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Abstract

Predicting the next page to be accessed by Web users has attracted a large amount of research work lately due to the 
positive impact of such prediction on different areas of Web based applications. Major techniques applied for this intention 
are Markov model and clustering. Low order Markov models are coupled with low accuracy, whereas high order Markov 
models are associated with high state space complexity. On the other hand, clustering methods are unsupervised 
methods, and normally are not used for classification directly. This paper involves incorporating clustering with low order 
Markov model techniques. The pre-processed data is divided into meaningful clusters then the clusters are used as 
training data while performing 2nd order Markov model techniques. Different distance measures of k-means clustering 
algorithm are examined in order to find an optimal one. Experiments reveal that incorporating clustering of Web 
documents according to Web services with low order Markov model improves the web page prediction accuracy. 

Introduction

The ongoing increase of digital data on the Web has resulted in the overwhelming amount of research in the area of Web 
user browsing personalization and next page access prediction. It is rather a complicated issue since, until now, there is 
not a single theory or approach that can handle the increasing number of data with improved performance, efficiency and 
accuracy of Web page prediction [HREF4]. Two of the most common approaches used for Web user browsing pattern 
prediction are Markov model and clustering. Each of these approaches has its own shortcomings. Markov model is the 
most commonly used prediction model because of its high accuracy. Low order Markov models have higher accuracy and 
lower coverage than clustering. In order to overcome low coverage, all-kth order Markov models have been used [HREF5] 
where the highest order is first applied to predict a next page. If it cannot predict the page, it decreases the order by one 
until prediction is successful. This can increase the coverage, but it is associated with higher state space complexity. 
Clustering methods are unsupervised methods, and normally are not used for classification directly. However, proper 
clustering groups users’ sessions with similar browsing history together, and this facilitates classification. Prediction is 
performed on the cluster sets rather than the actual sessions. Clustering accuracy is based on the selected features for 
partitioning. For instance, partitioning based on semantic relationships or contents [HREF6] or link structure [HREF7] 
usually provides higher accuracy than partitioning based on bit vector, spent time, or frequency. However, even the 
semantic, contents and link structure accuracy is limited due to the unidirectional nature of the clusters and the 
multidirectional structure of Web pages. This paper involves implementing a clustering algorithm to partition Web 
sessions into clusters and then applying Markov model techniques based on the clusters in order to achieve better 
accuracy and performance of next page access prediction. Section 2 looks at previous literature in the area of combininig 
clustering with Markov model techniques. Section 3 explains the process acquired to achieve better prediction. In section 
4, we prove our new process experimentally and section 5 concludes our work. 

Literature Review

Markov model and clustering are two frameworks used for predicting the next page to be accessed by the Web user. 
Many research papers addressed Web page prediction by using clustering, Markov model or a combination of both 
techniques. Kim et al. [HREF4] combine most prediction models (Markov model, sequential association rules, association 
rules and clustering) in order to improve the prediction recall. The proposed model proves to outperform classical Web 
usage mining techniques. However, the new model depends on many factors, like the existence of a Web site link 
structure and the support and confidence thresholds. These factors affect the order of the applied models and the 
performance of the new model. Cadez et al. [HREF8] on the other hand, combined first order Markov model with 
clustering using a different approach. They partitioned site users using a model-based clustering approach where they 
implemented first order Markov model using the Expectation-Maximization algorithm. After partitioning the users into 
clusters, they displayed the paths for users within each cluster. Our work is distance based and not model based and we 
used Markov model for prediction rather than clustering. Another paper that combines both Markov model and clustering 
techniques for Web page link prediction is [HREF7], where the authors construct Markov models from log files and they 
use co-citation and coupling similarities for measuring the conceptual relationships between Web pages. CitationCluster 
algorithm is then proposed to cluster conceptually related pages. A hierarchy of the Web site is constructed from the 
clustering results. The authors then combine Markov model based link prediction to the conceptual hierarchy into a 
prototype called ONE to assist users’ navigation. The authors implement a hierarchical clustering technique that could 
lead to running time complexity with large Web log files. Although Web page prediction performance was improved by 
previous work, none of the papers showed an improvement in the Web page prediction accuracy. Kim et. al used a 
combination of models but their work improved recall but did not improve the Web page prediction accuracy [HREF4]. Our 
work proves to outperform previous work in terms of Web page prediction accuracy using a combination of clustering and 
Markov model techniques. We implement a simple clustering algorithm, k-means algorithm where using different distance 
measures can lead to different results. Distance measures were analyzed and an optimal one was chosen. 

Methodology

Page 1 of 10Integrating Markov Model with Clustering for Predicting Web Page Accesses

22/10/2013mhtml:file://D:\Current\WebPage\public_html-Oct2013\MarkovClustering.mht



Web page prediction involves anticipating the next page to be accessed by the user or the link the Web user will click at 
next when browsing a Web site. For example, what is the chance that a Web user visiting a site that sells computers will 
buy an extra battery when buying a laptop? Or, may be there is a greater chance the user will buy an external floppy 
drive instead. Users’ past browsing experience is very fundamental in extracting such information. This is when modeling 
techniques come at hand. For instance, using clustering algorithms, we are able to personalize users according to their 
browsing experience. Different users with different browsing behavior are grouped together and then prediction is 
performed based on the users’ link path in the appropriate cluster. Similar kind of prediction can be in effect using Markov 
models conditional probability. For instance, if 50% of the users access page D after accessing pages ABC, then there is a 
50/50 chance that a new user that accesses pages ABC will access page D next. Our work improves the Web page access 
prediction accuracy by combining both Markov model and clustering techniques. It is based on dividing Web sessions into 
groups according to Web services and performing Markov model analysis using clusters of sessions instead of the whole 
data set. This process involves the following steps: 

1. Preprocess the Web server log files in a manner where similar Web sessions are allocated to appropriate categories. 
2. Analyze and calculate different distance measures and determine the most suitable distance measure. 
3. Decide on the number of clusters (k) and partition the Web sessions into clusters according to the chosen distance 

measure. 
4. For each cluster, return the data to its uncategorized and expanded state. 
5. Perform Markov model analysis on the whole data set. 
6. For each item in the test data set, find the approprite cluster the item belongs to. 
7. Calculate 2-Markov model accuracy using the cluster data as the training data set. 
8. Calculate the total prediction accuracy based on clusters. 
9. Compare the Markov model accuracy of the clusters to that of the whole data set. 

Feature Selection

Because of the overwhelming amount of Web data, it is very important to group data according to some features before 
applying clustering techniques. This will reduce the state space and will make the clustering task simpler. If the features 
are not selected appropriately, there is no way we can get good clusters no matter what type of clustering algorithm is 
used. Wang et al. [HREF9] presented different feature selections and metrics that form the base of E-commerce customer 
groupings for clustering purposes. They examined features like services request, navigation pattern and resource usage. 
The result of their experimentations proved that all features yield similar results and thus, grouping customers according 
to one of the features selected should do the job. For our purposes, we will group the pages, and not users, according to 
services requested since it is applicable to our log data and is simple to implement. Grouping pages according to services 
requested yields best results if it is carried out according to functionality [HREF9]. The grouping of Web pages according 
to functionality could be done either by removing the suffix of visited pages or the prefix. In our case, we cannot merge 
according to suffix because, for example, pages with suffix index.html could mean any default page like 
OWOW/sec4/index.html or OWOW/sec9/index.html or ozone/index.html. Therefore, merging will be according to a prefix. 
Since not all Web sites have a specific structure where we can go up the hierarchy to a suitable level, we had to come up 
with a suitable automatic method that can merge similar pages automatically. For our log file data, the chosen prefix will 
be delimited by slash, dot or space. A program runs and examines each record. It only keeps the delimited and unique 
word. A manual examination of the results also takes place to further reduce the number of categories by combining 
similar pages. 

Clustering

According to Srivastava et al. [HREF10], clustering is a pattern discovery algorithm in the Web usage mining stage of 
Web mining. It is defined as the classification of patterns into groups (clusters) based on similarity in order to improve 
common Web activities. Clustering can be model-based or distance-based. With model-based clustering [HREF11], the 
model type is often specified a priori and the model structure can be determined by model selection techniques and 
parameters estimated using maximum likelihood algorithms, e.g., the Expectation Maximization (EM). Distance-based 
clustering involves determining a distance measure between pairs of data objects, and then grouping similar objects 
together into clusters. The most popular distance-based clustering techniques include partitional clustering and 
hierarchical clustering. A partitional method partitions the data objects into K groups and is represented by k-means 
algorithm. A hierarchical method builds a hierarchical set of nested clusters, with the clustering at the top level containing 
a single cluster of all data objects and the clustering at the bottom level containing one cluster for each data object. 
Model-based clustering has been shown to be effective for high dimensional text clustering [HREF11]. However, 
hierarchical distance-based clustering proved to be unsuitable for the vast amount of Web data. Although distance-based 
clustering methods are computationally more complex than model-based clustering approaches, they have displayed their 
ability to produce more efficient Web documents clustering results [HREF12, HREF13]. Clustering can also be supervised 
or unsupervised. The difference between supervised and unsupervised clustering is that with supervised clustering, 
patterns in the training data are labeled. New patterns will be labeled and classified into existing labeled groups 
[HREF14]. Unsupervised clustering can be classified as hierarchical or non-hierarchical [HREF15]. A common method of 
non-hierarchical clustering is the k-means algorithm that tends to cluster data into even populations. In this paper, we 
use a straightforward implementation of the k-means clustering algorithm. It is distance-based, unsupervised and 
partitional. 

Distance Measures

The clustering algorithm chosen for this work is K-means clustering algorithm that is a simple and popular form of cluster 
analysis. It has been widely used in grouping Web user sessions. It is distance based as opposed to complex model based 
algorithms. It involves the following: 

1. Define a set of sessions (n-by-p data matrix) to be clustered. 
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2. Define a chosen number of clusters (k). 
3. Randomly assign a number of sessions to each cluster. 

The k-means clustering repeatedly performs the following: 

1. Calculate the mean vector for all items in each cluster. 
2. Reassign the sessions to the cluster whose center is closest to the session. 

Until there is no change for all cluster centers. 

Because the first clusters are created randomly, k-means runs different times each time it starts from a different point 
giving different results. The different clustering solutions are compared using the sum of distances within clusters. The 
clustering solution with the least sum of distances is considered. Therefore, k-means clustering depends greatly on the 
number of clusters (k), the number of runs and the distance measure used. The output is a number of clusters with a 
number of items in each cluster. Distances or similarities between items are a set of rules that serve as a method for 
grouping or separating items. The distance measured between items in each cluster plays a vital role in forming the 
clusters. Due to different units of measure in different dimensions, the Euclidean distance measure may not be an 
adequate measure of closeness even though it is commonly assumed to be. It is important to mention that other non-
Euclidean distance measures have been proposed [HREF12] and can be useful for the same purpose. In this paper, we 
examine five distance measures: Euclidean and Squared Euclidean, City Block, Cosine, Pearson Correlation and Hamming.

Euclidean: This is the most straightforward and the most commonly chosen type of distance. It forms the actual 
geometric distance in the multidimensional space. It is computed as follows: 

If greater weight needs to be assigned on items that are further apart, Squared Euclidean distance is used instead and it 
is computed as follows: 

City Block: Also known as Manhattan distance is another common distance measure and it yields results that are similar 
to the Euclidean distance results. It is only different in that it lessens the outliers effect. It is simply computed by finding 
the average difference between dimensions: 

Hamming: For real valued vectors, the Hamming distance is equivalent to the City Block distance. It is commonly used to 
compare binary vectors because of its simplicity. The Hamming distance measures the number of substitutions required 
to change one string into the other. It can be performed with an exclusive OR function, XOR. It is defined as follows: 

The Hamming distance is an unsuitable distance measure for our data set, because data items have to be converted to 
binary data. This means that the weights we placed on the pages to specify the number of their occurrences will be 
eliminated. 

Cosine: It determines similarity by the cosine of the angle between two vectors [HREF12]. Cosine distance measure is the 
most popular measure for text documents since the similarity does not depend on the length and it allows documents 
with the same composition but different totals to be treated identically. The Cosine distance is given by: 

Pearson Correlation: It is mostly used in collaborative filtering to predict a feature from a highly similar mentor group of 
objects whose features are known [HREF12]. It is defined as follows: 

K-means computes centroid clusters differently for different k-means supported distance measures. Therefore, a 
normalization step was necessary for Cosine and Correlation distance measures for comparison purposes. The points in 
each cluster, whose mean forms the centroid of the cluster, are normalized to unit Euclidean length. According to Strehl 
et al. [HREF12] and Halkidi et al. [HREF16], Cosine distance measure which is a direct application of the extended Jaccard 
coefficient, yields better clustering results than Pearson Correlation and the Euclidean distance measure [HREF12, 

Euclidean(x, y) = (1)

Squared Euclidean(x, y) = (2)

City Block(x, y) = (3)

Hamming(x, y) = (4)

Cosine(x, y) = (5)

Correlation(x, y) = (6)
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HREF16]. Because different distance measures have been applied for different purposes, there is no apparent one 
clustering validation measure we can rely on to test our clusters in terms of their proximity. The importance of the 
validation measure is significant in order to form the most appropriate clusters to be used in conjunction with Markov 
model. The most common clustering validation technique is entropy [HREF12, HREF17, HREF9]. Entropy is defined as 
follows: 

Entropy measures the purity of the clusters with respect to the given class labels. For our data sets, entropy is measured 
by calculating the probability that a page in a cluster x belongs to category nx. Entropy tends to favor small clusters. If 
the cluster has all its pages belonging to one category, the entropy will be 0. The entropy measure increases as the 
categories become more varied. The overall entropy of the whole clustering solution is measured as the weighted sum of 
entropy measures of all clusters within the clustering solution. Xiong et al. [HREF17], proved through experimentations 
that the entropy evaluation does not confirm with the k-means true clusters and its results could be misleading. 
Therefore, we were not able to rely on the entropy results alone to discover the optimal number of clusters (k). In our 
distance measures evaluations we run entropy evaluation measures, we calculate the mean of the distances and we plot 
clusters figures on the clusters obtained using different distance measures. 

Markov Model

Markov models are becoming very commonly used in the identification of the next page to be accessed by the Web site 
user based on the sequence of previously accessed pages [HREF18]. 
Let P = {p1, p2, …, pm} be a set of pages in a Web site. Let W be a user session including a sequence of pages visited by 
the user in a visit. Assuming that the user has visited l pages, then prob(pi|W) is the probability that the user visits pages 
pi next. Page pl+1 the user will visit next is estimated by: 

               (8)

This probability, prob(pi|W), is estimated by using all sequences of all users in history (or training data), denoted by W. 
Naturally, the longer l and the larger W, the more accurate prob(pi|W). However, it is infeasible to have very long l and 
large W and it leads to unnecessary complexity. Therefore, to overcome this problem, a more feasible probability is 
estimated by assuming that the sequence of the Web pages visited by users follows a Markov process. The Markov 
process imposed a limit on the number of previously accessed pages k. In other words, the probability of visiting a page 
pi does not depend on all the pages in the Web session, but only on a small set of k preceding pages, where k << l. The 
equation becomes: 

               (9)

k denotes the number of the preceding pages and it identifies the order of the Markov model. The resulting model of this 
equation is called the all kth order Markov model. Of course, the Markov model starts calculating the highest probability of 
the last page visited because during a Web session, the user can only link the page he is currently visiting to the next 
one. The example is similar to Desphpande’s Figure 1 [HREF18]. Let  be a state containing k pages,  = {pl-(k-

1),pl-(k-2),…,pl}. The probability of P(pi| ) is estimated as follows from a history (training) data set. 

               (10)

This formula calculates the conditional probability as the ratio of the frequency of the sequence occurring in the training 
set to the frequency of the page occurring directly after the sequence. The fundamental assumption of predictions based 
on Markov models is that the next state is dependent on the previous k states. The longer the k is, the more accurate the 
predictions are. However, longer k causes the following two problems: The coverage of model is limited and leaves many 
states uncovered; and the complexity of the model becomes unmanageable. Therefore, the following are three modified 
Markov models for predicting Web page access. 

1. All kth Markov model: This model is to tackle the problem of low coverage of a high order Markov model. For each 
test instance, the highest order Markov model that covers the instance is used to predict the instance. For example, 
if we build an all 4-Markov model including 1-, 2-, 3-, and 4-, for a test instance, we try to use 4-Markov model to 
make prediction. If the 4-Markov model does not contain the corresponding states, we then use the 3-Markov 
model, and so forth [HREF5]. 

2. Frequency pruned Markov model: Though all kth order Markov models result in low coverage, they exacerbate the 
problem of complexity since the states of all Markov models are added up. Note that many states have low 
statistically predictive reliability since their occurrence frequencies are very low. The removal of these low 
frequency states affects the accuracy of a Markov model. However, the number of states of the pruned Markov 
model will be significantly reduced. 

3. Accuracy pruned Markov model: Frequency pruned Markov model does not capture factors that affect the accuracy 

(7)
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of states. A high frequent state may not present accurate prediction. When we use a means to estimate the 
predictive accuracy of states, states with low predictive accuracy can be eliminated. One way to estimate the 
predictive accuracy using conditional probability is called confidence pruning. Another way to estimate the 
predictive accuracy is to count (estimated) errors involved, called error pruning. 

In this paper, we employ the frequency pruned Markov model. When choosing the Markov model order, our aim is to 
determine a Markov model order that leads to high accuracy with low state space complexity. Figure 1 reveals the 
increase of precision as the all kth order Markov model increases. On the other hand, table 1 shows the increase of the 
state space complexity as the order of all kth Markov model increases. Based on this information, we use the all 2nd order 
Markov model because it has better accuracy than that of the all 1st order Markov model without the drawback of the 
state space complexity of the all 3rd and all 4th order Markov model.

Combining Clustering and Markov Model

The web data is heterogeneous in nature. Each session is a collection of visited Web pages by the user. Every user has a 
different level of browsing expertise and sessions are formed mainly haphazardly because users usually follow different 
paths when trying to access the same page. Clustering combines similar Web page paths or user sessions together and 
subsets of data are therefore more homogeneous resulting in simpler Markov model computations. By applying clustering 
to abstracted user sessions, it is more likely to find groups of sessions with similar pages that help increase the Markov 
model accuracy. For example, consider the four Web sessions in table 2, and the 2 clusters derived using the k-means 
clustering algorithm:

Assuming that there is a new Web session: A, B, C, D what is the probability that the new page to be accessed by the 
user is page E? According to k-means clustering algorithm, and according to the distance measure between the new data 
points and the data points in the existing clusters, the new session belongs to cluster 1. The Markov model analysis 
performed on the subset cluster 1 yields a 1.0 probability for accessing page E next. However, performing Markov model 
analysis on the whole data set yields a 0.67 probability. 

Figure 1: Precision of all 1-, 2-, 3-and 4-Markov model orders.

Table 1: Number of states of Markov 
model orders. 

Model All-kth States
1st order 745
2nd order 9162
3rd order 14977
4th order 17034

Table2: Example of user sessions.

W1 A,    B,    F,    G,    I
W2 A,    C,    D,    G,    I
W3 B,    C,    D,    E,    H
W4 B,    C,    D,    E,    F

Cluster 1: 

W3 B,    C,    D,    E,    H
W4 B,    C,    D,    E,    F

Cluster 2:
W1 A,    B,    F,    G,    I
W2 A,    C,    D,    G,    I
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Experimental Evaluation

Data Collection and Preprocessing

For our experiments, the first step was to gather log files from active Web servers. Usually, Web log files are the main 
source of data for any e-commerce or Web related session analysis [HREF19]. The log file we used as a data source for 
our experiments is a day’s worth of all HTTP requests to the EPA WWW server located at Research Triangle Park, NC. The 
logs are an ASCII file with one line per request, with the following information: The host making the request, date and 
time of request, requested page, HTTP reply code and bytes in the reply. The logs were collected for Wednesday, August 
30 1995. There were 47,748 total requests, 46,014 GET requests, 1,622 POST requests, 107 HEAD requests and 6 invalid 
requests. Before using the EPA log file data, it was necessary to perform data preprocessing [HREF20, HREF21]. We 
removed erroneous and invalid pages. Those include HTTP error codes 400s, 500s, and HTTP 1.0 errors, as well as, 302 
and 304 HTTP errors that involve requests with no server replies. We also eliminated multi-media files such as gif, jpg 
and script files such as js and cgi. The next step was to identify user sessions. A session is a sequence of URLs requested 
by the same user within a reasonable time. The user is uniquely defined by an IP address recorded in each http request 
within the time-frame of a single session. The end of a session is determined by a 30 minute threshold between two 
consecutive Web page requests. If the number of requests is more than the predefined threshold value, we conclude that 
the user is not a regular user; it is either a robot activity, a Web spider or a programmed Web crawler. Short sessions 
were also removed and only sessions with at least 5 pages were considered. the EPA preprocessing and filtering resulted 
in 799 Web sessions. The sessions of the data set are of different length. Web pages forming the sessions are in sequence 
of their user access. All sessions are represented by vectors with the number of occurrence of pages as weights. This will 
draw sessions with similar pages closer together when performing clustering techniques. 

Distance Measures Evaluation

Table 3 lists entropy measures for only some of the clusters due to space limitation. The table demonstrates that, in 
general, Cosine and Pearson Correlation constitute better clusters than the other distance measures. 

Our basic motivation behind clustering is to group functionally related sessions together based on Web services requested 
in order to improve the Markov model accuracy. The Markov model accuracy increases with the increase of the number of 
clusters due to the fact that more functionally related sessions are grouped together. However, Markov model 
computation complexity nature requires a limited number of clusters. Having this in mind and examining the entropy 
measures in Table 3 we conclude that using Cosine distance measure with the number of clusters (k)=7 will lead to good 
clustering results while keeping the number of clusters to a minimum. The 7 clusters were obtained in 17 iterations with 
the least sum of distances of 99.1192. Figure 2, Figure 3, Figure 4, Figure 5 and Figure 6 represent clusters using 
Euclidean, Hamming, City Block, Pearson Correlation and Cosine distance measures respectively. They plot the silhouette 
value represented by the cluster indices displaying a measure of how close each point in one cluster is to points in the 
neighboring clusters. The silhouette measure ranges from +1, indicating points that are very distant from neighboring 
clusters, to 0, indicating points that do not belong to a cluster. The figures reveal that the order of distance measures 
from worst to best are Hamming, City Block, Euclidean, Pearson Correlation and Cosine respectively. For instance, the 
maximum silhouette value in Figure 3 for Hamming distance is around 0.5, whereas, the silhouette value of Figure 6 for 
Cosine distance ranges between 0.5 and 0.9. The larger silhouette value of the Cosine distance implies that the clusters 
are separated from neighboring clusters. 

Table3: Entropy measures for different clusters.

Clusters 2 3 4 5 6 7 8 9 10 20 30 40 50
Euclidean 0.42 0.38 0.32 0.58 0.31 0.28 0.25 0.30 0.26 0.21 0.19 0.23 0.22

City 0.52 0.48 0.50 0.49 0.46 0.42 0.39 0.31 0.29 0.27 0.25 0.24 0.23
Hamming 0.56 0.49 0.53 0.50 0.47 0.39 0.41 0.38 0.36 0.29 0.25 0.31 0.34

Cosine 0.36 0.32 0.37 0.43 0.25 0.21 0.22 0.21 0.17 0.16 0.19 0.22 0.23
Correlation 0.30 0.28 0.30 0.37 0.20 0.21 0.23 0.19 0.20 0.19 0.18 0.19 0.21

Figure 2: Euclidean distance measure with 7 
clusters.

Figure 3: Hamming distance measure with 7 
clusters.
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Figure 7 reveals the mean value of distances for different clusters. It is calculated by finding the average of distance 
values between points within clusters and their neighboring clusters. The higher the mean value, the better clusters we 
get. It is worth noting that the information Figure 7 provides does not prove much on its own because it does not take 
into consideration points distribution within clusters. 

Figure 7: The mean value for 2 ... 10 clusters using different distance measures

Figure 4: City Block distance measure with 7 
clusters.

Figure 5: Correlation distance measure with 7 
clusters.

Figure 6: Cosine distance measure with 7 
clusters.

Page 7 of 10Integrating Markov Model with Clustering for Predicting Web Page Accesses

22/10/2013mhtml:file://D:\Current\WebPage\public_html-Oct2013\MarkovClustering.mht



The results of the distance plots in Figures 2-6, the distance mean values in Figure 7 as well as the entropy calculations 
all reveal that Cosine and Pearson Correlation form better clusters than Euclidean, City Block and Hamming distance 
measures. Based on this information, we choose Cosine measures with k=7 for the prediction accuracy evaluation. 

Experiment Results

Merging Web pages by web services according to functionality reduces the number of unique pages from 2924 to 155 
categories. The sessions were divided into 7 clusters using the k-means algorithm and according to the Cosine distance 
measure. For each cluster, the categories were expanded back to their original form in the data set. This process is 
performed using a simple program that seeks and displays the data related to each category. If we consider the 
categorization example in section 3, cie category will be expanded back to cie/metadata.txt.html cie/index.html 
cie/summer95 and cie/summer95/articles. If a user accesses cie/index.html, there is a chance he/she will access 
cie/summer95 then cie/summer95/articles next. Markov model implementation was carried out for the whole data set. 
The data set was divided into training set and test set and 2-Markov model accuracy was calculated accordingly. Then, 
using the test set, each transaction was considered as a new point and distance measures were calculated in order to 
define the cluster that the point belongs to. Next, 2-Markov model prediction accuracy was computed considering the 
transaction as a test set and only the cluster that the transaction belongs to as a training set. Prediction accuracy results 
were achieved using the maximum likelihood based on conditional probabilities as stated in equation 3 above. All 
predictions in the test data that did not exist in the training data sets were assumed incorrect and were given a zero 
value. All implementations were carried out using MATLAB. The Markov model accuracy was calculated using a 10-fold 
cross validation. The data was split into ten equal sets. First, we considered the first nine sets as training data and the 
last set for test data. Then, the second last set was used for testing and the rest for training. We continued moving the 
test set upward until the first set was used for testing and the rest for training. The reported accuracy is the average of 
ten tests. Figure 9 compares the Markov model accuracy of the whole data set to Markov model accuracy using clusters 
based on Euclidean, Correlation and Cosine distance measures with k=7. 

Figure 8: Markov model accuracy of whole data set and Markov model accuracy using clusters based on Euclidean, 
Correlation and Cosine distance measures with k=7.

All clustering runs were performed on a desktop PC with a Pentium IV Intel processor running at 2 GHz with 2 GB of RAM 
and 100 GB of hard disk memory. In our largest runs with K = 50, we exhausted around 6.1 MB of memory in 34 
seconds. The runtime of the k-means algorithm, regardless of the distance measure used, is equivalent to O(nkl)
[HREF15], where n is the number of items, k is the number of clusters and l is the number of iterations taken by the 
algorithm to converge. For our experiments, where n and k are fixed, the algorithm has a linear time complexity in terms 
of the size of the data set. The k-means algorithm has a O(k + n) space complexity. This is because it requires space to 
store the data matrix. It is feasible to store the data matrix in a secondary memory and then the space complexity will 
become O(k). k-means algorithm is more time and space efficient than hierarchical clustering algorithms with O(n2 logn)
time complexity and O(n2) space complexity. As for all 2nd order Markov model, the running time of the whole data set 
was similar to that of the clusters added together because the running time is in terms of the size of the data. i.e. T(n)=T
(k1)+T(k2)+T(k3)+...T(ki) where time is denoted by T, the number of items in the data set is denoted by n, and the 
clusters are denoted by ki. 

Conclusion

This paper improves the overall prediction accuracy by grouping the data set sessions into clusters. The Web pages in the 
user sessions are first allocated into categories according to Web services that are functionally meaningful. Then, k-means
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clustering algorithm is implemented using the most appropriate number of clusters and distance measure. Prediction 
techniques are applied using each cluster as well as using the whole data set. The experimental results reveal that 
implementing the k-means clustering algorithm on the data set improves the accuracy of the next page access prediction. 
The prediction accuracy achieved is an improvement to previous research papers that addressed mainly recall and 
coverage. 
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