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Abstract

Data publishing is an easy and economic means for data sharing, but the privacy

risk is a major concern in data publishing. Privacy preservation is a major task

in data sharing for organizations like bureau of statistics, hospitals, etc. While a

large number of data publishing models and methods have been proposed, their

utility is of concern when a high privacy requirement is imposed. In this paper,

we propose a new framework for privacy preserving data publishing. We cap the

belief of an adversary inferring a sensitive value in a published data set to as high

as that of an inference based on public knowledge. The semantic meaning is that

when an adversary sees a record in a published data set, s/he will have a lower

confidence that the record belongs to a victim than not. We design a method in-

tegrating sampling and generalization to implement the model. We compare the

method with some state-of-the-art methods on privacy-preserving data publish-
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ing experimentally, our proposed method provides sound semantic protection of

individuals in data and, provides higher data utility.

Keywords: Privacy protection, Data publishing, Anonymization

1. Introduction

Recently, the privacy preservation in data publishing has received considerable

attention from researchers. Compared with data publishing through the format of

aggregated results or statistical ones, the release of microdata offers an advantage

in terms of information availability, which makes it particularly suitable for scien-

tific analysis in a variety of domains such as public health, demographic studies,

etc. However, the release of microdata causes privacy concerns of disclosing sen-

sitive information of individuals. Simply removing explicit identifiers like names

or IDs has been shown to be vulnerable to privacy breach, since other personal

identifying attributes, such as age, gender and zip code, called quasi-identifier

(QID) which usually remain in the published data for data analysis, allow indi-

viduals’ sensitive information to be revealed when they are linked with publicly

available information. For example, by combining a public voter registration list

with a released information of health insurance, Sweeney was able to identify the

medical record about a former governor of Massachusetts [1]. Many techniques

have been proposed to address the problem.

There are generally two types of definitions for privacy.

One type of definitions is microdata based. k-anonymity [1] and l-diversity [2]

are two typical examples. k-anonymity requires that a published data set should

have at least k rows (called a group) sharing the same QID value. So the probabil-

ity for identifying an individual in a published data set is 1/k. The k-anonymity
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model protects an individual from being identified in a data set with a high confi-

dence. The l-diversity model requires that the number of the sensitive values in a

QID group is at least l. So an adversary could not tell which sensitive value be-

longs to an individual in a group. There are many improved models (definitions)

along this line [3, 4, 5, 6]. They all associate with one or a few user specified

thresholds, like k and l in the above works, and it is difficult for users to set the

right thresholds.

Another type of definitions is probabilistic. Differential privacy [7] is a typical

example. It assumes that even if an adversary knows all other sensitive values but

the victim’s, the adversary could not infer victim’s sensitive value when knowing

the randomized aggregated result with a certain confidence. This requirement is

strong and causes a big utility loss.

Most privacy protection principles are to bind the leakage of sensitive infor-

mation. In general form, the leakage is the difference between the posterior prob-

ability and the prior probability. The posterior possibility is easy to be quantified.

However, the prior probability is difficult to estimate, and different estimations

lead to different privacy protection models. For example, the l-diversity model as-

sumes the uniform distribution of sensitive values. ε-differential privacy does not

distinguish between sensitive and non-sensitive attributes. One major disadvan-

tage of such models is that the requirement of a small leakage will cause published

data set to have little utility due to, for example, too much generalization or too

much noise. We will need to search for an alternative approach for sound privacy

protection and better data utility.

In this paper, we explore an alternative model that is semantically sound and

gives a published data set more utility. When an adversary accesses a published
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data set, s/he may infer that a record belongs to a victim (adversary knows that the

victim’s record must be in the published data set). However, if this record is what

everyone expects to see in a data set, for example, a 40-50 old male with flu in a

medical data set, does this breach the privacy of the victim? We say no, even if

the adversary gets the sensitive value of the victim right (note that we do not mean

that flu is not sensitive, and we will elaborate this example more later.).

We argue that the damage of a privacy breach is not directly associated with

whether the adversary obtains the sensitive value right, but is associated with the

confidence level of the inference. For example, if an adversary claims that a victim

suffers from prostate cancer with a convincing inference in a published data set,

but the claim is wrong since the victim actually suffers from bowel cancer. Even

though the inference is wrong, the damage has been made to the victim by the

claim. Since the claim is convincing, most people believe in it, and this brings

damage to the victim. If an adversary alleges a victim suffering from HIV with a

weak inference (as strong as a random guess), the victim will not have to do any

defence regardless if the allegation is true or not. Few people will believe in the

allegation.

Consequently the importance of privacy protection is not to give an adversary

strong belief to build an allegation. If the belief of an allegation in a published

data set is the same as the confidence of a random guess, this will be a sufficient

protection for the privacy of an individual in data since the believability of an

allegation is low. The question is how to model a random guess in a published

data set. In this paper, we will discuss a model towards such a protection.

Our idea is that the belief of an adversary obtained from a published data set

should be at most the same as the belief obtained from the public knowledge. In
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other words, when an adversary sees a record in a published data set, the adversary

should expect to see the same record in a randomly generated data set following

the public knowledge. The occurrence of a record in a published data set does

not relate to whether the victim’s record is in the published data set or not. In

the previous example, the 45 year old male patient does not care the claim that

he suffers from flu because the adversary sees a record “40-50, male, flu” in the

published data set of a hospital where the patient visited because the adversary is

expected to see the same record even if the 45 year old male patient’s record is

not in the published data set (note that in our model, only a sample of records are

published). Therefore, the privacy of the patient is protected.

In this paper, we propose a new framework for privacy preserving data pub-

lishing based on the above motivations, and propose an effective hybrid method of

sampling and generalization for privacy preserving data publishing. Contributions

of the work are listed as the following.

• This new model is semantically sound and offers good data utility. Seman-

tically, it provides a strong protection for the privacy of individuals since it

does not give an adversary a stronger belief from an inference in a published

data set than the belief from an inference on public knowledge. Practically,

it allows many records to be published with a light generalization and a large

sample rate. The method integrates generalization with sampling. Sampling

is essential in our method. We note that good sampling does not reduce the

quality of data. The sampling techniques have been used for many rigorous

studies for a long time. Furthermore, a major goal for data publishing is to

support the shared data analysis in a large community. In data analysis the

aggregated results are often derived. When data sets are randomly sampled,
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the bias in the aggregated results will be low.

• This model controls privacy risk of individuals at the record level. This

supports local generalization of each record irrespective with other records.

This provides an easy and effective criterion to judge whether a record is

publishable. The method only restricts a few records with values of very

low frequencies, such as 95 year old male and Huntington’s disease, from

being published. It provides good data utility for those publishable records.

We note that data publishing is not a right means for data sharing with rare

values (for example, some rare diseases). If we try to accommodate those

rare cases, the overall quality of published data will suffer badly.

• This model links privacy risk to data set size, which is crucial in privacy

risk analysis. The data size has not been utilized in previous data publish-

ing models. For example, consider data sets with 100 records and 100,000

records respectively. Intuitively, an individual in the data set of 100 records

has higher privacy risk than an individual in the data set of 100,000 records.

The rest of this paper is organized as follows. Section 2 introduces preliminar-

ies and principle of the new privacy framework. Section 3 and Section 4 formally

define the way of estimating the adversary’s expected confidence and observed

confidence respectively, followed by a hybrid method to published data sets after

satisfying the new privacy criterion in Section 5. Section 6 shows the experimental

results, followed by some related works in Section 7. Finally, Section 8 concludes

this paper with future direction.
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2. Preliminaries and the principle

A data owner has a data setD1, where each record t contains information about

an individual, like ‘id’, ‘age’, ‘sex’, ‘zip code’, along with the sensitive informa-

tion, such as a disease or the salary, of that individual. For simplicity, we consider

that there is only one sensitive value in each row (multiple sensitive values can

be considered as a set of sensitive values.). The attributes that uniquely identify

an individual are called unique identifiers (IDs), such as social security number

and name. The attributes that potentially conjunctively identify an individual are

called quasi-identifiers (QID), such as ‘age’, ‘sex’ and ‘zip code’. Consider that

D∗1 is a published data set of D1, where the attribute ID has been removed, QID

and sensitive attributes are kept in D∗1. Some of the QID attribute’s value may be

generalized 3 due to legislation [8].

Now we consider an adversary whose goal is to infer whether a victim indi-

vidual v has a sensitive value s. We assume that an adversary has the following

background knowledge.

Definition 1 (The background knowledge of an adversary). We assume that a

victim is an individual v in D1. The adversary knows

1. D∗1, the published version of D1.

2. the QID values of v.

3. global statistics of the population from which D1 has been generated.

3Generalization of an attribute means its current value is replaced by the value of higher level

node from its taxonomy. For example, in Figure 1(a), if the attribute is ‘age’ and its value is 20,

the generalized value can be 13-25.
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4. v is in D1 and v is in D∗1 with a probability because of sampling used in

generating D∗1.

We note that the adversary uses QID values of v to identify a group in D∗1 con-

taining v to narrow down the possible sensitive values of the victim.

Let us assume that the victim v’s record is not in the published data setD∗1. An

adversary is still expected to see a record with the same generalized QID values

as v’s in D∗1 just purely by chance. We call the confidence of seeing such a record

expected confidence.

Definition 2 (Expected confidence). Let qi be the quasi identifier value of a vic-

tim v, q′i be the generalized value of qi and s be a sensitive value that may or may

not be v’s. The expected confidence of record (q′i, s) is the probability of (q′i, s) to

be included in D∗1 regardless whether v is in D1 or not.

We note that the expected confidence relates to the QID values of v, but not

whether v is in D1 or not.

After observing the published data set D∗1, the adversary may have a differ-

ent confidence about the victim’s record. This confidence is called the observed

confidence of an adversary and is formally defined as follows.

Definition 3 (Observed confidence). Let q′i be the generalized value of qi of a

victim v. The observed confidence of an adversary about v is the probability of

(q′i, s) belonging to v.

Thus, a robust privacy preserving criterion should place an upper bound on the

observed confidence of an adversary. Instead of setting an arbitrary user threshold

to cap the observed confidence we will argue to use the expected confidence as the
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as the upper bound on the observed confidence. Therefore, we have the following

principle.

Definition 4 (Privacy principle). The observed confidence of an adversary in-

ferring that a record belongs to a victim should be no more than the expected

confidence of the adversary seeing the same record in the data set without assum-

ing that the victim’s record is in.

To achieve this, we employ the following process. Firstly, the data set D1 is

sampled. Secondly, the sampled data set is generalized. The data owner publishes

the sampled and generalized data set D∗1. We will discuss how to estimate the

expected confidence and observed confidence in the following sections.

3. Estimating expected confidence

In this section, we show a method for estimating expected confidence of an

adversary from the public knowledge.

We firstly explain the public knowledge that an adversary has. Consider a

population of individuals, which is described by a set of attribute values. The dis-

tributions of attribute values of this population are known to public. For example,

in the population of patients in a country, age, gender, and disease distributions

are known to public. Each published data set contains a sample of individuals of

the population.

We now model the expected confidence. Let τ be the record space and t be

a record with attribute values (QID, s). t is associated with a probability Pr(t)

(Definition 5). Each data set is a sample of τ with the probability Pr(t) with

replacement. Duplicated records are allowed in a data set. We call these randomly
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Table 1: Notations

Notation Description

τ the record space

D0 the hypothesized data set, |D0| =

|D∗1|

D1 the original data set

D∗1 the publishing data set of D1

ID the identifier attribute

QID the quasi-identifier attribute

qi i’th QID attribute

s the sensitive attribute

Pr(E) the probability of event E happens

S(t) the sensitive value of record t

ID(t) the identifier attribute of record t

sampled data sets as hypothesized data sets, which are available to an adversary

to estimate the expected confidence.

For a published data set D∗1, a sampled and generalized version of D1, D0 of

the size ofD∗1 is a hypothesized data set ofD∗1. D0 andD∗1 have the same attribute

domains. D0 is a random sample of τ with probability Pr(t). Some common

notations used in our paper are shown in Table 1. We assign the probability to

each t as follows.

Definition 5 (Record probability). We assume that attribute values and the sen-

sitive value in a record are independent. Pr(qi) and Pr(s) are the probabil-

ities of selecting value qi and sensitive value s respectively in the population
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Table 2: Data before anonymization

Name Age Sex Zip Code Diseases

Alice 22 F 5095 Cancer

Bob 24 M 5085 HIV

Paul 20 F 5001 Anemia

Clark 23 M 5005 Flu

by a random draw, which are known to the public. The probability of a record

t = {q1, . . . , qd, s}, denoted as Pr(t), is assigned as the following.

Pr(t) = Pr(q1)× · · · × Pr(qd)× Pr(s)

= (
d∏

i=1

Pr(qi))× Pr(s)

For example, let us assume that Pr(age = [20−30]) = 0.15, Pr(gender = [female]) =

0.5, and Pr(disease = [diabetes]) = 0.05 are obtained from the patient popula-

tion. Let t = {20− 30, female, diabetes}. Pr(t) = 0.00375. Note that the public

knowledge may include that a 40-60 female has higher probability of diabetes, say

0.02. Such public knowledge can be modeled also. The independency assumption

is used when we do not have other public knowledge.

In the above estimation, the independency between QID and sensitive value

are assumed. When they are not, their relationship can be modeled by other data

mining models. For example, the confidence of an association rule (40− 60,M)

→ Prostate Cancer, can be used to model the probability of a group of people

to a disease.

An adversary wants to determine whether a victim v is in the published data

set. Note that, t is a record that could be anyone including that of the victim v.
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Since the victim v is an individual, the inclusion or exclusion of v in a data set

does not affect the overall distributions of a data set in general. We consider that

the probability of t occurring in D0 as the expected confidence of an adversary.

Definition 6 (Expected confidence 2). The expected confidence of an adversary

on a record t with the sensitive value si in a published data set D∗1 is the probabil-

ity of t occurring in D0. It is represented by Pr(S(t) = si|D0). This probability

is formulated by the binomial distribution with a success probability (sampled) of

Pr(t) and n = |D0| trials.

Pr(S(t) = si|D0) = 1− f(0;n, Pr(t))

= 1− (1− Pr(t))n (1)

Pr(t) is the probability that record a t is picked in a random draw from τ to D0,

and Pr(S(t) = si|D0) is the probability of t with sensitive value si occurring in

D0 (could be more than once). For example, let t = {20 − 30, female, diabetes},

Pr(t) = 0.00375, and n = 100. Based on this knowledge, the probability of t in

D0 will be 0.313.

Expected confidence increases when the number of draws increases. When

n = 1000, the probability will be 0.977. This captures the intuition that a record

in a large data set has low privacy risk.

4. Estimating observed confidence

In this section, we estimate adversary’s observed confidence. Let us assume

that the data publishers publish a sample of the of original data set. If an adversary

looks for a victim’s record in the published data set, the sampling rate quantifies

the confidence of the adversary regarding the presence (due to sampling victim’s
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record may not be chosen) of the victim in that published data set. This confi-

dence is called probability of publishing a victim’s record. We formally define the

confidence as follows,

Definition 7 (Probability of publishing). Let t be a record of a victim v in data

set D1. D∗1 is the published data set which is sampled from D1 with sampling rate

β. Therefore, the probability of publishing

Pr(t ∈ D∗1|ID(t) = v) = β

We note that the probability of publishing is a public knowledge.

Data set will not be published with all its original attributes’ values due to

legislation [8]. For example, consider that according to the legislation, the ‘age’

attribute of a record should not have specific value in a published data set. In-

tuitively, in this paper, we use a rule that the value of ‘age’ attribute must be

published no less than 5 years interval. This will be considered as a minimum

requirement for publishing ‘age’ attribute. For example, to satisfy the minimum

requirement, the generalized value of age 22 should be 20-25 in the published

data set. Generally speaking, if we follow such minimum requirement for data

publishing, we have different equivalence groups (Definition 8) in a published

data set.

Definition 8 (Equivalence group). An equivalence group of a data set with re-

spect to an QID attribute set is the set of all records in the data set containing

identical values for the QID attribute set.

For example, records 1 and 2, and records 3 and 4 in Table 3, a published data set

of the original data set in Table 2, form two equivalence groups with respect to

attribute set {age, sex, postcode}. Their corresponding values are identical.
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Figure 1: Taxonomy of age and gender attributes

In a published data set, records in each equivalence group can have same or

different sensitive values. The diversity of sensitive values in an equivalence group

reduces the confidence of an adversary inferring the victim’s sensitive value. For

example, an adversary knows with 100% confidence (when β = 1) that the vic-

tim’s record in an equivalence group which has sensitive values {A,A,A,B,B,C}.

The adversary has 50% , 33.33% and 16.67% confidence to infer the sensitive val-

ues of the victim as A, B, and C respectively. We call this confidence as group

confidence. Formal definition of group confidence is given by Definition 9.

Definition 9 (Group confidence). Let t be the record of a victim v in an equiva-

lence group E of a published data set D∗1. The group confidence of the sensitive

value si belonging to victim v is measured as follows.

Pr(S(t) = si|E) =
#si

|E|

where #si represents the number of a specific sensitive value si and |E| is the size

of the equivalence group E.
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Table 3: Anonymous data

Age Sex Zip Code Diseases

20-25 M 5005 Flu

20-25 M 5085 HIV

20-25 F 5001 Anemia

20-25 F 5095 Cancer

After observing the published data set, an adversary’s observed confidence is cal-

culated as follows.

Pr(S(t) = si|D∗1 ∧ ID(t) = v) = Pr(t ∈ D∗1|ID(t) = v)× Pr(S(t) = si|E)

= β × #si

|E|
(2)

Adversary’s observed confidence is calculated based on the sampling rate and

the number of sensitive values in each equivalence group. We control this confi-

dence by adjusting the sampling rate. However, for better data utility we always

try to use a higher sampling rate like 90%.

Based on the estimations of the expected and the observed confidences, the

privacy preserving criterion in Definition 4 is given by Equation 3.

Pr(S(t) = si|D∗1 ∧ ID(t) = v) ≤ Pr(S(t) = si|D0) (3)

In the next Section, we study how to achieve our desired goal and an algorithm

for the implementation.

5. An algorithm

Data publishers can control both expected and observed confidences of an

adversary. The following two sections explain how the data publishers control
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the confidences. In order to preserve individual privacy, the data publishers will

publish only those records that satisfy the privacy principle in Equation 3.

5.1. Manipulating adversary’s confidences

In this section, we elaborate a method of controlling an adversary’s confi-

dences. By controlling these confidences we can protect the sensitive information

of a victim. The expected confidence of an adversary depends on the record prob-

ability (Definition 5), and the record probability depends on the generalization

level of QID values. For example, if age 25 is generalized to 20-40, then more

records would be in this group and the expected confidence increases.

Adversary’s observed confidence depends on both the sampling rate and the

sizes of equivalence groups in the published data set. There would be different

equivalence groups for different generalized values of the QID of a record. When

the sampling rate is fixed, record generalization can change the observed confi-

dence of an adversary.

Both expected confidence and observed confidence relate to the levels of gen-

eralization. We can control both confidences by applying local recoding method

(a form of generalization) [9], where the generalization is applied independently

without considering other records. The local recoding will be applied to each

record until the record satisfies Equation 3.

Moreover, when the process (local recording) generalizes all QID attributes of

a record to its top generalized value, say the record 1 in Table 2 is generalized to

{age:any, sex:any, zip code:any} (consider ‘any’ is the root value of taxonomies

of all QID attributes), the record can give us a desired confidences but at the

same time this makes the record useless in its published form. Therefore, it is

required to control levels of the local recoding. We do it by using a distortion
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metric (Definition 10). The generalization will continue until the distortion of a

record is acceptable. Note that, the acceptable value of distortion is usually given

by a data publisher.

Definition 10 (Distortion metric). Let t be a record in the data set D1 and t′

represents its generalization in D∗1. The distortion of t is represented by δ and is

measured by,

δ =‖ t− t′ ‖= 1

d

d∑
i=1

(1− Current level of (q′i)

Maximal level in (qi)
) (4)

where, qi represents the i’th QID attribute of t and q′i represents its generalized

version.

For example, consider a record t = {age:25, sex:male, disease:cancer} and its

generalization t′ = {age:20-40, sex: any , disease: cancer }. In the taxonomies

‘age’ and ‘sex’ in Figure 1, the age of ‘25’ is at Level 4 and 20-40 is at Level

3. In the case of ‘sex’ attribute the original value and the generalized values are

at Level1 and Level 0 respectively. So, based on Definition 10, the distortion

of this generalization is 0.625. Generally speaking, distortion ’0’ represents the

original form of the record, whereas distortion ’1’ means all attributes take their

top generalized value.

By using this distortion metric, the local recoding method helps us to find out

the generalized record that is publishable with acceptable distortion. Algorithm 1

shows the procedure.

The distortion measure we use specializes the measure in [29] by removing the

user intervention. After this specialization, the semantic of this distortion metric

becomes clearer, and easy to analyze, and does not rely on user’s input to work.
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The distortion increases when the generalization level closes to the root of the

taxonomy.

5.2. Generalization

In this section, we elucidate the local recording method that we use for gen-

eralization. Generalization can be applied either by global recording [24] or local

recording [9]. Here we use the technique of local recording, where each record is

generalized independently with respect to some defined parameters.

We use the bottom-up local recording approach. The idea of this technique is

to firstly keep the record’s QID and sensitive values in their original form, then

to calculate adversary’s expected and observed confidences for this record. If the

observed confidence is higher than expected confidence, then generalization starts

with the QID attribute that has the largest left domain size (Definition 11).

Definition 11 (Left domain size). Given a value u of an attribute qi, the left do-

main size of qi is the number of nodes at the current level of u and above in the

taxonomy of qi.

When a record does not meet the requirement of privacy, a choice of which at-

tribute to be generalized needs to make. Our method chooses to use the attribute

having the largest left domain size. For example, suppose ‘age’ and ‘sex’ attribute

have current values ‘26-50’ and ‘male’ respectively. From the taxonomies (Fig-

ure 1), the left domain sizes of the QID attributes ‘age’ and ‘sex’ are 7 and 3

respectively. The attribute to be generalized will be ‘age’.

5.3. Algorithm overview

Here we present an overview of our algorithm with an elaboration of the key

steps. We analyze the complexity of the algorithm at the end of this section.
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Algorithm 1
Input: Data setD1 with d attributes and n′ records, sampling rate β, acceptable distortion

δ′, attribute generalization taxonomies T1, T2, . . . , Td for all attributes. Probabilities of all

values in the taxonomies in D0.

Output: D∗1

1: Take a random sample in D∗1 from D1 with the rate β

2: Calculate the number of sampled records n = n′ × β

3: Generalize those attributes of all records that require minimum generalization . See

Section 4

4: while there is a record in D∗1 that does not satisfy the privacy criterion do

5: for each record t in D∗1 and let t′ = t do

6: Calculate the expected confidence from Equation 1

7: Calculate the observed confidence from Equation 2

8: Calculate δ = distortion(t′) from Equation 4

9: if Expected confidence < Observed confidence then

10: t′ = generalize(t′)

11: else

12: if δ > δ′ then

13: t′ is not published and remove t from D∗1

14: else

15: Replace t with t′ in D∗1

16: end if

17: end if

18: end for

19: end while

20: Output D∗1.
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Sampling and initialization are done in Steps 1-3: Algorithm-1 randomly

samples the original data setD1 with a given sample rate β and initializesD∗1 with

those records. Step 2 calculates the possible number of records that is going to be

published, denoted by n. It is possible that the number of published records will

be less than n. The unpublished records may pose high privacy risk according

to the privacy criterion. Step 3 is generalizes those attributes that are required a

minimum generalization, as described in Section 4.

Checking of the generalized data set is done in Step 4: Step 4 checks whether

there is any record in D∗1 that does not satisfy the privacy criterion. If so, the

control goes at Step 5, otherwise at Step 20.

Expected and observed confidences, and distortion of a record are estimated

in Steps 5-8: These steps are used to estimate the adversary’s expected and ob-

served confidences, and the distortion of a generalized record. We need to repeat

the calculation of both confidences, because after each step of generalization, the

generalized records move into larger equivalence groups in the generalized data

set.

Generalizing and checking the satisfaction of the criterion are done in Steps

9-15: Step 9 is used to check whether the record publishing criterion is satisfied

or not (Equation 3). If not, generalization is applied to the record and the control

goes back to Step 6. A local recoding generalization is applied here. Step 12 is

used to check the distortion of the record. If the distortion is acceptable and the

observed confidence is less than the expected confidence, then the record t in D∗1

is replaced with the record t′.

Output tables is done in Steps 20: Step 20 outputs the generalized data set

D∗1.

20



Table 4: Distinct values of different attributes of data sets
 

Age Education 
Marital 

Status 
Gender Race 

Birth 

Place 

Sensitive Attribute 

Salary Occupation 

OCCUPATION 77 14 6 2 6 41 50 - 

SALARY 77 14 6 2 6 41 - 50 

ADULTS 74 16 7 2 5 41 2 - 
 

Data set’s 

name 

Attribute’s 

name 
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Figure 2: The percentages of suppressed records for different distortion thresholds that do not

satisfy the privacy criterion in data sets (a) Salary (b) Occupation

The complexity of the algorithm lies in Step 4 to Step 19. The ‘while’ loop

at Step 4 iterates O(n) times. With each iteration, the ‘for’ loop at Step 5 iterates

O(n) times. There are O(c) instructions to be executed in each time inside the

‘for’ loop. Thus the overall complexity of the algorithm is O(n2).

6. Experiments

In this section, our objectives are to study the impact of our privacy criterion

on the data utility and to evaluate the scalability of the proposed algorithm for

handling large data sets. We quantify the data utility of a published data set in

terms of aggregated query accuracy and classification accuracy. For the query ac-

curacy, we compare the difference between the answer from the anonymized data

and the answer from the original data. For the classification accuracy, we compare
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Figure 3: The percentages of unsatisfied records for different k values that do not satisfy the

privacy criterion in data sets (a) Salary (b) Occupation

Table 5: Different k values for anonymizing different sizes of data sets by the Mondrian

Data Set Size Max.k Avg.k

25,000 90 8

50,000 90 10

75,000 90 11

100,000 70 12

125,000 70 13

150,000 70 14

the classification accuracies of various classification models built on the different

anonymized data sets. With these measurements, we compare our method with a

benchmark utility-aware anonymization algorithm, InfoGain Mondrian [10] and

differential privacy [7]. Both aggregated query and classification are frequently

used in data mining tasks. For example, the classification algorithm learns a clas-

sification model (i.e., decision trees) from the training data sets for the future use

of classifying unseen data.

We perform experiments with real world data sets from U.S. Census Bureau

(http://ipums.org). We split the data set into two independent data sets 1) Occu-
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Figure 4: The average query errors in comparison with a generalization based method with in-

creasing data set size (× 1000 )

pation and 2) Salary. Each data set consists of 600k records. The Occupation data

set includes six quasi-identifer attributes age, sex, education, marital status, race,

birth place and one sensitive attribute occupation. The Salary data set contains

the same QID attributes, and its sensitive attribute is salary. All QID attributes

are discrete except ‘age’ and ‘education’. The sizes of their domains are given in

Table 4.

We create six groups of data sets in the following ways. We firstly define the
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Figure 5: Classification accuracy comparison with the Mondrian

sizes of different groups of data sets as 25k, 50k, 75k, 100k, 125k and 150k. This

partition is to study the scalability of the algorithm with different data set sizes.

We then make six disjoint data groups from each of the data sets (Salary and

Occupation) with 25k, 50k, 75k, 100k, 125k and 150k randomly drawn records

respectively.

We also employ a publicly available Adult data set from UCIrvine Machine

Learning Repository [11], which has been used for testing many anonymization

algorithms [2, 12, 13, 14, 15, 16] for classification accuracy. The data set has

45,222 records. We make use of 6 attributes as quasi-identifiers and the salary

attribute as the sensitive information. We discretise salary as < 50k and ≥ 50k as

the class attribute.

In these experiments, we assume that data distributions in the data sets are the

same as in the population. On the basis of this assumption, we use the local distri-

bution to estimate the record probability (Definition 5). For initial generalization,

we intuitively apply the rule that “the value of ‘age’ attribute should have at least

five years interval”. All experiments were conducted on an Intel Core i5 3.30GHz
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Figure 6: Unchanged responses through differentially private mechanism

PC with 4GB RAM.

When there are no parameters specified for our method in the following ex-

periments, sampling β = 90% and acceptable distortion threshold δ′ = 0.6.

6.1. Comparison with a generalization method

We use a benchmark workload-aware anonymization algorithm Mondrian [13]

to compare with our algorithm.

6.1.1. Query accuracy

We assess the utility of published data sets by the accuracy of answering range

queries. We randomly generate 1000 queries using the following template.

Select Count (*) from D∗1 where (t[A1] = x1 AND t[A2] = x2 AND . . . AND

t[Am] = xm AND t[S] = s)

where x1, x2, . . ., xm and s are some random ranges and values which are not

aligned with generalized values.

For a query, we obtain its true result Ract from the original data set, and com-

pute an estimated answer Rest from its anonymized data set. The relative error of

a query is defined as |Ract−Rest|
Ract

. We measure the workload error as the average
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Figure 7: The average query errors in comparison with differential privacy

relative error of all the queries of all data sets. As in our method (due to 90%

sampling) the anonymized data set size is less than that of Mondrian. So, after

getting the Rest from our anonymized data set we increase the query result count

by 10% in Rest to make it equivalent to that of Mondrian.

To make comparison with the Mondrian we employ two different approaches.

In the first approach, we apply our algorithm to all disjoint data sets. We use

different distortion thresholds to anonymize data sets. With different distortion

thresholds we have different number of suppressed records. Figures 2(a) and 2(b)
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show the percentage of suppressed records for different distortion thresholds with

increasing data set size for the data sets Salary and Occupation respectively. With

the distortion threshold, δ = 0.6, all the records satisfy the privacy criterion. We

apply the same method for the Mondrian to find out, for which k (equivalence

group size) all the records satisfy the privacy criterion. Figure 3(a) and 3(b) show

the percentage of unsatisfied records with increasing data set size. We name the k

for which all records satisfy the privacy criterion as Max.k. Then, we use those

data sets that are anonymized by the Mondrian (k = Max.k) to compare the query

accuracies with the data sets that are anonymized by our method (δ = 0.6).

In the second approach, firstly we anonymize the data sets by our method

(δ = 0.6). Later on, we find out average equivalence group size (we name as

Avg.k) of those anonymous data sets and use the average group size to anonymize

the corresponding data sets by the Mondrian (k = Avg.k). Table 5 shows the

Agv.k and the Max.k that are used to anonymize the data sets by the Mondrian.

Figure 4 lists the average query errors on anonymized data sets by our method

and the Mondrian. Each average value is obtained from a set of 1000 random

queries. We list errors of small queries (returns less than 1% count of the original

data set), of large queries (returns more than 10% count of the original data set)

and of unbounded quires (any count will be considered). The results show that the

query errors of our method are always less than those of Mondrian.

6.1.2. Classification accuracy

To evaluate the classification accuracy, we divide the Adult data (45222 records)

set into training and testing sets. Each training and testing data sets contain 40700

records and 4522 records respectively. The accuracy is obtained from 10 cross-

validation based on stratified sampling. A test data set is independent from its
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corresponding training data set. Generalization levels are determined by the train-

ing data sets solely and then applied to the test data sets. For classification models,

we use four classifiers J48 (an implementation of well-known C4.5 classifier [17]

in weka [18]), Naive Bayes, Logistic Regression and SVM . For better visu-

alization we provide an additional measure Baseline Accuracy (BA), which is the

classification accuracy of the raw data without anonymization.

Figure 5 shows that in all cases we have better accuracy than the Mondrian.

The accuracy of our method is very close to the base line accuracy.

6.2. Comparison with differential privacy

In the differential privacy it is crucial to choose a right ε (privacy budget). We

ran 100,000 random queries on our data sets, and count the number of unchanged

responses after adding Laplacian noise to the original count value (we replaced

the fraction number with the nearest integer). The ratio of unchanged responses

with different privacy budgets are shown in Figure 6. When ε > 0.1, more than

30% of the query results have not been changed. The higher ratio of unchanged

responses, the lower the privacy. We set the upper bound of ε as 0.1.

In these experiments, we use both the interactive4 and the non-interactive5

settings to make the comparison. To compare with the interactive setting and

the non-interactive setting we use the measures query accuracy and classification

accuracy respectively.

4In an interactive framework, a data miner/recepient can pose aggregate queries through an

anonymization technique, and a data set owner answers these queries in response. [16]
5In a non-interactive framework, the data set owner first anonymizes the raw data and then

releases the anonymized version. [16]
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6.2.1. Query accuracy

Firstly, we use the same set of queries in the previous Subsection for the as-

sessment of the utility of the differential privacy mechanism. For implementing

differential privacy, Laplacian noises are added to the true results and errors are

calculated by using the relative error of a query that is defined in Section 6.1.1.

We report the averages of a set of 1000 queries in Figure 7. The query errors of

differential privacy are significantly higher in small query. Yet again, to show that

our method preserve better utility than the differential privacy we do the following

experiment.

In this experiment, we randomly define some equivalence classes and create

histograms of sensitive values (all sensitive values in its domain) for those classes

in the original data sets, in the anonymous data sets by our method and in the noisy

responses through the differentially private mechanism. A histogram of size m is

defined as a set H = {#si}mi=1, where i is the i’th sensitive value and m is the

total number of sensitive values or the domain size of sensitive attribute. We use

a probabilistic distance measure Kullback Leibler [19] distance and a vector dis-

tance measure City-Block distance to measure the distances of the histograms (

histogram in the anonymous data sets by our method and histogram in the noisy

responses through differentially private mechanism) from the histogram in the

original data set. The smaller a distance, the better the preservation of the distri-

bution of the original data set.

Figure 8 shows that both Kullback-Leibler and City-Block distances between

the differentially private responses and the original data sets are significantly

higher than the distances between our anonymized data sets and the original data

sets. The reported distances are aggregated distances of 1000 random equivalence
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classes. The results indicate that the utility of our anonymized sets are signifi-

cantly better than the utility of the differentially private responses.

These results are quite consistent with the previous results. Differential pri-

vacy is not good for small queries. The magnitude of Laplacian noise is same for

small and large value, and the noises reduce the accuracy of small query results

significantly.

Count query in an interactive setting is a strength of differential privacy. How-

ever, our method is non-interactive and publishes anonymous data sets. More fair

comparison should be with differential privacy of non-interactive setting. The fol-

lowing experiment is to compare a non-interactive setting of differential privacy

with our method.

6.2.2. Classification accuracy

In this experiment, we use a non-interactive [16] setting of differential pri-

vacy to compare the classification accuracy with our method. We employ the well

known classifier J48 to compare the performances. Figure 9 compares the accu-

racy of models built on our anonymized data set with the accuracy of models built

on the differentially private data set in the non-interactive setting [16]. We use

both Max and InforGain algorithms in [16]. The level of specialization (for

details see [16]) is given 10, as with this level the both algorithms have better

accuracy than other levels. The privacy budget is set to ε = 0.1 as explained be-

fore. The classification accuracies of classification models built on differentially

private data sets are significantly lower than accuracies of classification models

built on anonymous data set by our method. Since many small queries are used

for building classification models.
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Figure 8: Distances between histograms of sensitive values in anonymized data and original data

in comparison with differential privacy

6.3. Efficiency

In these experiments, we show the efficiency of our algorithm. The Fig-

ure 10(a) shows the execution time of our algorithm with different data set sizes.

We further study the scalability of our algorithm over large data sets. By randomly

adding records to the data set of 100,000 records, we generate different sizes of

data sets. For each record we create θ variations of the record by replacing some

of the attribute values randomly from its domain. Here θ is the blowup scale and

thus the total number of record is θ× 100,000 after adding random records. Fig-

ure 10(a) shows the execution time from 200,000 to 1 million records. Our method

scales well with data set sizes. However, Figure 10(b) shows that the execution

time of our algorithm is slightly higher than the Mondrian. This is due to the fact

that our algorithm processes each record independently. Moreover, when there is
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Figure 10: Scalability of the designed algorithm

a generalization, our method checks all the records including those records that

have already satisfied the privacy criterion at the previous iteration.

7. Related work

The privacy preserving data publishing works can be broadly classified into

two categories. The first category consists of generalization-based approaches,

where data values of some attributes such as age, sex and address are generalized

to form small groups, so that an individual can not be identified and his/her sensi-

tive value(s) can not be inferred with a high confidence. Among all the techniques

in this category, k-anonymization [1] and its variations [2, 3, 4] are well studied
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in the literature. For details readers are referred to [20, 21]. The second category

comprises of perturbation technique, where original values are noised, and hence

it is difficult to pinpoint an individual in a published information. Among dif-

ferent techniques of perturbation methods, differential privacy [7] attracts a huge

attention in the last few years.

7.1. Generalization based models and methods

Anonymization methods have been well studied in the literature [1, 13, 22,

23, 24, 25, 26, 27]. These methods are generally divided into two groups: task-

specific and nonspecific. In former, the released tables are undergoing some spe-

cific data mining processes, such as building decision tree models. The purpose of

the anonymization is to keep sufficient protection of sensitive information while

maintaining the accuracy for a data mining task, such as classification. There

have been a number of proposed methods in this group [23, 28]. On the other

hand, when the data owners do not know the ultimate use of the released data, a

general anonymization goal should not be associated with a data mining task but

should minimize the distortions in the anonymized data sets. These methods are

called nonspecific k-anonymization methods [12, 24, 29].

LeFevre et al. [13] have presented an interesting taxonomy to categorize al-

ternative methods based on their “encoding schemas”, which impose different

constraints in generalizing QID values. They have divided multidimensional re-

coding methods into global recording and local recoding. In this paper, we use

the local recoding method [9]. Global recoding methods generalize a table at the

domain level. Many works of k-anonymization [12, 23, 24, 28] are based on the

global recoding model. A typical global recoding generalization model is Incog-

nito [24]. All these methods adopt k-anonymity [1] and/or its extension [2] as the
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underlying privacy principle. All these works are vulnerable to the recently dis-

covered privacy attacks [30, 31, 32, 33]. A detailed discussion on generalization

based categories can be found in a survey paper [21].

7.2. Randomized models and methods

An emerging line of work conforming to differential privacy [7] has received

considerable attention recently. Differential privacy preserves the privacy by guar-

anteeing that the adversary should not be able to distinguish between two possi-

bilities, i.e. an individual’s record is in or not in the published data set. Numerous

techniques have been proposed for ensuring ε-differential privacy [34, 35, 36,

37, 38, 39, 40, 41, 42, 43]. However, most of the research focuses on differen-

tial privacy on the interactive settings. Recently some researchers present several

works [16, 34, 44, 45] to publish differentially private data sets.

Blum et al. [34] develop a technique for accurately answering range-count

queries in a differentially private fashion. Another mechanism has shown to be

optimal for a single counting query [47]. Xiao et al. [45] propose Privlet, a

wavelet-transformation based approach that lowers the magnitude of added noise.

In line to this, Hay et al. [42] also present a method to publish differential pri-

vate histograms for a one-dimensional data set. Although Privelet and Hay et

al.’s approaches achieve differential privacy, the latter one is applicable only to a

one-dimensional data set.

In summary, existing differential privacy methods provide strong privacy guar-

antee and have good utility with count queries. However, the interactive settings

cannot replace the microdata publishing. For details readers are referred to [48].

The non-interactive settings of differential privacy can be used as microdata pub-

lishing techniques. However, queries in a non-interactive setting has more devia-
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tions from the original data set than queries in an interactive setting. Our experi-

ment is an evidence for this claim.

8. Conclusions

This paper presents a new privacy framework to prevent an adversary from

gaining more information about an individual than an adversary can get from the

public domain. We have proposed a new criterion for privacy preserving data pub-

lishing. The new privacy criterion allows a data publisher to assess the privacy risk

of each record independently. We also design an effective method to implement

the proposed model by integrating sampling and generalization. The empirical

results show that the designed method anonymizes the data that supports better

data analysis than the data anonymized by a benchmark utility-aware anonymiza-

tion algorithm and the data releases by the differentially private mechanism. This

work assumes that QID attributes and the sensitive attribute in a data set are inde-

pendent. Our following works will consider the correlation of QID attributes and

the sensitive attribute.
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