not too many, consider them as missing values and disregard them

in the analysis process. When values from a more general domain are too many to be

ignored, generalise other values in more specific domains to the more general domain

to make the attribute consistent. In the latter solution, low distortion is sacrificed for

high consistency.

We discuss three approaches for handling racing attributes and controlling incon-

sistency.

The first approach is to randomly select racing attributes to generalise. Consider

a large data set where a small number of values are generalised. We wish that these

generalised values, which may be considered missing values in an analysis process,

are scattered across all attributes. The randomness of a small number of generalised

values does not cause a big impact on any attribute, and therefore does not affect

analysis results significantly.

The second approach is to set priority attributes. More often than less, attributes

have different importance in data for an application. For example, the attribute Age

is usually more important than the attribute Postcode in a medical data set. We may

sacrifice postcode information for the integrity of age information as much as possible.

Attributes to be sacrificed are set with high priority. High priority attributes receive low

weights in calculating distortions while low priority attributes receive high weights.

As a result, more generalisations will occur in high priority attributes than low priority

attributes. This could reduce the overall inconsistency. For example, when we set

attribute Marriage in Table 3(a) higher priority than attribute Gender, Table 3(a) will

be generalised as Table 3(c), which has an inconsistency of 0%.

22

The third approach is to incorporate global recoding generalisation into local re-

coding generalisation. The inconsistency from the global recoding generalisation is

always zero. However, the global recoding methods may over-generalise a table and

cause high distortions. The strength and weakness of the local recoding generalisa-

tion complement those of the global recoding generalisation. Ideally, we wish that the

consistency of a table is high and that a small number of more generalised values are

scattered among attributes.

To make the inconsistency controllable, we introduce another requirement, the

maximum inconsistency. We require that the inconsistency of a generalised table is

smaller than max inconsist.

We present the following metric to be a criterion for deciding when to choose

global recoding generalisation.

Definition 13 (Generalisation portion) Let values of an attribute be drawn from a

number of domains < Db, Db−1, . . . >, where Db is the most specific domain. The

generalisation portion is defined as genportion = 1 − PDb
where PDb

is the fraction

of values in domain Db over all values of the attribute.

Values in an attribute are split into base (the most specific) and generalisation por-

tions. Note that the base portion is not necessarily from the most specific domain

of an attribute hierarchy but the most specific one from domains which the attribute

currently draws values from. For example, let the attribute Date-of-Birth be in do-

main levels {day/month/year, month/year, year, 10year-interval, *}. Assume that frac-

tions of values drawn from each domain level are listed in the following: 0% from

level day/month/year, 20% from level month/year, 40% from level year, 20% from

10year-interval, and 20% from *. The base domain is at domain level month/year

since there are not values drawn from domain level day/month/year. As a result,

genportion = 1 − 20% = 80%.

We have the following relationship between generalisation portion and inconsis-

tency.

23

Lemma 3 For an attribute, when the generalisation portion is less than 50%, inconsist =

genportion.

Proof When generalisation portion is less than 50%, the fraction of values drawn

from the base domain is greater than 50%. As a result, the base domain has the largest

fraction of values among all domains. Therefore, inconsist = 1 − PDb
= genportion.

�

The relationship between generalisation portion and inconsistency is not this sim-

ple when generalisation portion is greater than 50%. In the previous example, Date-

of-Birth values are drawn from the following four domain levels: 20% from level

month/year, 40% from level year, 20% from 10year-interval and 20% from *. genportion =

1 − 20% = 80% whereas inconsist = 1 − 40 = 60%.

In most applications, the required maximum inconsistency is less than 50%. There-

fore, the requirement for the inconsistency of a generalised table to be less than max inconsist

is equivalent to the requirement that the generalisation portion is less than max inconsist

for every attribute.

The reason for using generalisation portion instead of inconsistency is that gen-

eralisation portion gives a desirable direction for generalisation. See the following

two examples. Attribute 1: 90% of values are generalised to a more general do-

main, and 10% values remain at the original domain. We have inconsist = 10%

and genportion = 90%. Attribute 2: 10% of values are generalised to a more general

domain, and 90% of values remain in the original domain. We have inconsist = 10%

and genportion = 10%. In the former case, 10% of of detailed information does not

improve the quality of the attribute significantly, but reduces its utility. So we gener-

alise the 10% of values to the more general domain for a 100% consistency. In the

latter case, it is worthwhile to sacrifice 10% values to keep 90% detailed information.

Therefore, we do not generalise the remaining values.

We use the generalisation portion as a criterion for switching on the global recod-

ing. If the generalisation portion is larger than max inconsist, we have to generalise

24

values in the base domain (the current most specific one) to a more general domain. In

other words, we need to use a global generalisation method to generalise an attribute

until the portion of values to be generalised further is less than max inconsist. The

following lemma gives an indicator for this.

Lemma 4 Let D be a table to be generalised into a k-anonymity view. Consider an

attribute i in the quasi-identifier and inconsist i = 0. Let fj be the frequency of value

j in the attribute. The lower bound of the generalisation portion is (
∑

fj<k fj)/|D|.

Proof When the frequency of a distinct value in an attribute is less than k, this value

will be generalised to satisfy the k anonymity requirement. All such values are to be

generalised. The number of generalised values is hence at least
∑

fj<k fj since some

other values may be involved in the generalisation. Therefore, the lower bound of

generalisation portion is (
∑

fj<k fj)/|D|. �

As a result, we can generalise an attribute globally and recursively until the lower

bound of the generalisation portion is less than max inconsist. Then the data set is

ready for local recoding generalisation.

The objective of keeping low inconsistency contradicts the objective of minimis-

ing distortions. The maximum inconsistency gives users a means to achieve balance

between minimising distortions and keeping the consistency of a generalised table.

7 Two local recoding anonymisation algorithms

After the distortion has been mapped to a proper distance metric, it is a natural way

to achieve k anonymisation by a clustering approach. An agglomerative hierarchical

clustering method [12] suits k-anonymisation by local recoding generalisation very

well. An agglomerative hierarchical clustering method works in the following way.

Initially, each object is assigned as a cluster. Then two clusters with the smallest dis-

tance are merged into one cluster. This procedure repeats until the number of clusters

25

reaches the user’s specified number. We modify the agglomerative hierarchial cluster-

ing algorithm for k-anonymisation by local recoding.

One issue needs to be resolved when using a clustering algorithm for local recoding

generalisation. One equivalence class is initially assigned as a cluster. In multidimen-

sional local recoding generalisation, each equivalence class as a whole is to merge with

another equivalence class to form a new equivalence class. In local recoding generali-

sation, only a portion of tuples in an equivalence class merge with another equivalence

class. In other words, overlapping clusters are allowed and data points in the identical

position are mapped into different clusters.

The purpose of allowing overlapping clusters is to preserve partial detailed in-

formation of a large equivalence class. For example, a small equivalence class (e.g.

containing one tuple) is generalised with a large equivalence class (e.g. containing a

hundred tuples). Should we generalise the whole large equivalence class in order to

absorb the small equivalence class? We should not. A better solution is to allocate a

small number of tuples, k-1 tuples, from the large equivalence class to generalise with

the small equivalence class. As a result, information in most tuples of the large equiva-

lence class is preserved. Data points representing tuples in the large equivalence class

belong to two clusters, the one for the large equivalence class and the one merging

with data points of the small equivalence class.

We propose two concepts, stub and trunk, to facilitate local recoding k-anonymisation

by clustering.

Definition 14 (Stub and Trunk of equivalence class) Suppose a small equivalence

class C1 and a large equivalence class C2 are to be generalised for k-anonymity. If

|C1| < k and |C1|+ |C2| ≥ 2k, C2 is split into two parts, a stub and a trunk. The stub

contains (k − |C1|) tuples, and the trunk contains (|C1|+ |C2| − k) tuples. The stub is

to be generalised with the small equivalence class C1.

After this split, both the new generalised equivalence class and the remaining trunk

of C2 satisfy the k-anonymity property. The detailed information in the trunk is pre-

26

served.

We modify the distance calculation between two equivalence classes C1 and C2,

where |C1| < k, in the following, to support stub and trunk splitting.

• if (|C1| + |C2| < 2k), calculate the distance between C1 and C2.

• if (|C1| + |C2| ≥ 2k), calculate the distance between C1 and the stub of C2.

We present two algorithms. The first algorithm does not have the maximum incon-

sistency constraint, and the second algorithm does.

The pseudo-code of the first algorithm is presented in Algorithm 1. In the al-

gorithm, we say that an equivalence class C is generalised with another equivalence

class C ′. We mean that C is generalised with the stub of equivalence class C ′ when

(|C| + |C ′| ≥ 2k) and C is generalised with C ′ when (|C| + |C ′| < 2k).

Algorithm 1 K-Anonymization by Clustering in Attribute hierarchies (KACA1)

1: form equivalence classes from the data set
2: while there exists an equivalence class of size < k do
3: randomly choose an equivalence class C of size < k
4: ∗evaluate the pairwise distance between C and all other equivalence classes
5: ∗find the equivalence class C ′ with the smallest distance to C
6: ∗generalise the equivalence classes C and C ′

7: end while
(∗ simplified statements. Read explanation for details.)

Line 1 forms equivalence classes. Sorting data will speed up the process. One

tuple is also called an equivalence class. The generalisation process continues in lines

2-6 when there is one or are more equivalence classes whose size is smaller than k. In

each iteration, we randomly find an equivalence class C of size smaller than k in line 3.

Then, we calculate the pairwise distances between C and all other equivalence classes

in line 4. Note that the distance of C and another equivalence class C ′ means the dis-

tance of C and the stub of C ′ when (|C|+|C ′| ≥ 2k). Line 5 finds the equivalence class

C ′ with the smallest distance to C. When there are more than one such equivalence

classes, we select one randomly. Line 6 generalises the equivalence classes C and C ′.

27

This implies that C is generalised with the stub of C ′ if (|C|+ |C ′| ≥ 2k). When C is

generalised with the stub of C ′, the trunk of C ′ remains as an equivalence in the next

round. This means that a large equivalence class can be split into a number of gen-

eralised equivalence classes. The algorithm terminates when there is no equivalence

class whose size is smaller than k left.

The complexity of KACA1 is analysed in the following. Let n be the number of

tuples. All tuples are sorted and only O(n) passes are needed to find all equivalence

classes. The complexity of this step is O(nlog n). Let |E| be the number of all equiv-

alence classes, and |Es| be the number of equivalence classes whose size is less than

k. Each iteration chooses an arbitrary equivalence class, which takes O(1) time, eval-

uates the pairwise distance, which takes O(|E|) time, finds the equivalence class with

the smallest distance, which takes O(|E|) time, and finally generalises the equivalence

class, which takes O(1) time. As there are O(|Es|) iterations, the overall runtime is

O(nlog n + |E| ∗ |Es|).
We present another algorithm that extends KACA1 by using the constraint of max-

imum inconsistency. The pseudo-code is listed in Algorithm 2.

Algorithm 2 K-Anonymization by Clustering in Attribute hierarchies with the maxi-
mum inconsistency constraint (KACA2)

1: for each attribute in the quasi-identifier do
2: generalise the attribute by the global recoding till the lower bound of genportion

< max inconsistency according to Lemma 4
3: end for
4: call KACA1
5: for each attribute i in the quasi-identifier do
6: if inconsist i > max inconsistency then
7: generate the attribute till inconsist i < max inconsistency
8: end if
9: end for

The maximum inconsistency constraint is used in KACA2 to balance consistency

and distortion. KACA2 incorporates the global recoding generalisation to reduce in-

consistency. In line 2, the employment of global recoding generalisation is determined

28

by the lower bound of the generalisation portion from Lemma 4. KACA1 is called

after the lower bound of the generalisation portion is less than max inconsist for each

attribute. After local recoding generalisation by calling KACA1, a final generalisa-

tion step is conducted when necessary to ensure the inconsistency of each attribute is

less than the user specified threshold. In this step, low distortion is sacrificed for high

consistency.

The complexity of KACA2 has a similar formulation as that of KACA1. Global

recoding generalisation takes O(n) for each generalisation. The number of global

generalisations has a lower bound of 0 and an upper bound of m ∗ (h − 1) where

the m is the number of attributes in the quasi-identifier and h is the maximum height

of attribute hierarchies. In practice, some attributes do not need global generalisation

to satisfy Lemma 4 and some attributes only need one or two global generalisations.

We estimate the complexity of this step as O(m ∗ n). In sum, the time complexity of

KACA2 is O(nlog n+m∗n+|E|∗|Es|). The additional computational cost for global

generalization O(m∗n) can be well compensated for by the reduction in O(|E| ∗ |Es|)
since |Es|, the number of equivalence classes whose size is less than k, is significantly

reduced as a result of global generalisation.

8 Proof-of-concept experiments

Our proposed methods are compared with a typical global recoding method, Incog-

nito [9], and a typical multidimensional recoding method, Multi [10]. Different meth-

ods are compared against four quality measures, distortion, discernability metric, nor-

malised average equivalence class size, and inconsistency. Multi assumes fully ordered

attributes and does not use attribute hierarchical taxonomies, and hence we do not have

distortion and inconsistency results for it.

The adult data set from the UCIrvine Machine Learning Repository [16] has be-

come a benchmark data set for comparing k-anonymity methods. The data set has

been used in most recent k-anonymity studies [6, 7, 9, 10, 11, 24]. We eliminated the

29

Attribute Distinct Values Generalizations Height
1 Age 74 5-, 10-, 20-year ranges 4
2 Work Class 7 Taxonomy Tree 3
3 Education 16 Taxonomy Tree 4
4 Martial Status 7 Taxonomy Tree 3
5 Occupation 14 Taxonomy Tree 2
6 Race 5 Taxonomy Tree 2
7 Sex 2 Suppression 1
8 Native Country 41 Taxonomy Tree 3

Table 4: Description of Adult Data Set

records with unknown values. The resulting data set contains 45,222 tuples. Eight

attributes were used as the quasi-identifier, as shown as in Table 4.

Experimental results are shown in Figure 4 and Figure 5. In Figure 4, the first

six attributes are selected as the quasi-identifier. In Figure 5, k is fixed to 10. Since

there is random selection in our algorithms, we report the distortion, discernability,

normalised average equivalence class size, and inconsistency of our methods based on

the average of ten trials. Our methods have been evaluated in both uniform and height

weight schemes. Conclusions from both schemes are very similar and here we only

show results from the height weight scheme. For the height weight scheme, β = 1.

For the KACA2 algorithm, the maximum inconsistency is set as 10%.

Based on three quality measures, namely distortion, discernability, and normalised

average equivalence class size, KACA1 performs consistently better than other meth-

ods. This shows that local recoding based on the proposed distance metric achieves

good quality k-anonymity tables based on the three measures. However, its inconsis-

tency is the highest. In some cases, the inconsistency of tables produced by KACA1

can be 70%. In such cases, values are drawn from every domain level in the Age

attribute. This may cause difficulty in data mining applications.

Based on the inconsistency measure, Incognito performs best since its inconsis-

tency is always zero. However, Incognito suppresses more than 50% of values (being

generalised to the top) in some cases. Such generalised tables also cause difficulty

in data mining applications. KACA2 balances distortion and consistency. Its incon-

30

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5
x 10

5 Adult (Quasi−identifier Size = 6)

K

D
is

to
rti

on

Incognito
KACA1
KACA2

0 20 40 60 80 100
0

5

10

15
x 10

7 Adult (Quasi−identifier Size = 6)

K

D
is

ce
rn

ab
ilit

y

KACA 1
KACA 2
Incognito
Multi

(a) (b)

0 20 40 60 80 100
0

20

40

60

80

100
Adult (Quasi−identifier Size = 6)

K

C
AV

G

KACA 1
KACA 2
Incognito
Multi

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Adult (Quasi−identifier Size = 6)

K

In
co

ns
is

te
nc

y
(M

ax
im

um
)

KACA 1
KACA 2
Incognito

(c) (d)

Figure 4: Performance of different methods with variant k (a) Distortion (b) Discern-
ablity (c) Normalised average equivalence class size (d) Inconsistency.

sistency is capped by 10%, and its distortion is in between the distortions of local and

global recoding methods. We note that with the increase of k, inconsistency of KACA2

is closer to that of Incognito. This is because that larger k requires larger equivalence

classes. Based on Lemma 4, more attributes need global recoding when k is larger.

KACA2 balances distortion and inconsistency of local recoding and global recoding.

Based on discernability and normalised average equivalence class size measures,

both KACA1 and KACA2 are better than Multi. Note that normalised average equiv-

alence class sizes for the Multi in Figure 4b look flat. This is caused by the scale of

Figure 4b. In comparison to big differences of normalised average equivalence size

among different methods, differences of a method in variant k are negligible. When

we drew Multi results in a separate figure, it is consistent with Figure 10 in paper [10].

Fluctuations in Figure 5b are caused by different attributes in the quasi-identifier. A

31

3 4 5 6 7 8
0

0.5

1

1.5

2

x 10
5 Adult (K=10)

Quasi−identifier Size

D
is

to
rti

on

Incognito
KACA1
KACA2

3 4 5 6 7 8
0

0.5

1

1.5

2

2.5
x 10

8 Adult (K=10)

Quasi−identifier Size

D
is

ce
rn

ab
ilit

y

KACA 1
KACA 2
Incognito
Multi

(a) (b)

3 4 5 6 7 8
0

50

100

150

200

250

Adult (K=10)

Quasi−identifier Size

C
AV

G

KACA 1
KACA 2
Incognito
Multi

3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Adult (K=10)

Quasi−identifier Size

In
co

ns
is

te
nc

y
(M

ax
im

um
)

KACA 1
KACA 2
Incognito

(c) (d)

Figure 5: Performance of different methods with variant quasi-identifier size (a) Dis-
tortion (b) Discernablity (c) Normalised average equivalence class size (d) Inconsis-
tency.

heuristic is used in the Multi algorithm [10] for choosing an attribute to partition the

data space in the top down greedy algorithm. A new attribute leads to a new partition.

Different partitions initiated from different attributes bear little similarities.

Both KACA1 and KACA2 are not as efficient as Incognito and Multi on the Adult

data set. One computational intensive part of both algorithms is to compute the dis-

tances between equivalence classes to find the closest equivalence class pair. This time

complexity is quadratic to the number of equivalence classes. The employment of an

advanced indexing technique to keep track of closest equivalence classes for the ef-

ficient search of the closest equivalence class pair will improve the search efficiency

significantly. This means that the current implementations of KACA1 and KACA2 are

to be optimised for better efficiency.

32

9 Conclusions

In this paper, we study two major issues in local recoding k-anonymisation: measur-

ing the distance of generalisation in data with attribute hierarchical taxonomies and

handling the inconsistency of domains in the fields of a k-anonymity table. We de-

fine generalisation distances to characterise distortions of generalisations and discuss

properties of the distance. We conclude that the generalisation distance satisfies prop-

erties of metric distances. We discuss how to handle a major problem in local recoding

generalisation, inconsistent domains in a field of a generalised table, and propose a

method to approach the problem. We show by experiments that the proposed local re-

coding method based on the distance metric achieves better quality k-anonymity tables

by three quality measures than a typical global recoding method and a typical multi-

dimensional recoding method, and that our inconsistency handling method balances

distortion and consistency of a k-anonymity table well.

Acknowledgements

Authors thank anonymous reviewers for their constructive suggestions. This research

was supported by ARC discovery grant DP0774450 to Li, was supported in part by the

RGC Earmarked Research Grant of HKSAR CUHK 4120/05E and 4118/06E to Fu,

and a NSERC Discovery grant to Jian.

References

[1] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, and
A. Zhu. Anonymizing tables. In ICDT05: Proceedings of the 10th International Confer-
ence on Database Theory, pages 246–258, Edinburgh, Scotland, 2005.

[2] D. Agrawal and C. C. Aggarwal. On the design and quantification of privacy preserving
data mining algorithms. In PODS ’01: Proceedings of the 20th ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 247–255, Santa Barbara,
California, United States, 2001. ACM Press.

33

[3] R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceedings of the 19th
ACM SIGMOD Conference on Management of Data, pages 439–450, Dallas, Texas, May
2000. ACM Press.

[4] R. J. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. In ICDE
’05: Proceedings of the 21st International Conference on Data Engineering (ICDE’05),
pages 217–228, Tokyo, Japan, 2005. IEEE Computer Society.

[5] J. Domingo-Ferrer and V. Torra. Ordinal, continuous and heterogeneous k-anonymity
through microaggregation. Data Mining and Knowledge Discovery, 11(2):195–212,
2005.

[6] Y. Du, T. Xia, Y. Tao, D. Zhang, and F. Zhu. On multidimensional k-anonymity with
local recoding generalization. In Proceedings of the 23rd International Conference on
Data Engineering(ICDE2007), pages 1422–1424, Istanbul, Turkey, 2007.

[7] B. C. M. Fung, K. Wang, and P. S. Yu. Top-down specialization for information and
privacy preservation. In ICDE ’05: Proceedings of the 21st International Conference
on Data Engineering (ICDE’05), pages 205–216, Tokyo, Japan, 2005. IEEE Computer
Society.

[8] V. S. Iyengar. Transforming data to satisfy privacy constraints. In KDD ’02: Proceedings
of the 8th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 279–288, Edmonton, Alberta, Canada, 2002. ACM Press.

[9] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Incognito: efficient full-domain k-
anonymity. In SIGMOD ’05: Proceedings of the 24th ACM SIGMOD international con-
ference on Management of data, pages 49–60, Baltimore, Maryland, 2005. ACM Press.

[10] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Mondrian multidimensional k-
anonymity. In ICDE ’06: Proceedings of the 22nd International Conference on Data
Engineering (ICDE’06), page 25, Washington, DC, USA, 2006. IEEE Computer Society.

[11] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan. Workload-aware anonymization. In
KDD ’06: Proceedings of the 12th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 277–286, Philadelphia, PA, USA, 2006. ACM
Press.

[12] K. Leonard and R. Peter. Finding Groups in Data: An Introduction to Cluster Analysis.
Wiley-Interscience Publication, 1990.

[13] J. Li, R. C.-W. Wong, and A. W.-C. F. andf Jian Pei. Achieving k-anonymity by clustering
in attribute hierarchical structures. In Proceedings of the 8th International Conference on
Data Warehousing and Knowledge Discovery, pages 405–416, Krakow, Poland, 2006.

[14] Y. Lindell and B. Pinkas. Privacy preserving data mining. Journal of Cryptology,
15(3):177–206, 2002.

[15] A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. In PODS
’04: Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 223–228, Paris, France, 2004. ACM Press.

34

[16] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI repository of machine learn-
ing databases, http://www.ics.uci.edu/∼mlearn/MLRepository.html,
1998.

[17] S. Rizvi and J. Haritsa. Maintaining data privacy in association rule mining. In Proceed-
ings of the 28th Conference on Very Large Data Base (VLDB02), pages 682–693, Hong
Kong, China, 2002. VLDB Endowment.

[18] P. Samarati. Protecting respondents’ identities in microdata release. IEEE Transactions
on Knowledge and Data Engineering, 13(6):1010–1027, 2001.

[19] L. Sweeney. Achieving k-anonymity privacy protection using generalization and sup-
pression. International journal on uncertainty, Fuzziness and knowldege based systems,
10(5):571 – 588, 2002.

[20] L. Sweeney. k-anonymity: a model for protecting privacy. International journal on
uncertainty, Fuzziness and knowldege based systems, 10(5):557 – 570, 2002.

[21] J. Vaidya and C. Clifton. Privacy-preserving k-means clustering over vertically parti-
tioned data. In KDD ’03: Proceedings of the 9th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 206–215, Washington, D.C., 2003. ACM
Press.

[22] K. Wang, P. S. Yu, and S. Chakraborty. Bottom-up generalization: A data mining so-
lution to privacy protection. In ICDM ’04: Proceedings of the 4th IEEE International
Conference on Data Mining (ICDM’04), pages 249–256, Washington, DC, USA, 2004.
IEEE Computer Society.

[23] R. Wright and Z. Yang. Privacy-preserving bayesian network structure computation on
distributed heterogeneous data. In KDD ’04: Proceedings of the 10th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pages 713–718, Seattle,
WA, USA, 2004. ACM Press.

[24] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. W.-C. Fu. Utility-based anonymization
using local recoding. In KDD ’06: Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 785–790, Philadelphia, PA,
USA, 2006. ACM Press.

35

