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Abstract We study the challenges of protecting privacy of individuals in the large

public survey rating data in this paper. Recent study shows that personal information

in supposedly anonymous movie rating records are de-identified. The survey rating

data usually contains both ratings of sensitive and non-sensitive issues. The ratings of

sensitive issues involve personal privacy. Even though the survey participants do not

reveal any of their ratings, their survey records are potentially identifiable by using

information from other public sources. None of the existing anonymisation principles

(e.g., k-anonymity, l-diversity, etc.) can effectively prevent such breaches in large survey

rating data sets.

We tackle the problem by defining a principle called (k, ϵ)-anonymity model to

protect privacy. Intuitively, the principle requires that, for each transaction t in the

given survey rating data T , at least (k − 1) other transactions in T must have ratings

similar to t, where the similarity is controlled by ϵ. The (k, ϵ)-anonymity model is for-

mulated by its graphical representation and a specific graph-anonymisation problem

is studied by adopting graph modification with graph theory. Various cases are ana-

lyzed and methods are developed to make the updated graph meet (k, ϵ) requirements.
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The methods are applied to two real-life data sets to demonstrate their efficiency and

practical utility.

Keywords (k, ϵ)-anonymity · survey rating data · graphical representation

1 Introduction

The problem of privacy-preserving data publishing has received a lot of attention in

recent years [29,11,25]. Privacy preservation on relational data has been studied ex-

tensively. A major type of privacy attack on relational data includes re-identifying

individuals by joining a published data set containing sensitive information with the

external data sets modeling background knowledge of attackers [20,26,23]. Most of the

existing work is formulated in contexts of several organizations, such as hospitals, pub-

lishing detailed data (also called microdata) about individuals (e.g. medical records)

for research or statistical purposes.

Privacy risks of publishing microdata are well-known [18,35,15,38]. Famous at-

tacks include de-anonymisation of the Massachusetts hospital discharge database by

joining it with a public voter database [29] and privacy breaches caused by AOL search

data [11]. Even if identifiers such as names and social security numbers have been re-

moved, the adversary can use linking [30], homogeneity and background attacks [23]

to re-identify individual data records or sensitive information of individuals. To over-

come the re-identification attacks, the mechanism of k-anonymity was proposed [26,

30]. Specifically, a data set is said to be k-anonymous if, on the quasi-identifier (QID)

attributes (the maximal set of join attributes to re-identify individual records), each

record is identical with at least (k−1) other records. The larger the value of k, the better

the privacy protection is. Although k-anonymity has been well adopted, Machanava-

jjhala et al. [23] showed that a k-anonymous data set may still have some subtle but

severe privacy problems due to the lack of diversity in sensitive attributes. Particularly,

a large body of research contributes to transforming a data set to meet a privacy princi-

ple (k-anonymity [29,28], l-diversity [23], (α, k)-anonymity [32], t-closeness [19]) using

techniques such as generalization, suppression (removal), permutation and swapping

of certain data values while minimizing certain cost metrics [13,34,24,5,7,17,21].

Recently, a new privacy concern has emerged in privacy preservation research:

how to protect the privacy of individuals in published large survey rating data. For

example, movie rating data, supposedly to be anonymized, is de-identified by linking

un-anonymized data from another source [6]. On October 2, 2006, Netflix, the world’s

largest online DVD rental service, announced a $1-million Netflix Prize for improving

their movie recommendation service [10]. To aid contestants, Netflix publicly released

a data set containing 100,480,507 movie ratings, created by 480,189 Netflix subscribers

between December 1999 and December 2005. Narayanan and Shmatikov [25] have

shown that an attacker only needs a little bit information of an individual to identify

the anonymized movie rating transaction of the individual in the data set. They re-

identified Netflix movie ratings using the Internet Movie Database (IMDb)1 as a source

of auxiliary information and successfully identified the Netflix records of known users,

uncovering their political preferences and other potentially sensitive information. In

this paper, we will refer to two types of data as “survey rating data” and “relational

data”.

1 http://www.imdb.com/
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non-sensitive sensitive
ID issue 1 issue 2 issue 3 issue 4
t1 6 1 null 6
t2 1 6 null 1
t3 2 5 null 1
t4 1 null 5 1
t5 2 null 6 5

(a)

non-sensitive issues
name issue 1 issue 2 issue 3
Alice excellent so bad -
Bob awful top -
Jack bad - good

(b)

Table 1 (a) A published survey rating data set containing ratings of survey participants on
both sensitive and non-sensitive issues. b) Public comments on some non-sensitive issues of
some participants of the survey. By matching the ratings on non-sensitive issues with public
available preferences, t1 is linked to Alice, and her sensitive rating is revealed.

1.1 Motivation

The structure of large survey rating data is different from relational data, since it does

not have fixed personal identifiable attributes. The lack of a clear set of personal iden-

tifiable attributes makes the anonymisation challenging [39,33,9]. In addition, survey

rating data contains many attributes, each of which corresponds to the response to a

survey question, but not all participants need to rate all issues (or answer all questions),

which means a lot of cells in a data set are empty. For instance, Table 1(a) is a pub-

lished survey rating data set containing ratings of survey participants on both sensitive

and non-sensitive issues. The higher the rating is, the more preferred the participant

is towards the issue. “null” means the participant did not rate the issue. Table 1(b)

contains comments on non-sensitive issues of some survey participants, which might be

obtained from public information sources such as personal weblogs or social network.

However, individuals in the anonymous survey rating data set are potentially identi-

fiable based on their public comments from other sources [25]. By matching the ratings

of non-sensitive issues with publicly available preferences, an adversary can identify

a small number of candidate groups that contain the record of the victim. It is un-

fortunate if there is only one record in the candidate group. For example, Alice is at

risk of being identified in Table 1(a), since t1 is unique and could be linked to Alice’s

comments in Table 1(b). This simple example motivates the first challenge:

How to preserve individual’s privacy through identity protection in a large survey

rating data set?

Though several models and algorithms have been proposed to preserve privacy in

relational data, most of the existing studies can deal with relational data only [29,23,

19,32]. Divide-and-conquer methods are applied to anonymize relational data sets due

to the fact that tuples in a relational data set are separable during anonymisation.

In other words, anonymizing a group of tuples does not affect other tuples in the

data set. However, anonymizing a survey rating data set is much more difficult since

changing one record may cause a domino effect on the neighborhoods of other records,

as well as affecting the properties of the whole data set (details in Section 4.3). Hence,

previous methods can not be applied to deal with survey rating data and it is much

more challenging to devise anonymisation methods for large survey rating data than

for relational data. Therefore, the second arising challenge is:

How to anonymize a large survey rating data while maintaining the least amount

of distortion?
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1.2 Contributions

Faced with these challenges, in this paper we study privacy preserving techniques for

large survey rating data sets, and propose a new model and methods to preserve privacy

in published large survey rating data sets.

This paper presents a systematic study towards the identity protection in large

survey rating data sets. Firstly, we propose a privacy principle called (k, ϵ)-anonymity,

which demands that for each transaction in a given survey rating data set, there are

at least other (k − 1) similar transactions, where similarity is measured by ϵ. (k, ϵ)-

anonymity guarantees that no individual is identifiable with confidence up to a function

of ϵ with probability greater than 1/k. Both k and ϵ define the degree of identity

protection from different perspectives. The parameter ϵ specifies, for each transaction

t, the length of ϵ-proximate neighborhood, whereas 1/k limits the probability that an

adversary realizes t falling in that ϵ-proximate neighborhood.

Secondly, we formulate the (k, ϵ)-anonymity model using a graphical representa-

tion, design a metric to quantify graph modification operations and formally define the

graph-anonymisation problem that, given a graphical representation G, asking for the

k-decomposable graph stemmed from G with the minimum number of graph modifica-

tion operations. Given a survey rating data set T and ϵ, we prove that if the graphical

representation G of T is k-decomposable, then T is (k, ϵ)-anonymous. This interpre-

tation of anonymity prevents the re-identification of individuals by adversaries with a

priori knowledge of the degree of certain nodes. Then, we make a thorough analysis of

the modification strategies and prove the correctness and completeness of the proposed

modification strategies. Finally, we apply the approaches to real-world rating data sets

and demonstrate that the utility of the anonymous rating as well as the statistical

properties are well preserved, and our methods are efficient.

The rest of the paper is organized as follows. Section 2 surveys related work. Section

3 discusses fundamental concepts and proposes the novel (k, ϵ)-anonymity principle for

identity protection in a large survey rating data set. Section 4 introduces the graphical

representation of (k, ϵ)-anonymity models and develops the anonymisation method for

large survey rating data sets. Section 5 includes the results of experimental evaluations

on two real-life data sets. Finally, Section 6 concludes the paper with directions for

future work.

2 Related Work

Privacy preserving data publishing has received considerable attention in recent years,

especially in the context of relational data [1,27,28,23,19]. All these works assume a

given set of attributes QID on which an individual is identified, and anonymize data

records on the QID. Aggarwal [1] presents a study on the relationship between the

dimensionality of QID and information loss, and concludes that, as the dimensionality

of QID increases, information loss increases quickly. Large survey rating data sets

present a worst case scenario for existing anonymisation approaches because of the

high dimensionality of QID and sparseness of the data sets. To our best knowledge, all

existing solutions in the context of k-anonymity [27,28], l-diversity [23] and t-closeness

[19] assume a relational table, which typically has a low dimensional QID. Survey rating

data sets, on the other hand, are characterized by sparseness and high dimensionality,
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which makes the current state-of-art principles incapable handling the anonymisation

of large survey rating data sets.

There are few previous works considering the privacy of large rating data. In collab-

oration with MovieLens recommendation service, Frankowski et al. correlated public

mentions of movies in the MovieLens discussion forum with the users’ movie rating

histories in the internal Netflix data set [6]. Recent study reveals a new type of at-

tack on anonymized MovieLens data [25]. The supposedly anonymized movie rating

data is re-identified by linking non-anonymized data from other sources. To our best

knowledge, no anonymisation models and methods exist for preserving privacy for large

survey rating data sets.

Privacy-preservation of transactional data has been acknowledged as an important

problem in the data mining literature [3,4,31,9,33,37]. The privacy threats caused

by publishing data mining results such as frequent item sets and association rules is

addressed in [3,4]. The work in [2,31] focus on publishing anonymous patterns, where

the patterns are mined from the original data, and the resulting set of rules is sanitized

to present privacy breaches. In contrast, our work addresses the privacy threats caused

by publishing a large survey rating data. Recent work [9,33,37] targets anonymisation

of transaction data. Our work aims to prevent individual identity disclosure in a large

survey rating data set.

Graph approaches have been applied in solving anonymization problems [39,22].

Liu and Terzi [22] study a specific graph-anonymization problem. A graph is called k-

degree anonymous if for every node v, there exists at least k−1 other nodes in the graph

with the same degree as v. This definition of anonymity prevents the re-identification

of individuals by adversaries with a priori knowledge of the degree of certain nodes.

The anonymization problem we consider in this paper is partially related to it but

different. We not only study how to modify the graph to make it k-decomposable, but

also analyze how to anonymize the underlying data set, which is beyond the study

of [22]. Pei and Zhou in [39] consider yet another definition of graph anonymity - a

graph is k-anonymous if for every node there exist at least k−1 other nodes that share

isomorphic neighborhoods; in this case the neighborhood of a node is defied by its

immediate neighbors and the connections between them. This definition of anonymity

in graphs is different from ours. In a sense it is a more strict one. Given the difference in

the definition, the corresponding algorithmic problems arising in [39] are also different

from the problems we consider in this paper.

3 (k, ϵ)-anonymity

In this section, we formally define the (k, ϵ)-anonymity model for protecting privacy in

a large survey rating data set.

We assume that survey rating data publishes people’s ratings on a range of issues.

Some issues are sensitive, such as income level and sexuality frequency, while some

are non-sensitive, such as the opinion of a book, a movie or a kind of food. Each

survey participant is cautious about his/her privacy and does not reveal his/her ratings.

However, an attacker can use auxiliary information to identify an individual’s sensitive

ratings in supposedly anonymous survey rating data. The auxiliary information of an

attacker includes: (i) knowledge that a victim is in the survey rating data and; (ii)

preferences of the victims on some non-sensitive issues. For instance, an attacker may

find a victim’s preference (not exact rating scores) by personal familiarity or by reading
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non-sensitive sensitive
ID issue 1 issue 2 issue 3 issue 4
t1 3 6 null 6
t2 2 5 null 1
t3 4 7 null 4
t4 5 6 null 1
t5 1 null 5 1
t6 2 null 6 5

Table 2 Sample survey rating data (I)

non-sensitive sensitive
ID issue 1 issue 2 issue 3 issue 4
t1 3 6 null 6
t2 2 5 null 1
t3 4 7 null 4
t4 5 6 null 1
t5 1 null 5 1
t6 2 null 6 5
t7 6 null 6 3
t8 5 null 5 2

Table 3 Sample survey rating data (II)

the victim’s comments on some issues from personal weblogs or social networks. We

assume that attackers know preferences of non-sensitive issues of a victim but do not

know exact ratings and want to find out the victim’s ratings on some sensitive issues.

Our objective is to design an effective model to protect privacy of people’s sensitive

ratings in published survey rating data.

Given a survey rating data set T , each transaction contains a set of numbers indi-

cating the ratings on some issues. Let (o1, o2, · · · , op, s1, s2, · · · , sq) be a transaction,

oi ∈ {1 : r, null}, i = 1, 2, · · · , p and sj ∈ {1 : r, null}, j = 1, 2, · · · , q, where r is the

maximum rating and null indicates that a survey participant did not rate. o1, · · · , op
stand for non-sensitive ratings and s1, · · · , sq denote sensitive ratings. Each transaction

belongs to a survey participant. Let TA = {oA1
, oA2

, · · · , oAp
, sA1

, sA2
, · · · , sAq

} be

the ratings for a survey participant A and TB = {oB1
, oB2

, · · · , oBp
, sB1

, sB2
, · · · , sBq

}
be the ratings for a participant B. We define the dissimilarity between two non-sensitive

rating scores as follows.

Dis(oAi
, oBi

) =


|oAi

− oBi
| if oAi

, oBi
∈ {1 : r}

0 if oAi
= oBi

= null

r otherwise

(1)

Definition 1 (ϵ-proximate) Given a small positive number ϵ, if for 1 ≤ i ≤ p,

Dis(oAi
, oBi

) ≤ ϵ, then transactions TA and TB are ϵ-proximate.

If two transactions are ϵ-proximate, the dissimilarity between their non-sensitive

ratings is bound by ϵ. In Table 1(a), if ϵ = 1, ratings 5 and 6 may have no difference

in interpretation, so t4 and t5 are 1-proximate based on their non-sensitive rating.

Definition 2 ((k, ϵ)-anonymity) A survey rating data set is (k, ϵ)-anonymous if ev-

ery transaction in the survey rating data set has at least (k−1) ϵ-proximate neighbors.

The idea behind (k, ϵ)-anonymity is to make each transaction in a survey rating

data set similar with at least other (k − 1) transactions in order to avoid linking to

individual’s sensitive ratings. (k, ϵ)-anonymity can well protect identity privacy, since it

guarantees that no individual is identifiable with confidence up to a function of ϵ with

probability greater than 1/k. Both parameters k and ϵ are intuitive and operable in real-

world applications. By varying the values of k or ϵ, we strengthen the protection from

different perspectives. Specifically, the parameter ϵ captures the protection proximate

neighborhood of each survey participant in that raising ϵ enlarges the protection range

of each sensitive value. The purpose of elevating k is to lower an adversary’s chance of

beating that protection.
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Given a survey rating data set T and the values of k, ϵ, the objective of (k, ϵ)-

anonymisation is to modify T to make it satisfy the k, ϵ requirements. Generally

speaking, if T has already met this privacy requirement, we can publish it without

any modifications; otherwise, we need develop modification techniques for satisfying

the (k, ϵ) requirements. Next, we discuss this problem.

4 Anonymize survey rating data

In this section, we describe our modification strategies through the graphical rep-

resentation of the (k, ϵ)-anonymity model. Firstly, we introduce some preliminaries

and quantify the distortion caused by anonymization. Secondly, we present the (k, ϵ)-

anonymity model with graphs. Finally, we describe the modification strategies in detail.

4.1 Preliminaries

Given a survey rating data set T , we define a binary flag matrix F (T ) to record if

there is a rating or not for each non-sensitive issue (column). F (T )ij = 1 if the ith

participant rates the jth issue and F (T )ij = 0 otherwise. For instance, the flag matrix

associated with the rating data of Table 2 is

F =


1 1 0

1 1 0

1 1 0

1 1 0

1 0 1

1 0 1

 (2)

in which each row corresponds to survey participants and each column corresponds to

non-sensitive issues. In order to measure the distance between two vectors in the flag

matrix, we borrow the concept of Hamming distance [12].

Definition 3 (Hamming Distance) Hamming distance between two vectors in the

flag matrix of equal length is the number of positions for which the corresponding

symbols are different. We denote the Hamming distance between two vectors v1 and

v2 as H(v1, v2).

In other words, Hamming distance measures the minimum number of substitutions

required to change one vector into the other, or the number of errors that trans-

formed one vector into the other. For example, if v1 = (1, 1, 0) and v2 = (1, 0, 1), then

H(v1, v2) = 2. If the Hamming distance between two vectors is zero, then these two

vectors are identical. In order to categorize identical vectors in the flag matrix, we

introduce the concept of Hamming group.

Definition 4 (Hamming Group) Hamming group is the set of vectors in which the

Hamming distance between any two vectors of the flag matrix is zero. The maximal

Hamming group is a Hamming group that is not a subset of any other Hamming group.

For example, there are two maximal Hamming groups in the flag matrix (2) made

up of vectors {(1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0)} and {(1, 0, 1), (1, 0, 1)} and they cor-

respond to groups {t1, t2, t3, t4} and {t5, t6} of T .



8

4.2 Distortion Metrics

In this section, we define a measure of information loss.

Definition 5 (Tuple distortion by edge addition) Let t = (t1, t2, · · · , tm) be a

tuple and t′ = (t′1, t
′
2, · · · , t′m) be an anonymized tuple of t. Then, the distortion of this

anonymisation is defined as:

Distortion additon(t, t′) =
m∑
i=1

|ti − t′i|

For example, if the tuple t = (5, 6, 0) is generalized to t′ = (5, 5, 0), then the

distortion of this anonymisation is |5− 5|+ |6− 5|+ |0− 0| = 1.

Definition 6 (Data set total distortion) Let T ′ = (t′1, t
′
2, · · · , t′n) be the anonymized

data set from T = (t1, t2, · · · , tn). Then, the total distortion of this anonymisation is

defined as:

Distortion(T, T ′) =
n∑

i=1

Distortion addition(ti, t
′
i)

For example, let T = (t1, t2, t3, t4), where t1 = (5, 6, 0), t2 = (2, 5, 0), t3 = (4, 7, 0)

and t4 = (5, 6, 0). Let the anonymized view be T ′ = (t′1, t
′
2, t

′
3, t

′
4), where t′1 = (5, 5, 0),

t′2 = (3, 5, 0), t′3 = (3, 7, 0) and t′4 = (5, 7, 0). Then, the distortion between the two

data sets is 1 + 1 + 1 + 1 = 4.

4.3 Graphical Representation

Given a survey rating data set T = {t1, t2, · · · , tn}, its graphical representation is the

graph G = (V,E), where V is a set of nodes, and each node in V corresponds to a

record ti (i = 1, 2, · · · , n) in T , and E is the set of edges, where two nodes are connected

by an edge if and only if the distance between two records is bounded by ϵ with respect

to the non-sensitive ratings (Equation (1)).

Two nodes ti and tj are called connected if G contains a path from ti to tj (1 ≤
i, j ≤ n). The graph G is called connected if every pair of distinct nodes in the graph

can be connected through some paths. A connected component is a maximal connected

subgraph of G. Each node belongs to exactly one connected component, as does each

edge. The degree of the node ti is the number of edges incident to ti (1 ≤ i ≤ n).

Theorem 1 Given the survey rating data set T with its graphical representation G, T

is (k, ϵ)-anonymous if and only if the degree of each node of G is at least (k − 1).

Proof “⇐”: Without loss of generality, we assume that G is a connected graph. If for

every node v in G, the degree of v is greater than (k − 1), which means there are at

least (k − 1) other nodes connecting with v, then according to the construction of the

graph, two nodes have an edge connection if and only if their distance is bounded by

ϵ. Therefore, T satisfies (k, ϵ)-anonymity property.

“⇒”: If T is (k, ϵ)-anonymous, then according to the definition of (k, ϵ)-anonymity,

each record in T is ϵ-proximate with at least (k − 1) other records, and then in the

graphical representation G of T , the degree of each node should be at least (k − 1). �
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With the equivalent condition proven in Theorem 1, we see that in order to make

T (k, ϵ)-anonymous, we need to modify its graphical representation G to ensure that

each node in G has degree of at least (k − 1). Next, we introduce the general graph

anonymization problem. The input to the problem is a simple graph G = (V,E) and

an integer k. The requirement is to use a set of graph-modification operations on G

in order to construct a graph G′ = (V ′, E′) with the degree of each node in G′ is at

least k− 1. The graph modification operation considered in this paper is edge addition

(adding edges is by modifying values of transactions represented as nodes). We require

that the output graph be over the same set of nodes as the original graph, that is,

V ′ = V . Given T and ϵ, we denote the graphical representation of T as G. In order

to meet k and ϵ requirements, we modify G to G′, and the underlying data set T is

changed into T ′. We capture the distortion between T and T ′ (Distortion(T, T ′)) as the
distortion of anonymizing G to G′ denoted by D(G), i.e., D(G) = Distortion(T, T ′).

Problem 1 Given a graph G = (V,E) and an integer k, find a graph G′ = (V,E′)
with E′∩E = E by modifying values of some tuples so that the degree of each node

of the corresponding graph is at least (k − 1) and the distortion D(G) is minimized.

Theorem 2 Problem 1 is NP-hard.

Proof The NP-hardness proof of the Problem 1 is transformed from the problem of

Edge Partition into 4-Cliques [8].

Edge Partition Into 4-Cliques: Given a simple graph G = (V,E), with |E| = 6m

for some integer m, can the edges of G be partitioned into m edge-disjoint 4-cliques?

Given an instance of Edge Partition into 4-Cliques. We first construct a rating data

set T as follows. For each vertex vi ∈ V , construct an issue Ai. For each edge e ∈ E,

where e = (v1, v2), create a pair of records rv1,v2, where the record has the ratings of

both issues A1 and A2 equal to 2 and all other issues equal to 0. We then construct

the graphical representation G′ of T by setting k = 6, ϵ = 1. The objective here is to

add the edges to make the degree of each node in G′ at least (k − 1), and we apply

the cost metrics defined in Section 4.2. We show that the cost of making the degree of

each node in G′ at least (k− 1) is at most 12m if and only if E can be partitioned into

a collection of m edge-disjoint 4-cliques.

“⇐” Suppose E can be partitioned into a collection of m disjoint 4- cliques. Con-

sider one 4-clique C with vertices v1, v2, v3 and v4 Figure 1(a). Then, the rating data

set T constructed from C is shown in Figure 1(b) and the graphical representation G′

of T is Figure 1(c).

v1

v2
v3

v4

⇒ ⇒

r12

(a) (b)

r13

r14

r23

r24

r34

(c)

Fig. 1 (a) one 4-clique C; (b) a rating data set T constructed from C; (c) graphical represen-
tation G′ of T with ϵ = 1
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Since there are three 2’s and three 0’s for each issue in T , with the privacy require-

ment k = 6 and ϵ = 1, the distance of any pair of nodes is bounded by 2, which is

greater than the given ϵ. To satisfy the requirements, we can either change all the 2’s

or 0’s in T to 1’s, which has the cost of 3× 4×m = 12m (shown in Figure 2).

r12

r13

r14

r23

r24

r34

⇐ ⇒

(a) (b)(c)

Fig. 2 Two possible modifications of the rating data set T with k = 6, ϵ = 1

“⇒” Suppose the cost of making the degree of each node in G′ is at most 12m. As

G is a simple graph, any record only has two ratings of 2 and any six records should

have at least four issues whose distances are greater than the given ϵ. The modification

can be made by either changing 2 or 0 to 1. So, each record should have at least two

1’s in T when its graphical representation G′ satisfies the condition that each node in

G′ has the degree of at least 5. Then, the cost of making the degree of each node in

G′ is at least 6 × 2 × m = 12m. Combining with the proposition that the cost is at

most 12m, we obtain the cost is exactly equal to 12m and thus each record should have

exactly two 1’s in the solution. Each group should have exactly 6 records. Suppose the

six modified records contain 2 1’s in issues A1, A2, A3 and A4. This corresponds to a 4-

clique with vertices v1, v2, v3 and v4. Thus, we conclude that the solution corresponds

to a partition into a collection of m edge-disjoint 4-cliques. �

Even though we can present the equivalent connection between the problem of

anonymizing survey rating data and Problem 1, it is not easy to solve Problem 1. The

difficulties are occurred in two main aspects. The first difficulty comes from the NP-

hardness results of Problem 1, which makes no polynomial time algorithms for solving

the problem (P ̸= NP ) and the only practical methods are heuristic. The second, but

not the least difficulty is the domino effects. If the degree of a node is less than (k−1),

we need to add some edges to make its degree (k − 1). However, this simple operation

could cause the domino effects to other nodes. The domino effect is a chain reaction

that occurs when a small change causes a similar change nearby, which then will cause

another similar change, and so on. In the graphical representation of the survey rating

data set, if we add an edge to two nodes that are originally not connected, then the

distance between these two nodes should be bounded by ϵ. Since the distance between

these two nodes are changed, it is mostly likely that the distance between these two

nodes and other nodes are affected as well. If this happens, it is hard to regulate the

modification either on the graphical representation or on the survey rating data set.

Take Figure 3 as an example. Since node b is connected with nodes a, c, e, g, if we

are going to change the degree of b, all the nodes are subject to this change, and

the whole structure of the graph would be different. To avoid this domino effect, we

further reduce the anonymization problem to ensure that the change of one node’s
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degree has no effects on other nodes. In this paper, we adopt the concept of k-clique

for the reduction.

b

a

c

d

e

f

g

Fig. 3 An example of domino effects

We say G is a clique if every pair of distinct nodes is connected by an edge. The

k-clique is a clique with at least k nodes. The maximal k-clique is the a k-clique that

is not a subset of any other k-clique. We say the connected component G = (V,E)

is k-decomposable if G can be decomposed into several k-cliques Gi = (Vi, Ei) (i =

1, 2, · · · ,m), and satisfies Vi
∩

Vj = ∅ for (i ̸= j),
∪m

i=1 Vi = V , and
∪m

i=1 Ei ⊆ E.

The graph is k-decomposable if all its connected components are k-decomposable. The

decomposability of the graph has the following monotonicity property.

t1 t2

t3 t4

t5 t6

G1

G2

t1

t3 t4
G134

G

(a) (b)

Fig. 4 Graphical representation example

Proposition 1 If a graph G = (V,E) is k1-decomposable, then it is also k2-decomposable,

for every k2 ≤ k1.

For instance, the graphical representation of the survey rating data in Table 2 with

ϵ = 2 is shown in Figure 4(a). In Figure 4(a), there are two connected components, G1

and G2, where G2 is the 2-clique. G134 is a maximal 3-clique in G1 (shown in Figure

4(b)). G is 2-decomposable, since both G1 and G2 are 2-decomposable. Two possible

2-decompositions of G1, G11 and G12 are shown in Figure 5.

t1 t2

t3 t4
G1

t1

t2 t3

t4 t1

t3

t2

t4

⇒

G11
G12

⇐

Fig. 5 Two possible 2-decompose of G1
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Note that if G is k-decomposable, then the degree of each node is at least (k − 1).

However, on the other hand, if the degree of every node in G is at least (k−1), G is not

necessarily k-decomposable. A counterexample is shown in Figure 6. For each node of

G, the degree is at least 3, but G is not 4-decomposable. Although k-decomposability

of G is a stronger condition than requiring the degree of the nodes in G to be at least

(k−1), it can avoid the domino effect through edge addition operations. From Theorem

1, we have the following corollary.

t1
t2

t3
t4

t5 t6

G

t7 t8

Fig. 6 A counter example

Corollary 1 Given the survey rating data set T with its graphical representation G,

if G is k-decomposable, then T is (k, ϵ)-anonymous.

For instance, the survey rating data shown in Table 2 is (2, 2)-anonymous since its

graphical representation (Figure 4(a)) is 2-decomposable.

Problem 2 Given a graph G = (V,E) and an integer k, modify values of some tuples

to make the corresponding graph G′ = (V,E′) k-decomposable with E′∩E = E such

that the distortion D(G) is minimized.

Note that Problem 2 always has feasible solutions. In the worst case, all edges not

present in each connected component of the input graph can be added. In this way,

the graph becomes the union of cliques and all nodes in each connected component

have the same degree; thus, any privacy requirement is satisfied (due to Proposition

1). Because of Corollary 1, Problem 1 always has a feasible solution as well.

If a given survey rating data set T satisfies the anonymity requirement, we can

publish the data directly. On the other hand, if T is not (k, ϵ)-anonymous, we need to

do some modifications in order to make it anonymous. Due to the hardness of comput-

ing Problem 1, in this paper, we investigate the solutions of Problem 2. We provide the

heuristic methods to compute (k, ϵ)-anonymous solution, which starts from each con-

nected component. More specifically, we consider three scenarios that may happen dur-

ing the computation. Firstly, if each connected component is already k-decomposable,

then we do nothing since it has satisfied the privacy requirements. Secondly, if some

connected components are k-decomposable while others are not. We reinvestigate the

their Hamming groups to see whether two different connected components belonging

to the same Hamming group can be merged together. Third, if none of the above situa-

tions happen, we consider to borrow nodes from connected components that belonging

to different Hamming groups. In Section 4.4, we discuss the possible graphical mod-

ification operations, and in Section 4.5, we apply the graphical modifications to the

survey rating data sets by the metrics defined in Section 4.2.
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4.4 Graphical modification

Given the survey rating data set T with its graphical representation G, the number

of connected components in G can be determined by the flag matrix of T . If two

transactions are in different Hamming groups in the flag matrix, there must be no edge

between these two nodes in G. For instance, the flag matrix of Table 2 is shown in

Equation (2), obviously there are two connected components in G (shown in Figure

4). However, the converse is not true, since it may happen that two transactions are

in the same Hamming group in the flag matrix, but their distance is greater than the

given ϵ. For instance, although there are still two groups in the flag matrix of Table 3,

there would be three connected components in its graphical representation (see Figure

7(a)).

The number of Hamming groups decided by the flag matrix is not sufficient to

determine the number of connected components of G, but it is enough to determine

the minimum number of connected graphs of G. The graph anonymisation process

starts from the connected component of the graphical representation. We test the

(k, ϵ) requirements for each connected component of G, and have the following three

cases:

Case 1:(Trivial case) If all the connected components of G are k-decomposable, then

we publish the survey rating data without any changes.

Case 2:(Merging case) There exists at least one connected component containing

at least two nodes that is not k-decomposable. If some of the connected components

do not satisfy the requirement, it may happen that some of them belong to the same

Hamming group in the flag matrix. For example, with k = 3 and ϵ = 2, the two

connected components G2 and G3 do not satisfy this requirement, but they belong to

the same Hamming group in the flag matrix of Table 3 whose graphical representation is

shown in Figure 7(a). In this situation, we merge them first, and then do modifications

in order to make them meet the requirement. Figure 7(b) illustrates how the merging

process and modification works.

t1 t2

t3 t4

t5 t6

G1

G2

t7 t8

G3

t1 t2

t3 t4

G1

t5 t6

t7 t8

G23

⇒

(a) (b)

Fig. 7 Merging and modification process for subcase 2.1

At the initial stage, there are three connected components G1, G2 and G3. If the

privacy requirement is k = 3 and ϵ = 2, we verify this requirement for each component,

and it turns out that none of the components satisfy the requirement. We further know

that records t5, t6, t7, t8 are in the same Hamming group of the flag matrix of Table

3, so we merge them into one connected components G23 by adding four edges among

them. To make G1 meet the requirement, it is enough to add one edge between t2 and

t4. The added edges are shown in bold Figure 7(b). After the merging and modification

process, Figure 7(b) is 4-decomposable, and according to Corollary 1, the survey rating
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data set shown in Table 3 satisfies the privacy requirement. Now, we could make the

graph k-decomposable by edge addition operations.

Case 3:(Borrowing case) There exists at least one connected component that is not

k-decomposable and in the case that we could not make G k-decomposable through

merging and modification process, we need to borrow some nodes from other connected

components without affecting other connected components. In order to produce no

effect to other groups, we find the maximal k-clique.

t1 t2

t3 t4

t5 t6

G1

G2

t1

t3 t4

G134

t2

t5 t6

⇒

Fig. 8 Borrowing nodes from other connected graph

Take Table 2 (graphical representation in Figure 4(a)) as an example with k =

3, ϵ = 2. We need to borrow at least one point from G1 for G2 in order to satisfy the

given k. In order not to affect the structure of G1, we find the maximal 3-clique G1,3,4

of G1, and the left point t2 is the one we borrow from G1. Then, we add edges between

t2, t5 and t2, t6 to make it 3-decomposable. The process is shown in Figure 8.

Case 3.1: If the k-clique is unique in the connected graph, then we borrow the

point from the left ones. However, there might not be a unique k-clique. For example,

either t1, t2, t3 or t1, t3, t4 form a 3-clique of G1. In either case, the left point is t4 or

t2. In order to determine which one we should choose, we need to define the objective

of our problem and measure the information loss. We discuss appropriate metrics in

the next section. Generally speaking, our objective is to find a solution with minimum

distortion.

Case 3.2: It might happen that there is no k-clique in some connected components.

For example, the graphical representation of some sample data is shown in Figure 9

with the privacy requirement k = 3, ϵ = 2. In Figure 9(a), there are two connected

components G1 and G2. With the requirement of k = 3, there is no 3-clique in G1.

Instead, we find a 2-clique. Generally, if there is no k-clique, we find a (k − 1)-clique,

and since 2-clique always exists, this recursive process will end.

t1 t2

t3 t4

t5 t6

G1

G2

t1 t2

t3

t1

t3 t4

t4

t5 t6

t5 t6

t2

(a) (b) (c)

Fig. 9 Combining two 2-cliques
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If we find the 2-cliques, the next question is how to combine them into a 3-clique. In

the example above, there are three possible 2-cliques consisting of {t1, t2}, {t1, t3} and

{t3, t4}. If we choose {t1, t2} and {t1, t3} to merge together, there will be information

loss in adding the edge between t2 and t3 (Figure 9(b)). If we choose {t1, t3} and {t3, t4}
to merge together, there will be information loss in adding the edge between t1 and

t4 (Figure 9(c)). The decision of choosing which kind of operation is depended on the

distortion incurred by the edge addition operation. Distortion metrics are introduced

in the next section.

4.5 Data modification

In the previous section, we discussed how to modify the graph to make it k-decomposable.

In this section, we reflect such changes in the corresponding survey rating data set.

Recall we have the survey rating data set T = (t1, t2, · · · , tn), ti = (xi1, xi2, · · · , xim),

where xij is the rating of survey participant i on issue j (1 ≤ i ≤ n, 1 ≤ j ≤ m).

xj = (x1j , x2j , · · · , xnj) denotes the vector of ratings on issue j by all the sur-

vey participants (1 ≤ j ≤ m). Given the privacy requirement ϵ, k, we construct

the graphical representation G of the data set T , and publish T ′ = (t′1, t
′
2, · · · , t′n),

t′i = (x′i1, x
′
i2, · · · , x

′
im) (1 ≤ i ≤ n and 1 ≤ j ≤ m).

Case 1: If G is already a k-clique with given ϵ, then output T ′, the same as T .

Case 2 (Edge addition): If G is not yet a k-clique, add necessary edges to make G a

k-clique. We publish T ′ as follows: Firstly, we compute the centroid tc = (tc1, tc2, · · · , tcm),

where tci =
x1i+x2i+···+xni

n , 1 ≤ i ≤ n. There are several cases that may happen to tc:

Case 2.1 (Integer Strategy): If tci is an integer, ∀i = 1, 2, · · · ,m, we sort the

ratings of the jth issue of T ascending order. Without loss of generality, we assume the

ratings on the jth issue of T , xj = (x1j , x2j , · · · , xnj) is sorted ascended (1 ≤ j ≤ m).

Case 2.1.1: If ϵ ≥ 1 and n is even, the first n
2 ratings x1j , x2j , · · · , xn

2 j are modified

to tcj−1, tcj−1, · · · , tcj−1, and the remaining n
2 ratings x(n

2 +1)j , · · · , xnj are modified

to tcj+1, tcj+1, · · · , tcj+1. For example, if T = (t1, t2, t3, t4), where t1 = (5, 6, 0), t2 =

(2, 5, 0), t3 = (4, 7, 0) and t4 = (5, 6, 0) and ϵ = 2, k = 4, the centroid is tc = (4, 6, 0),

then after the modification T ′ = (t′1, t
′
2, t

′
3, t

′
4), where t′1 = (5, 5, 0), t′2 = (3, 5, 0),

t′3 = (3, 7, 0) and t′4 = (5, 7, 0). See matrix (3) for a more visualized transformation.

The numbers in bold indicate that they are modified. The modification of the graphical

representation G to the 4-clique G′ is shown in Figure 10.

T =


5 6 0

2 5 0

4 7 0

5 6 0

 ⇒


5 5 0

3 5 0

3 7 0

5 7 0

 = T’ (3)

Case 2.1.2: If ϵ > 1 and n is odd, the first n−1
2 ratings x1j , x2j , · · · , xn−1

2 j are

modified to tcj − 1, tcj − 1, · · · , tcj − 1, the n
2 th is modified to tcj , and the remaining

n+1
2 ratings xn

2 j , x(n+1
2 )j , · · · , xnj are modified to tcj + 1, tcj + 1, · · · , tcj + 1. For

example, if T = (t1, t2, t3, t4, t5), where t1 = (5, 6, 0), t2 = (2, 5, 0), t3 = (4, 7, 0),

t4 = (5, 6, 0) and t5 = (4, 6, 0) and ϵ = 2, k = 5, the centroid is tc = (4, 6, 0), then after

the modification T ′ = (t′1, t
′
2, t

′
3, t

′
4, t

′5), where t′1 = (5, 5, 0), t′2 = (3, 5, 0), t′3 = (4, 7, 0),

t′4 = (5, 6, 0), and t′5 = (3, 7, 0). See the matrix (4) for a more visualized transformation.
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t1 t2

t3 t4

G

t1

t3 t4

t2

⇒

G′

Fig. 10 The modification of graphical representation G for Case 2.1.1

The numbers in bold indicate that they are modified. The modification of the graphical

representation G to the 5-clique G′ is shown in Figure 11.

T =


5 6 0

2 5 0

4 7 0

5 6 0

4 6 0

 ⇒


3 6 0

3 5 0

4 7 0

5 6 0

3 7 0

 = T’ (4)

t1

t2 t3

t4

G

t1

t3

t4

t2

⇒

G′

t5 t5

Fig. 11 The modification of graphical representation G for Case 2.1.2

Case 2.1.3: If ϵ = 1 and n is odd, the ratings xj = (x1j , x2j , · · · , xnj) are all

changed to the tcj , tcj , · · · , tcj , 1 ≤ j ≤ m.

Case 2.2 (Fraction Strategy): If tci is a fraction, ∀i = 1, 2, · · · ,m, then since

tci =
x1i+x2i+···+xni

n , 1 ≤ i ≤ n, write it in another form tci = ⌊tci⌋+ r
n , where ⌊tci⌋

is the largest integer that is smaller than tci and r is an integer with 0 < r
n < 1.

Case 2.2.1: If r ≤ ϵ, the ratings x1j , x2j , · · · , xnj are modified to ⌊tci+r⌋, ⌊tci⌋, · · · , ⌊tci⌋.
Actually, r can be added to any one ratings. For simplicity, we add it to the first rat-

ing. For example, if T = (t1, t2, t3), where t1 = (5, 6), t2 = (2, 5) and t3 = (4, 6)

with ϵ = 2, k = 3. The centroid is tc = ( 113 , 173 ). For tc1 = ⌊tc1⌋ + r
n = 3 + 2

3 and

tc2 = ⌊tc2⌋ + r
n = 5 + 2

3 . After the modification T ′ = (t′1, t
′
2, t

′
3), where t′1 = (5, 7),

t′2 = (3, 5) and t′3 = (3, 5). See the matrix (5) for a more visualized transformation.

The numbers in bold indicate that they are modified. The modification of the graphical

representation G to the 3-clique G′ is shown in Figure 12.

T =

 5 6

2 5

4 6

 ⇒

 5 7

3 5

3 5

 = T’ (5)

Case 2.2.2: If r > ϵ, then r can be written in the form r = p × ϵ + s, where

the integers p ≥ 1 and 0 ≤ s < ϵ. The ratings x1j , x2j , · · · , xnj are modified to

⌊tci⌋ + 1, ⌊tci⌋ + 1, · · · , ⌊tci⌋ + s. p is added to the first p × ϵ ratings, and s is added
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t1

t2 t3

G

t3t2

⇒

G′

t1

Fig. 12 The modification of graphical representation G for Case 2.2.1

to the last rating. For example, if T = (t1, t2, t3, t4), where t1 = (5, 6), t2 = (2, 5),

t3 = (4, 7) and t3 = (4, 5) with ϵ = 2, k = 4. The centroid is tc = ( 134 , 234 ). For

tc1 = ⌊tc1⌋ + r
n = 3 + 3

4 and tc2 = ⌊tc2⌋ + r
n = 5 + 3

4 . Since r = 3 > ϵ = 2,

we write r = p × ϵ + s
ϵ = 1 + 1

2 . After the modification T ′ = (t′1, t
′
2, t

′
3, t

′
4), where

t′1 = (4, 6), t′2 = (4, 6), t′3 = (3, 5) and t′4 = (4, 6). See the matrix (6) for a more

visualized transformation, and the numbers in bold indicate that they are modified.

The modification of the graphical representation G to the 4-clique G′ is shown in Figure

13.

T =


5 6

2 5

4 7

4 5

 ⇒


4 6

4 6

3 5

4 6

 = T’ (6)

t1 t2

t3 t4

G

t1

t3 t4

t2

⇒

G′

Fig. 13 The modification of graphical representation G for Case 2.2.2

Case 2.3 (Mixed Strategy): If tci is an integer, for some i = 1, 2, · · · ,m and for

others tci is a fraction, then apply the integer strategy to the ratings whose tci is an

integer, and apply fraction strategy to the ratings whose tci is a fraction.

The following theorem prove that the cases are complete and the modified data set

indeed satisfies (k, ϵ)-anonymity requirement.

Theorem 3 (Correctness and completeness) Given a survey rating data set T ,

ϵ and k, the modified data set T ′ satisfies (k, ϵ)-anonymity after applying modification

cases.

Proof Suppose a survey rating data set T = (t1, t2, · · · , tn), ti = (xi1, xi2, · · · , xim),

where xij is the rating of survey participant i on the issue j (1 ≤ i ≤ n, 1 ≤ j ≤ m).

xj = (x1j , x2j , · · · , xnj) denotes the vector of ratings on issue j by all the survey par-

ticipants (1 ≤ j ≤ m). In order to discuss the modification of the data, without loss of

generality, we assume that T forms one (k, ϵ)-anonymous group after the modification.

Given the privacy requirement ϵ, k, we construct the graphical representation G of the

data set T . We publish T ′ = (t′1, t
′
2, · · · , t′n), and t′i = (x′i1, x

′
i2, · · · , x

′
im), 1 ≤ i ≤ n

and 1 ≤ j ≤ m. We verify the statement case by case:
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Case 2.1.1: For the jth issue, the first n
2 ratings x1j , x2j , · · · , xn

2 j are modified to

tcj − 1, tcj − 1, · · · , tcj − 1, and the remaining n
2 ratings xn

2 j , x(n
2 +1)j , · · · , xnj are

modified to tcj + 1, tcj + 1, · · · , tcj + 1. It is easily verified that the distance between

any two ratings is bounded by 2, which is no more than ϵ.

Case 2.1.2: For the jth issue, the first n−1
2 ratings x1j , x2j , · · · , xn−1

2 j are modified

to tcj − 1, tcj − 1, · · · , tcj − 1, and the n
2 th is modified to tcj , and the remaining n+1

2
ratings xn

2 j , x(n+1
2 )j , · · · , xnj are modified to tcj + 1, tcj + 1, · · · , tcj + 1. It is easy to

verify that the distance between any two ratings is bounded by either 1 or 2, which is

no more than ϵ as well.

Case 2.1.3: This is the most trivial case where all the ratings are the same for issue

j. Of course, the ϵ requirement is satisfied since the distance between any two ratings

is 0.

Case 2.2.1: For issue j, the ratings x1j , x2j , · · · , xnj are modified to ⌊tci+r⌋, ⌊tci⌋, · · · , ⌊tci⌋.
The distance between two ratings is bounded by r, which is no more than ϵ under this

case.

Case 2.2.2: For issue j, the ratings x1j , x2j , · · · , xnj are modified to ⌊tci⌋+1, ⌊tci⌋+
1, · · · , ⌊tci⌋+s. The distance between two ratings is bounded either by 1 or s−1, which

is no more than ϵ under this case. �

In practice, applying one single data modification methods is not adequate. Usually

a combination of several strategies is needed to meet the (k, ϵ) requirements. In order

to test the efficiency and effectiveness of our proposed approaches, we have conducted

extensive experiments which are described and discussed in the next section.

5 Proof-of-concept experiments

In this section, we experimentally evaluate the effectiveness and efficiency of the pro-

posed survey rating data publication method. Our objectives are three-fold. Firstly,

we verify that publishing the survey rating data satisfying (k, ϵ)-anonymity via our

proposed approaches is fast and scalable. Secondly, we show that the anonymous sur-

vey rating data sets produced permit accurate data analysis. Finally, we perform the

statistical analysis on both original and anonymized data sets.

5.1 Data sets

Our experimentation uses two real-world databases, MovieLens2 and Netflix3. The

MovieLens data set was made available by the GroupLens Research Project at the

University of Minnesota. The data set contains 100,000 ratings (5-star scale), 943 users

and 1682 movies. Each user has rated at least 20 movies. The Netflix data set was re-

leased by Netflix for competition. This movie rating data set contains over 100,480,507

ratings from 480,189 randomly-chosen Netflix customers over 17,000 movie titles. The

Netflic data were collected between October, 1998 and December, 2005 and reflected

the distribution of all ratings received during this period. The ratings are on a scale

from 1 to 5 stars. In both data sets, a user is considered as a survey participant while

2 http://www.grouplens.org/taxonomy/term/14.
3 http://www.netflixprize.com/.



19

15% 30% 45% 60% 75% 90% 100%
0

50

100

150

200

250

R
u
n
n
in

g
 T

im
e
 (

S
e
c
)

 

 

MovieLens
Netflix

(a)

1 2 3 4 5
50

100

150

200

250

R
u
n
n
in

g
 T

im
e
 (

S
e
c
)

 

 

MovieLens
Netflix

(b)

K=20 K=30 K=40 K=50 K=60
0

50

100

150

200

250

R
u
n
n
in

g
 T

im
e
 (

S
e
c
)

 

 

MovieLens
Netflix

(c)

Fig. 14 Running time on MovieLens and Netflix data sets vs. (a) Data percentage varies; (b)
ϵ varies; (c) k varies

income level (1-5) income interval
1 $0-$6,000
2 $6,001-$35,000
3 $35,001-$80,000
4 $80,001-$180,000
5 >$180,001

Table 4 Correspondence of income level and income interval

a movie is regarded as an issue to respond. Many entries are empty since each partici-

pant only rated a small number of movies. We consider all the movies as non-sensitive

attributes, and add one sensitive issue “income level” to each data set, in which the

ratings scales from 1 to 5. We randomly generate a rating from 1 to 5 and assign it

to each record. The correspondence of the income level and income interval is shown

in Table 4, where the classification of income interval is referred as the Australia Tax

Rates 2008-20094.

5.2 Efficiency

Data used for Figure 14(a) is generated by re-sampling the Movielens and Netflix data

sets while varying the percentage of data from 15% to 100%. For both data sets, we

evaluated the running time for the (k, ϵ)-anonymity model with the default setting

k = 20, ϵ = 1. For both testing data sets, the execution time for (k, ϵ)-anonymity

is increased by enlarging the percentage of both data sets. This is because as the

percentage of data increases, the computation cost increases too. The result is expected

since the overhead is increased with the more dimensions.

Next, we evaluated the effect of the parameters k, ϵ on the cost of computing. The

data sets used for this experiment are the whole MovieLens and Netflix databases and

we evaluate by varying the value of ϵ and k. With k = 20, Figure 14(b) shows the

computational cost as a function of ϵ, in determining (k, ϵ)-anonymity for both data

sets. Interestingly, in both data sets, as ϵ increases, the cost initially becomes lower but

then increases monotonically. This phenomenon is due to a pair of contradicting factors

that push up and down the running time, respectively. At the initial stage, when ϵ is

4 http://www.ato.gov.au/individuals/content.asp?doc=/content/12333.htm.
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Fig. 15 Performance comparison on MovieLens and Netflix data sets: (a) Query accuracy vs.
ϵ; (b) Query accuracy vs. k; (c) Query accuracy vs. (k, ϵ); (d) Clusters changes vs k.

small, fewer edges are contained in the graphical representation of the data set, and

therefore, more computation efforts are put into edge addition and data modification

operations. This explains the initial descent of overall cost. However, as ϵ grows, there

are more possible (k, ϵ)-anonymous solutions and searching for the one with least dis-

tortion requires a larger overhead, and this causes the eventual cost increase. Setting

ϵ = 2, Figure 14(c) displays the results of execution time by varying k from 20 to 60

for both data sets. The cost drops as k grows. This is expected because fewer search

efforts for possible (k, ϵ)-anonymous solutions are needed for a greater k, allowing our

algorithm to terminate earlier.

5.3 Data utility

Having verified the efficiency of our technique, we proceed to test its effectiveness. We

measure data utility as the error in answering average rating queries ion the anonymized

survey rating data it produces by running 100 random queries of the rating of a movie.

Each query has the form:

SELECT COUNT(*) FROM MovieLens/NetFlix

WHERE pred(An
1 ) AND · · · · · · AND pred(An

w) AND pred(As).

Specifically, a query involves w random non-sensitive attributes An
1 , · · · , An

w (in the

underlying Movielens/Netlflix), and the sensitive attribute As, where w is a parameter

called query dimensionality. For instance, if the the survey rating data is Table 1(a)

and w = 2, then {An
1 , A

n
2 } is a random 2-sized subset of non-sensitive issues {issue 1,
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Fig. 16 Prediction Accuracy: (a) Movielens; (b) Netflix

issue 2, issue 3}. For any issue A, the predicate pred(A) has the form of (A = x1 OR

A = x2 OR · · · OR A = xb), where xi(1 ≤ i ≤ b) is a random value in the domain of A.

The value of b depends on the expected query selectivity s: b = ⌈|A| · s1/(w+1)⌉, where
|A| is the domain size of A. A higher s leads to more selection conditions in pred(A).

We derive the estimated answer of a query using the approach explained in [17]. The

accuracy of an estimate is evaluated as its relative error. Let act and est be the actual

and estimated results respectively. The relative error then equals |act− est|/act.
We first study the influence of ϵ (i.e., the length of a proximate neighborhood)

on data utility. Towards this, we set k to 10. With (10, ϵ)-anonymity, Figure 15(a)

plots the average error on both data sets as a function of ϵ. (k, ϵ)-anonymity produces

useful anonymized data with average error below 15%. The anonymisation strategies

incur higher error as ϵ decreases. This is expected, since a smaller ϵ demands stricter

privacy preservation, which reduces data utility. Next, we examined the utility of (k, ϵ)-

anonymous solutions with different k when ϵ = 2. Figure 15(b) presents the average

error of 100 random queries of the average rating as a function of k. The error grows

with k because a larger k demands tighter anonymity control. Nevertheless, even for

the greatest k, the data still preserves fairly good utility by our technique, incurring

an error of no more than 20% for Movielens and 25% for Netflix. Figure 15(c) plots

the query accuracy by changing the parameter pair (k, ϵ). We vary the k from 20 to

40 with ϵ changing from 1 to 2. From the graph we can see, when ϵ (k) is fixed, the

accuracy is increasing with k (ϵ), which is consistent with the results obtained from

Figures 15(a) and (b).

Since our objective is to anonymize large survey rating data, we adopt another

criterion to evaluate data utility called membership changing ratio. This the proportion

of data points changing cluster memberships from clusters on the original data set

to clusters on the anonymized data set when a clustering algorithm (e.g., k-means

algorithm [14]) runs on both data sets. We first anonymize the original dataset by our

anonymisation method, and then we run a k-means algorithm over both the original

and anonymous data sets, keeping the same initial seeds and identical k. We use the

proportion of data points changing cluster memberships as another measure of utility.

Generally, the lower the membership changing ratio is, the higher the data utility

is preserved. Figure 15(d) plots clustering membership changing ratio versus k. The

membership changing ratio increases with increasing k. When k = 60, the membership

changing ratio is less than 15% for both data sets. This shows that our data modification

approach preserves the grouping quality of anonymized data very well.
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Fig. 17 Statistical properties analysis (Movielens Dataset): (a) centroid vs. data percentage;
(b) centroid vs. k; (c) standard deviation vs. ϵ

Figures 16(a) and (b) evaluate the classification and prediction accuracy of the

graph anonymization algorithm. Our evaluation methodology is that we first divide

data into training and testing sets, and we apply the graph anonymization algorithm

to the training and testing sets to obtain the anonymized training and testing sets, and

finally the classification or regression model is trained by the anonymized training set

and tested by anonymized testing set. The Weka implementation [36] of simple Naive

Bayes classifier was used for the classification and prediction. Using the Movielens data,

Figure 16(a) compares the predictive accuracy of classifier trained on Movielens data

produced by the graph anonymization algorithm. In these experiments, we generated

50 independent training and testing sets, each containing 2000 records, and we fixed

ϵ = 1. The results are averaged across these 50 trials. For comparison, we also include

the accuracies of classifier trained on the (not anonymized) original data. From the

graph, we can see that the average prediction accuracy is around 75%, very close to

the original accuracy, which preserves better utility for data mining purposes. In Figure

16(b), similar results are obtained by using the Netflix rating data.

5.4 Statistical properties

We further performed the statistical analysis on the original and anonymous data sets.

In this series of evaluations, we compare some key statistical properties, centroid and

standard deviation with the original and anonymized data, since these statistics are

extremely useful in the data mining environment for anonymous data sets. For the

centroid comparison, we first calculated the average vector of the ratings that are not

null of each attribute, then compared the inner product of this vector with the result of

the same operation on the anonymous data set. The results were evaluated by varying

the percentage of the data and the privacy requirement k. For the standard deviation,

we computed the average standard deviation among all the attributes for the original

and anonymous data sets. The experiments were conducted by varying ϵ.

We first compared the centroid before and after anonymisation while varying the

percentage of the data set. We set k = 20, ϵ = 2 and let the percentage of the data

vary from 20% to 100%. The result is shown in Figure 17(a). We can see that although

the centroid between original and anonymous data sets are different, they do not dif-

fer much which makes the data useful for the data mining purposes, and the results

sugggest that our modification strategies preserve the centroid of the data. We then
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Fig. 18 Average cluster coefficient comparison

fixed the data set with ϵ = 2 and varied the privacy requirement k from 5 to 35. The

result is shown in Figure 17(b). No matter what kind of operations are used, the cen-

troids before and after the operation are similar to each other. Figure 17(c) compares

average standard deviations before and after data anonymisation. The average stan-

dard deviation remains constant for the original data, since parameter ϵ has no effect

on it. For the anonymous data set, the standard deviation is bounded by some specific

value for a given ϵ. It is not difficult to prove the upper bound of the standard devia-

tion for issue s is smax−smin
2 , where smax and smin are the maximum and minimum

ratings of s. With the parameter ϵ, the standard deviation is bounded by ϵ
2 . Similar

results were obtained on Netflix data sets as well.

Besides the centroid and standard deviation, we also test with the statistical mea-

sure the average cluster coefficient. Clustering coefficient is a property of a node in a

graph or a network. Roughly speaking it tells how well connected the neighborhood of

the node is. If the neighborhood is fully connected, the clustering coefficient is 1 and

a value close to 0 means that there are hardly any connections in the neighborhood.

Average clustering coefficient of the graph is the average of the clustering coefficient

over all nodes in the graph.

We construct the graphical representations of the original and anonymized survey

rating data, and evaluate the average cluster coefficient by setting ϵ = 2 and varying the

value of k from 5 to 25. Figures 18(a) and (b) show the comparison results on Movielens

and Netflix data sets. On the one hand, As we can see, in both data sets, the average

of cluster coefficient is increased in the anonymized data. This is because in order to

satisfy the (k, ϵ)-anonymity, we need to add more edges into the graph, which leads to

the increase of the cluster coefficient. On the other hand, before anonymization, since

the data sets are very sparse, the value of cluster coefficient is relatively low, and after

the anonymization, although the value of cluster coefficient has been increased, it does

not reach to 1, the trivial case when the graph becomes fully connected. This reflects

the fact that our anonymziation method does not add too many edges to reduce its

usefulness.

6 Conclusion and future work

In this paper, we alleviate a privacy threat to a large survey rating data set with

an anonymisation principle called (k, ϵ)-anonymity. We apply a graphical representa-

tion to formulate the problem and provide a comprehensive analysis of the graphical
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modification strategies. Extensive experiments confirm that our technique produces

anonymized data sets that are highly useful and preserve key statistical properties.

This work also initiates several directions for future investigations on our research

agenda. Firstly, the (k, ϵ)-anonymity model introduced in the paper is targeted at

identify protection in a large survey rating data set, it is also important to address the

issue of how to prevent attribute disclosures. The privacy principle similar to l-diversity

might be considered. Secondly, in this paper, we consider only edge addition operations

for graph modification, and it is interesting to investigate the case when the privacy

requirement is achieved by deleting some transactions from the survey rating data.

Thirdly, since we have proven that finding an optimal solution is NP-hard, it might

be possible to find an approximate solution with a better approximate ratio. Finally,

it is also interesting to employ dimensionality-reduction techniques for more effective

anonymisation.
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