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ABSTRACT
Data anonymization has become a major technique in privacy pre-
serving data publishing. Many methods have been proposed to
anonymize one dataset and a series of datasets of a data owner.
However, no method has been proposed for the anonymization of
data of multiple independent data publications. A data owner pub-
lishes a dataset, which contains overlapping population with other
datasets published by other independent data owners. In this pa-
per we analyze the privacy risk in the such scenario and vulnera-
bility of partitioned based anonymization methods. We show that
no partitioned based anonymization methods can protect privacy
in arbitrary data distributions, and identify a case that the privacy
can be protected in the scenario. We propose a new generalization
principle �-cloning to protect privacy for multiple independent data
publications. We also develop an effective algorithm to achieve the
�-cloning. We experimentally show that the proposed algorithm
anonymizes data to satisfy the privacy requirement and preserves
good data utility.

Categories and Subject Descriptors
H.2.0 [Database Management]: General

General Terms
Management, Security, Theory

1. INTRODUCTION
Private individual-specific information such as customer data,

employee data etc. are maintained and shared for various purposes.
The advantages of such sharing are well documented but in the re-
cent past several instances of data privacy breaches [2], due to data
sharing, have resulted in financial and reputational losses for en-
terprises. Partition-based privacy preserving data publishing tech-
niques address this problem by anonymizing data such that individ-
ual privacy is preserved when data is shared or released. The ba-
sic idea behind these techniques is one-in-crowd which guarantees
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Figure 1: Full overlapping scenario among three hospitals

that an individual cannot be distinguished from a minimum num-
ber of other people. Partition-based anonymization techniques are
widely discussed in literature and well known schemes include k-
anonymity [25], (�,k)-anonymity [28], ℓ-diversity [20], t-closeness
[19] and anatomy [32]. Existing partition-based techniques focus
on one-time publication [25, 20], multiple views of the same data
[34, 33]; and the series of datasets by single data owner [29, 10,
31]. Multiple data publications are restricted to single owner, and
does not support privacy preserving data publications of overlap-
ping records by multiple publishers. Ganta et al. [11] firstly iden-
tified the privacy breach of overlapping population within multiple
published datasets, and called this privacy breach composition at-
tack. However, the solution of [11] supports only interactive setting
(where only data statistics and/or query results are released), and
is inapplicable for non-interactive setting (where the data is pub-
lished after anonymization). Privacy preserving data anonymiza-
tion against known and unknown overlapping population remains
an open problem. To the best of our knowledge no solution exists
for these scenarios.

Before we illustrate the problem, firstly let us consider patient
overlapping scenario of three hospitals in Figure 1. There are three
overlapping patients i.e. Nancy, David and Eliza. Nancy has vis-
ited Hospitals 1 and 2, Eliza, has visited the Hospitals 2 and 3 and
David has visited the Hospitals 1 and 3. All hospitals indepen-
dently anonymize their datasets and are unaware of their overlap-
ping records with other hospitals.

Table 1(a) is the original data of Hospital-1, which has three
type of attributes. Identifier attributes can directly identify indi-
viduals, such as Name, SSN etc. They should be removed in a
published dataset. Quasi identifier (QI) attributes could indirectly
lead to the identification of individuals in a dataset, such as Age,
Zipcode and Sex etc. They are normally generalized so that no
individuals are identifiable in a generalized dataset. The Sensitive
attribute contains the private information about the individuals that
needs to be protected such as Disease, Income etc. There is an-
other type of attribute called non-sensitive attribute, which do not
fall under aforementioned types but is useful for some data analy-
sis. In our case, we do not consider them since they are unrelated to



Table 1: Hospital-1

(a) Original Table
<Marry, 15, F>  C 

<Vince, 18, M> C 

<Rabi, 25, F>    D 

<Nana, 30, F>   D 

<Nancy, 50, F>D 
<Bob, 23, M>   G 

<Steve, 40, M> G 

<David, 15, M>J 
<Paul, 35, M>    J 

 

(b) 4-anonymous release

Age Sex Disease 

15 – 40 M 

C (1) 

G (2) 

 J (2) 

15 – 50 F 
C (1) 

D (3) 

 

(c) Privacy clone release

Age Sex Disease 

15 – 50 * 

J (2) 

G (2) 

C (2) 

D (3) 

 

(d) �-clone release with micro-
statistics

Age Sex Disease 

~19 

15 – 25  

M (2) 

F  (2) 

C (1) 

D (1) 

G (1) 

J (1) 

~35 

18 – 50 

M (3) 

F  (2) 

C (1) 

D (2) 

G (1) 

J (1) 

Table 2: Hospital-2

(a) Original Table

<Alex, 15, M >  A 

<Mary, 22, F >  A 

<Tom, 38, M >  A 

<Linda, 10, F>   D 

<Khan, 18, M>  D 

<Nancy, 50, F> D 
<Andy, 25, M>  G 

<Eliza, 30, F>   G 

<Maxi, 45, F>   G 

<Hussy, 23, M> J 

<Tina, 35, F>     J 

<Paul, 35, M>   J 
 

(b) 6-anonymous release

Age Sex Disease 

10 – 38 M 

A (2) 

D (1) 

G (1) 

 J (2) 

10 – 50 F 

A (1) 

D (2) 

G (2) 

 J (1) 

 

(c) Privacy clone release

Age Sex Disease 

10 – 50 * 

D (3) 

J (3) 

A (3) 

G (3) 

 

(d) �-clone release with micro-
statistics

Age Sex Disease 

~19 

19 – 23 (2) 

M (4) 

F  (2) 

A (2) 

D (2) 

G (1) 

J  (1) 

10 – 25 

~39 

35 – 39 (2) 

M (2) 

F  (4) 

A (1) 

D (1) 

G (2) 

J  (2) 

30 – 50 
 

data anonymization. A generalized table is considered privacy pre-
served, if it satisfies a privacy requirement, such as k-anonymity
[25], (�,k)-anonymity [28], ℓ-diversity [20], t-closeness [19] etc.
Hospital-1 releases Table 1(b) as a 4-anonymous and 2-diverse ver-
sion of the original Table 1(a). 4-anonymity means that values in
the quasi-identifier have at least 4 identical copies. So one could
not be distinguished from other 3 records. Such a group is called
an equivalence class (formal definition in Section 4). 2-diversity
means that each of such a group has at least 2 distinct values in the
sensitive attribute. So the sensitive value of each individual could
not be inferred with a high confidence.

2. PROBLEM DESCRIPTION AND MOTI-
VATION

All existing partition-based privacy preserving data publishing
techniques, such as [20, 32, 19, 22, 6, 16, 26, 14, 30] focus on form-
ing equivalence classes (also called partitions or QI groups) based
upon some generalization principles. To illustrate the problem, let
us assume that Hospital-2 releases Table 2(b) as a 6-anonymous and
3-diverse version of the original Table 2(a) and Hospital-3 releases
Table 3(b) as 4-anonymous and 3-diverse version of the original Ta-
ble 3(a). The Nancy’s equivalence class in Table 1(b) (Hospital-1’s
anonymous release) and in Table 2(b) (Hospital-2’s anonymous re-
lease) has only 1 common sensitive value i.e. {D}. So an adversary
knowing the QIs of Nancy (50 years old female) and the fact she
has visited two hospitals can derive her sensitive value from both
tables. Such utilization of more than one individually anonymized
datasets to infer the privacy of overlapping individual(s) is called a
‘composition attack’ [11]. Using the composition attack adversary

can get the diseases of David and Eliza in Tables 1(b), 3(b) and
Tables 2(b), 3(b) respectively.

Individually all three anonymous datasets, Table 1(b), Table 2(b)
and Table 3(b) pose low privacy risk but collectively compromise
the privacy of overlapping patients due to the composition attack
[11, 3]. In other words independently anonymized datasets do not
retain the privacy properties under the composition attack. Note
that there are other possible generalized tables of original tables
too. However, they suffer the same type of privacy disclosures.

Our method proposed in this paper leads to the publication of
Table 1(d), 2(d) and 3(c). Specifically, each equivalence class of
these tables contains all the sensitive values of its respective origi-
nal dataset. Moreover, unlike a definite QI range (as done in previ-
ous releases of these tables), each equivalence class of Table 1(d),
2(d) and 3(c) has micro-statistics values (to be discussed in detail
in Section 6). The purpose of releasing such statistics is for better
privacy preserving and retaining statistical properties.

Let adversary now attempt to infer the diseases of Nancy, David
and Eliza from Table 1(d), 2(d) and 3(c). The adversary can locate
that the equivalence classes of Nancy has 3, and David/Eliza have
2 sensitive values common i.e. {D,G,J} and {G,J} respectively.
Therefore adversary cannot get a specific disease that Nancy, David
or Eliza has contracted.

One straightforward approach that can tackle the composition
attack is trivial sanitizer [4] which simply suppresses all quasi-
identifiers (QIs) or all sensitive attributes and publish all non-sensitive
attributes intact. In our case, such sanitization makes data less use-
ful since all information of QIs and sensitive value is lost. Our mo-
tivation is to achieve privacy against composition attack and also to
maintain, as much as possible, the high data utility of anonymous
releases.



Table 3: Hospital-3

(a) Original Table
 Name Age Sex Marital Status Disease 

David t1 

t2 

t3 

t4 

t5 

t6 

t7 

t8 

t9 

t10 

t11 

t12 

t13 

t14 

t15 

t16 

t17 

t18 

t19 

15 

18 

25 

35 

38 

10 

18 

20 

25 

30 

35 

45 

20 

30 

40 

10 

17 

22 

28 

M 

F 

M 

F 

M 

M 

M 

M 

F 

F 

F 

M 

M 

F 

F 

F 

F 

M 

F 

Never-married 

Never-married 

CIV-spouse 

AF-spouse 

Divorced 

Never-married 

Never-married 

Never-married 

Never-married 

Separated 

Divorced 

Separated 

AF-spouse 

CIV-spouse 

CIV-spouse 

Never-married 

Never-married 

Separated 

Widowed 

J 

J 

J 

J 

J 

B 

B 

B 

B 

B 

B 

B 

G 

G 

G 

L 

L 

L 

L 

 

Eliza 

 

 

(b) 4-anonymous release
Age Sex Marital Status Disease 

10 – 18  * Never-married 

B (2) 

J (2) 

L (1) 

17 – 25  * * 

B (2) 

J (1) 

L (1) 

20 – 40  * * 

B (1) 

G (2) 

L (1) 

25 – 28 * * 

B (1) 

J (2) 

L (1) 

 

(c) �-clone release with micro-statistics
Age Sex Marital Status Disease 

~15 

14 – 16 (1) 
M (3) 

AF-spouse (1) 

Never-married (2) 
G (1) 

J (2) 

B (2) 

L (1) 
~21 

19 – 21 (1) 

M (2) 

F (1) 

Never-married (2) 

CIV-spouse (1) 

10 – 20  

~22 

18 – 22 (1) 

M (1) 

F  (2) 

CIV-spouse (1) 

Never-married (2) 
G (1) 

J (2) 

B (2) 

L (1) 
~27 

25 – 27 (1) 

M (1) 

F  (2) 

Separated (1) 

AF-spouse (1) 

Never-married (1) 

18 – 35  

~38 

37 – 39 (1) 

M (1) 

F  (2) 

CIV-spouse (1) 

Divorced (2) 
G (1) 

J (2) 

B (2) 

L (1) 
~29 

28 – 28 (1) 

F (2) 

* (1) 

Widowed (1) 

* (1) 

Separated (1) 

28 – 40 
 

3. CONTRIBUTIONS
The problem of overlapping data publications is not resolvable

by the methods of sequential data publishing, such as [29, 31, 10]
and multiple views of the same dataset [33, 34]. Both, sequential
data and multiple view, deals with two overlapping data publica-
tions of the same data owner. The data owner knows the previously
released data/view(s) of the dataset and uses these data/view(s)
during the anonymization process of the next publication. In our
scenario of multiple publications, a publisher is unaware of other
datasets that have overlapping records with it. Therefore, methods
of sequential and multiple view data publication are inapplicable
to multiple independent data publications. The sequential/multiple
views inference is between the two different releases of same loca-
tion; whereas the composition attack works between the indepen-
dent releases of mutually unknown locations.

Firstly, In this paper we analyze the privacy risk in multiple inde-
pendent data publications situations and vulnerability of partition
based anonymization methods in such an environment. We show
that no partition based anonymization methods can protect privacy
in arbitrary data distributions, and identify a case that the privacy
can be protected in.

Secondly, this paper proposes a multiple data publications model
to protect a dataset from the composition attack when different lo-
cations independently release the anonymous data of overlapping
population. The core of our solution is the integration of two novel
concepts: �-cloning and micro-statistics based anonymization. The
former is a new model, whose satisfaction ensures the association
of a tuple with all sensitive values of data; hence providing the max-
imum privacy protection. The latter is an anonymization technique
that facilitates the implementation of �-cloning.

4. BASIC DEFINITIONS
Let P be a dataset maintained by a publisher. There are n other

publishers which have overlapping subset with P . We assume that
all n publishers and their published datasets are unknown to the
publisher of P . Each published dataset Q∗i (i ∈ 1,2,3, . . . , n) is
independently anonymized from its original dataset Qi.

We classify the columns of P and Qi into three types (already
explained in Section 1): (i) an identifier attribute Aid, which is the
primary key of P and Qi, (ii) the d quasi-identifier (QI) attributes
Aqi1 ,Aqi2 , . . . ,Aqid , and (iii) a sensitive attribute S. The QI attributes

can be either numerical or categorical. For each tuple t ∈ P , t[A]
denotes its value on attribute A.

Definition 1 (Generalized QI group / Equivalence class) For anony-
mous dataset P ∗, an equivalence class (E) is set of the tuples in
P ∗ with the same values in QI attributes. Each equivalence class
is assigned an ID Ag .

For a tuple t ∈ P ∗; we refer t.E as the hosting equivalence class
of the tuple t in P ∗. When the publisher P releases P ∗, the adver-
sary can use P ∗ and any Q∗i to intrude the privacy of overlapping
subset by the composition attack. To formalize the attack, we first
introduce a notation O(P ∗, Q∗i ).

Definition 2 (Overlapping set) Let publisherP releasesP ∗, anony-
mous version ofP , for each independent releaseQ∗i (i ∈ 1, 2, 3 . . . , n)
the overlapping set O(P ∗, Q∗i ) contains all those tuples in P ∗ and
Q∗i such that:

O(P ∗, Q∗i ) =
∪n
i=1(P

∗ ∩ Q∗i ) (i ∈ 1, 2, 3 . . . , n)

Each tuple in O(P ∗, Q∗i ) is an intersection (to be explained) of
two corresponding tuples ti ∈ Q∗i and t ∈ P ∗; which satisfy the
following requirements:

1. t[S] = ti[S]; both tuples have the same sensitive value

2. ∀j : t[Aqij ] ∩ ti[A
qi
j ] ∕= ∅; t and ti have overlapping value

intervals in every QI attribute.

For two value intervals (or values), the intersection returns the over-
lapping range of two intervals. For example, for age QI intervals
(15–25) ∩ (20–30) = (20–25). For categorical QI values in gener-
alization taxonomies, the intersection returns the most specific QI
value of two QI values if the one is a generalization of another oth-
erwise returns ∅. For example, for sex QI values (∗ ∩ male =
male), (∗ ∩ female = female) and (female ∩ male = ∅); ‘∗’
corresponds to the most generalized QI value in any generalization
hierarchy. In sex QI generalization hierarchy, ‘∗’ presents both
male and female.

Assume that a tuple t occurs in two generalized tables P ∗ and
Q∗i . As per Definition 2, tuple t ∈O(P ∗, Q∗i ) and it has two corre-
sponding tuples; each in P ∗ and Q∗i . The probability for inferring



the sensitive value of overlapping tuple t from tables P ∗ and Q∗i is
prob(t[S] ∣ (P ∗, Q∗i )):

prob
(
t[S]∣(P ∗, Q∗i )

)
= prob

(
t[S]∣O(P ∗, Q∗i )

)
(1)

Equation (1) reveals the reason of the failure of partition based
generalization schemes like k-anonymity [25] , ℓ-diversity [20],
t-closeness [19] etc. for the composition attack . After proper
anonymization, the corresponding generalized tuples of overlap-
ping tuple t are protected in each of P ∗ and Q∗i . However, compo-
sition attack inference has nothing to do with their respective indi-
vidual probabilities in P ∗ and Q∗i . Composition attack inference is
only determined by their overlapping set O(P ∗, Q∗i ). An overlap-
ping set O(P ∗, Q∗i ) may not satisfy either generalization scheme
of individual anonymized datasets. In the worst case:

prob
(
t[S]∣O(P ∗, Q∗i )

)
= 1 (2)

The worst case (2) occurs when only one record in O(P ∗, Q∗i )
matches overlapping tuple t or all tuples have the same sensitive
value.

Example 1. Let t = <Nancy, 50, F, D> and Q∗1 and P ∗ as Table
1(b) and 2(b) respectively. The overlapping set O(P ∗, Q∗1) con-
tains the tuple <15–50, F, D>. So the probability for inferring the
true sensitive value of Nancy from tables Q∗1 and P ∗ is prob

(
t[S]

∣ O(P ∗, Q∗1)
)
= 1. All matching records in O(P ∗, Q∗1) have the

same sensitive value.

5. PRIVACY PRESERVING IN MULTIPLE
INDEPENDENT PUBLISHING

In the previous section, we have shown that the privacy of an
individual in the overlapping dataset can be inferred with 100%
accuracy. Now we discuss when we can prevent such inference and
how to do it.

We start with the inference of the probabilities of sensitive values
shared by two different datasets with overlapping QI values. Let S
be a set of all possible sensitive values of two datasets D1 and D2.
Let fD1(s) be the frequency of sensitive values in dataset D1 and
fD2(s) for D2. Note when a sensitive value, say sj , is not present
in a dataset, for example D1, fD1(sj) = 0.

The probability for inferring si ∈ C from both datasets based
on their sensitive values distribution is given as the following. Note
that � = ∣D1∣

∣D2∣
and ∣D1∣ and ∣D2∣ are sizes of datasets D1 and D2

respectively. Let us assume that ∣D1∣ ≤ ∣D2∣ (we can swap the
datasets if otherwise) and 0 < � ≤ 1.

prob(si∣(D1, D2)) = prob(si∣O(D1, D2))

=
min(fD1(si) ⋅ ∣D1∣, fD2(si) ⋅ ∣D2∣)∑∣S∣
r=1 min(fD1(sr) ⋅ ∣D1∣, fD2(sr) ⋅ ∣D2∣)

=
min(�fD1(si), fD2(si))∑∣S∣
r=1 min(�fD1(sr), fD2(sr))

(3)

The probability for inferring an overlapping sensitive value from
two overlapping datasets relies on 1) the number of overlapping
sensitive values, 2) their frequencies, especially in the smaller dataset
of two datasets. In other words, it depends on what have been re-
mained in the intersection. Next, we show how to use equation (3)
in the following example.

Example 2. Let D1 be Table 1(c) and D2 be Table 2(c). S =
{A,C,D,G, J}. We infer Nancy’s sensitive value knowing her
record is in both datasets. The sensitive values in O = {D(3),

G(2), J(2)}where the numbers in parentheses are counts. prob(D
∣ O(D1, D2)) = 3/(3 + 2 + 2) = 3/7.

If we use the distributional information to infer the probability,
we use the following table.

frequency A C D G J
∣D1∣ = 9 0 2/9 1/3 2/9 2/9
∣D2∣ = 12 1/4 0 1/4 1/4 1/4

We obtain prob(s = D∣(D1, D2)) :

=
(3/4) ∗ (1/3)

(3/4) ∗ (1/3) + (3/4) ∗ (2/9) + (3/4) ∗ (2/9) = 3/7

Now we present the objective of privacy preservation in multiple
independent publications in the following.

∀i : prob(si∣(D1, D2))−max(prob(si∣D1), prob(si∣D2)) < �
(4)

prob(si∣D1) and prob(si∣D2) are the confidences of the adver-
sary inferring the sensitive value si individually from two published
datasets D1 and D2 respectively. � is a small positive number.
Let us recall what an adversary knows. Based on the background
knowledge and the quasi-identifier values, an adversary knows that
the victim’s record is in both datasets D1 and D2. max(prob(si
∣ D1), prob(si ∣ D2)) means the maximum probability that the
adversary would know the sensitive value from the two published
datasets individually. The objective (4) is to bound the improve-
ment of the confidence of the adversary (caused by the composi-
tion attack) by �. If � = 0, then the adversary gets no advantage
by using two datasets collectively. prob(si∣D1) and prob(si∣D2)
can be estimated as fD1(si) and fD2(si) if two datasets have been
anonymized properly.

Now, we discuss when objective (4) can be achieved. We firstly
study how difference in sensitive value distributions in D1 and D2

affect the inference probability. Let us fix � = 1.

prob(si∣(D1, D2)) =
min(fD1(si), fD2(si))∑∣S∣
r=1 min(fD1(sr), fD2(sr))

(5)

Let � = 1∑∣S∣
r=1 min(fD1

(sr),fD2
(sr))

. When distributions of sen-

sitive values in both D1 and D2 are similar, � ≈ 1. When the
distributions are significantly different, � is a large number.

Example 3. Let S = {s1, s2, s3, s4, s5}, datasets D1 and D2

contain some of the sensitive values of S. We give some distribu-
tions of sensitive values in D1 and D2 and their corresponding �
values as the following.

frequency s1 s2 s3 s4 s5
D1 0.1 0.2 0.3 0.4 0
D2 0.1 0.2 0.3 0.4 0

� = 1.

frequency s1 s2 s3 s4 s5
D1 0.1 0.2 0.3 0.4 0
D2 0 0.2 0.3 0.4 0.1

� = 1.11

frequency s1 s2 s3 s4 s5
D1 0.1 0.2 0.3 0.4 0
D2 0 0.1 0.2 0.3 0.4

� = 1.67

In an ideal situation when � = 1, the overlapping dataset does not
reveal more privacy of an overlapping individual than each individ-
ual dataset does. Therefore, the privacy of overlapping individuals
in multiple datasets is preserved.



In the worst situation, when � is a large number, distributions of
two datasets are almost distinct and have very little overlap. In such
situation, prob(si∣(D1, D2)) ≈ 1 and an adversary can obtain the
probability of an overlapping sensitive value with the nearly certain
confidence using just the distribution information.

From the above examples, we see that distributions dominate the
inference probability in the composition attack. Thus, we have the
following observation.

Observation 1 There is not a general solution for the composition
attack for any distribution of two datasets.

PROOF. Given a dataset D1 with a distribution. We can always
find a distribution of another datasetD2 so that � is a large number.
As a result, prob(si∣(D1, D2)) ≈ 1, and the objective (4) will be
dissatisfied for some i’s.

For example, in the worst case, the privacy will be revealed just
based on distributional information of two datasets, such as two
datasets have only a single sensitive value in common. Such a dis-
closure does not even need QI information.

In the following, we consider a solution in a restricted form. We
firstly define the closed community. In a closed community, the
dataset of each data owner (i.e hospital in our case) is drawn from
the same population and their data distributions are similar. In our
words, � ≈ 1. For example, different hospitals take different sets
of patients, but in most cases, the disease distributions of the hos-
pitals are similar. There are some exceptions that the distributions
of some specialized hospitals are different from those of general
hospitals. However, in such exceptions, the knowledge of a pa-
tient visiting a specialized hospital gives an adversary large chance
for guessing the disease anyway. Let us assume that a number
of general hospitals plan to publish their datasets independently
in anonymized form (for research purposes etc.) and want to en-
sure privacy against the composition attack. So, a solution in the
assumption of the closed community, where hospitals have similar
distributions, is still useful.

In the following discussions, we assume that � ≈ 1 for a solution
in a closed community. When � ≈ 1, � does not make much
difference because both distributions are similar. An ideal solution
can be achieved if sensitive values in every equivalence class of P ∗

and Q∗i has the same distribution as of P and Qi respectively. To
formalize such best solution scenario, we introduce the following
concept.

Definition 3 (Clone equivalence class) Given the distribution of
sensitive values of dataset P as f(S). An equivalence class E ⊂
P ∗ is called a clone equivalence class if it has all the sensitive val-
ues S and the distribution of sensitive values in E is the same as
f(S).

Example 4. A clone equivalence class of Table 2(a) is Table 2(c).
Apparently, the utility of this clone equivalence class is low. Ta-
ble 2(d) has two clone equivalence classes generalized by our micro-
statistics method (to be discussed later).

Observation 2 (Property of clone equivalence classes) Let all equiv-
alence classes of anonymized datasets P ∗ andQ∗i be clone equiva-
lence classes. The objective (4) can be achieved when � ≥max

(
�

min(prob(sj ∣P ∗), prob(sj ∣Q∗i ))−max(prob(sj ∣P ∗), prob(sj
∣ Q∗i ))

)
for all j ∈ 1,2,3, . . . , ∣S∣.

PROOF. If all the equivalence classes of anonymized datasets
P ∗ and Q∗i are clone equivalence classes (Definition 3), the proba-
bility for inferencing a sensitive value in an equivalence class is the
same as that for inferencing the sensitive value in whole dataset.
Therefore, we can replace D1 and D2 with P ∗ and Q∗i in equa-
tions (3) and (4) and the lower bound of � is obtained.

Since max(prob(si∣P ∗), prob(si∣Q∗i ))≥ min(prob(si∣P ∗), prob
(si∣Q∗i )) and � ≈ 1, the � can be very small.

Clone equivalence classes are ideal but inappropriate for real
world situations. We may lose a lot of utility if we require datasets
to be anonymized to such an ideal situation (as we see in Tables
1(c) and 2(c)). We need a practical goal. We relax the requirement
of clone equivalence classes as the following �-clone equivalence
classes.

Definition 4 (�-clone equivalence class) Given the distribution of
sensitive values of dataset P as f(S). An equivalence class E ⊂
P ∗ is called �-clone if it has all the sensitive values S and for every
sensitive value in S, the difference of probabilities of the sensitive
value in P and in E is bound by a small number �. More specifi-
cally, ∣ prob(si∣P )− prob(si∣E)∣ ≤ �.

The magnitude of � is determined by the data distribution of a
dataset. We will analyze the upper bound of the � in Section 6.2
after the algorithm is presented. Finally, we present the problem of
creating �-clone equivalence classes.

Definition 5 (�-clone publication) The objective of privacy pre-
serving �-clone publication is to compute such anonymous P ∗ that
each equivalence class E in P ∗ is �-clone equivalence class and
retains as much information in anonymous P ∗ as possible.

The requirement of �-clone equivalence class looks like t-closeness
[19]. However, they are different in the following way. The t-
closeness bounds the total difference of the distribution between
an equivalence class and the dataset, but �-cloning bounds the fre-
quency difference of each sensitive value of an equivalence class
and the dataset. When the overall difference is bounded in two
distributions (like in t-closeness), the frequency differences of a
sensitive value between dataset and an equivalence class can still
be large. Therefore, t-closeness [19] is also vulnerable to the com-
position attack as shown in [11].

6. MICRO-STATISTICS BASED
ANONYMIZATION

There is a practical problem for anonymizing a table to comply
with �-clone publication. The size of an �-clone equivalence class
can be big when the distribution of sensitive values is skewed. The
generalization of such a large equivalence class makes a dataset
useless, as we saw in Table 1(c) and 2(c) where most QI values have
been suppressed. In this section, we will introduce a micro-statistic
technique to make such a super equivalence class more useful than
the generalization.

6.1 Phases
We aim at achieving two intuitive goals. First, each equivalence

class has all the sensitive values of the anonymized dataset. Sec-
ond, we attempt to reduce, as much as possible, the frequency dif-
ference for each sensitive value between original dataset and the
equivalence class i.e. �. We do not pre-specify � but adaptively find
it out in the process of anonymization. The detail discussion on �
is given in Section 6.2.



6.1.1 Division
This phase divides all the tuples of P into ∣S∣ (∣S∣ is the num-

ber of distinct sensitive values in P ) sub-datasets i.e. W1, W2, . . . ,
W∣S∣, such that each sub-dataset contains only the tuples with same
sensitive value. In the end of this phase, we calculate the frequency
of each sub-dataset f (Wj) in original dataset P . This phase is dif-
ferent from the bucket partition phase of [5] because [5] starts out
with buckets of more than one closely related distinct sensitive val-
ues in one bucket but we strictly allocate only one sensitive value
to each sub-dataset.

As an example, we consider Table 3(a) as P , u = 4 because
P (Table 3(a)) has 4 distinct sensitive values i.e, {J ,B,G,L}. We
create 4 sub-datasets i.e. W1(J), W2(B), W3(G), W4(L). We
calculate the ratio of each sub-dataset to the whole dataset; for ex-
ample the sensitive value J has 5 tuples and its ratio in Table 2(a)
is 0.26.

6.1.2 Assignment
First, we create b empty equivalence classes (E1, E2, E3 . . . ,

Eb); where b = min(∣Wj ∣), i.e. the sub-dataset with the minimum
tuples. We call such sub-dataset as the key sub-dataset, denoted
as W�. Next, we decide how many tuples to be assigned to each
empty equivalence class Er (r = 1, 2, 3, . . . , b).

The assignment algorithm takes the ∣S∣ sub-datasets, already cre-
ated in the division phase, and calculates a separate 
j value for
each sub-dataset; 
j is the number of tuples to be assigned to each
equivalence class Er from each sub-dataset Wj . To calculate the

j , we first make a temporary calculation of �j =

∣Wj ∣
b

. Where b is
the number of equivalence classes created earlier in this phase i.e.
b = ∣W�∣. Now we calculate 
j for j-tℎ sub-dataset as:


j = round(�j) (6)

Where round is a function that returns the nearest integer from �j .
For example, round(2.3) = 2, round(2.8) = 3 and round(2) =
2 . In an ideal situation, the 
j = �j . Such ideal situation exists
for all sub-datasets of Table 2(a). If �j is not an integer then there
is a deficiency of some tuples in Wj ; there are not enough tuples
in Wj that can equally be allocated to all b equivalence classes. In
such case, we need to handle this deficiency by suppressing/adding
ℏj tuples from/to sub-dataset Wj , where:

ℏj =
{

(
j ∗ b)− ∣Wj ∣ if (�j − ⌊�j⌋) > 0.5
∣Wj ∣ − (
j ∗ b) if (�j − ⌊�j⌋) < 0.5

(7)

We add ℏj counterfeited tuples to sub-dataset Wj if deficiency (�j
− ⌊�j⌋) > 0.5 because in such case suppression will cause more
utility lost. The counterfeit tuples only has sensitive value si in sub-
dataset Wj and all QIs have ‘∗’ values. In other case, we suppress
the ℏ tuples from sub-dataset Wj if deficiency (�j − ⌊�j⌋) < 0.5
because in such case counterfeit tuples will cause more utility lost.
If (�j − ⌊�j⌋) = 0.50 then suppress and counterfeit equal number
of sub-datasets.

Once 
j information is ready for all sub-datasets, the assignment
algorithm selects a sub-dataset Wj and calculates the Distortion (a
distance metric) [18] of first � (
j ≤ � ≤ ∣Wj ∣) tuples with equiv-
alence class Er . Next, out of � tuples it assigns 
j closest (defined
in next paragraph) tuples to equivalence class Er . This process is
repeated for all equivalence classes. The � is a parameter, called
distortion control, to improve the performance of the assignment
algorithm and it restricts the calculation of Distortion to the first
� tuples of the sub-dataset, instead of calculating distortion for all
tuples of the sub-dataset.

Now we explain the closest tuples in detail. Alongside comply-
ing with the �-clone publication objective (Definition 5), we also

Algorithm 1 Micro-Statistic based Anonymization
Input:
P ⊳ Input dataset to be anonymized
k ⊳ Input parameter for k-anonymity
� ⊳ Input parameter to be utilized in Assignment phase
� ⊳ Input parameter to be utilized in Statistics phase

Output:
P ∗ ⊳ Anonymized dataset

1: Create w (w = P
∣S∣ ) empty sub-datasets W [ ] ⊳ Division phase

2: Populate sub-datasets W [ ], each sub-dataset has tuples with
same sensitive value in P ⊳ Division phase

3: b = min(∣W [j]∣)(j ∈ 1, 2, 3, . . . , ∣W [ ]∣) ⊳ Get number of
tuples in key sub-dataset

4: Create b empty equivalence classes E[ ] ⊳ Assignment phase
5: 
[j] = round( ∣W [j]∣

b
) ⊳ get 
 for each sub-dataset

6: for j ← 1, ∣W ∣ do ⊳ Access all sub-datasets one-by-one
7: for r ← 1, ∣E∣ do ⊳ Access all equivalence classes
8: Calculate Distortion Distance for first � tuples of W [j]

with E[r]
9: E[r] = 
[j] of � in W [j] ⊳ out of � tuples in W [j],

assign 
 tuples with minimum distortion to E[r]
10: end for
11: end for
12: Merge/divide equivalence classes in E[ ] as per k
13: Generate ‘micro-statistics’ for each equivalence class in E[ ]

using input parameter � ⊳ Statistics phase
14: Combine all E[ ] to form P ∗ ⊳ Anonymized dataset created

need to make sure that anonymous dataset P ∗ maintains a reason-
able utility and it has been done through putting closest tuples of
each sub-dataset Wj into an equivalence class Er . We use Dis-
tortion [18] to measure the closeness between a tuple t and equiv-
alence class Er . The distortion is the sum of the generalization
steps in the generalization hierarchies if t is assigned to Er . Still,
the problem of forming equivalence classes with the minimum dis-
tortions is similar to other optimal k-anonymity problems [1, 23].
So, we randomly pick � tuples from each sub-dataset Wj and cal-
culate the Distortion for each of � tuples with an equivalence class
Er . We assign that tuple t out of � tuples to an equivalence class
Er that has the minimum distortion with it. Due to the space con-
straint, we omit the calculation details of distortion and readers are
referred to the original paper [18] for further details.

In the running example where we assume Table 3(a) as P , the b
= ∣W3(G)∣ i.e. 3 and we create 3 empty equivalence classes. We
have already created 4 sub-datasets in division phase. For all four
sub-datasets, the 
1(J) = 2, 
2(B) = 2, 
3(G) = 1, 
4(L) = 1 and
deficiency values (�j − ⌊�j⌋) are 0.66, 0.33, 0, 0.33 respectively.
We need to add 1 counterfeit tuple in W1(J) and need to suppress
1 tuple from sub-datasets W2(B) and W4(L). In the assignment
phase, we do not suppress any tuple and once the (
j ∗ b) clos-
est tuples are assigned to b equivalence classes; we suppress the
remaining (∣Wj ∣ − (
j ∗ b)) tuples in the sub-dataset Wj .

Assignment operation accesses each sub-dataset and assigns ‘clos-
est’ 
j tuples of each sub-dataset Wj to each of three equivalence
classes.

6.1.3 Statistics.
In the beginning of this phase, we suppress any remaining tuples

in all sub-datasets and divide/merge or leave intact each equiva-



lence class as per the input parameter k from k-anonymity [25]. We
divide the QIs of any equivalence class into sub-equivalence classes
if ∣Er∣ > k or merge an equivalence class with some another one if
∣Er∣ < k. We only divide the QIs into sub-equivalence classes and
leave the sensitive values intact because we have to maintain the
association of each tuple of sub-equivalence class with all the sen-
sitive values of the equivalence class. We merge those equivalence
classes that have minimum distortion with each other.

Next, we calculate the micro-statistics for all QIs within each
sub/equivalence class. We have two types of QIs i.e. categorical
and numerical. For categorical QI, we include the number of dis-
tinct QI values in each sub-equivalence class. For numerical QI,
first we calculate the ‘average’ of QI values within sub/equivalence
class and next select an indicative range that covers � QI values of
the same sub/equivalence class; where �≤ k and is an input param-
eter. Algorithm 1 formally presents the anonymization operation.

In our running example, we have two remaining tuples t12 =
<45, M, Separated> in W2(B) and t18 = <22, M, Separated>
in W4(L); we suppress these tuples first. Now, we consider k
= 3 and � = 1 and divide each equivalence class into two sub-
equivalence classes, each of 3 tuples. As last step, we generate
the micro-statistics for all the sub-equivalence classes. We have 3
QIs, the Age is numerical whereas Sex and Marital Status are
categorical. We replace the Age QI values in all sub-equivalence
classes with the averageAge of each sub-equivalence class and also
include an indicative range that covers 1 (�= 1)Age value nearest
to the average value in each sub-equivalence class. For Sex and
Marital Status QIs, we put the number of all distinct QI values
in all sub-equivalence classes. The result is Table 3(c).

The Table 2(a) is case of equivalence class merger. Ideally, there
should be 3 equivalence classes (having 4 tuples each) but we as-
sume k = 6 for Table 2(a); so one equivalence class is split and
merged into others two.

6.2 Discussion
The �-clone equivalence classes formed by our algorithm makes

use of micro-statistics instead of local recoding [17] and global re-
coding [25] generalization schemes often adopted in literature. We
employ the micro-statistics scheme because it provides high degree
of privacy and utility in anonymous dataset (shown in experiments
of Section 7). The concept of �-cloning can also be implemented
by local/global-recoding generalization. Although it will result in
same privacy guarantee but with lower utility (shown in Tables 1(c),
2(c)).

Now, we discuss the effectiveness of our scheme (micro-statistics
based anonymization) in achieving the �-clone publication. The
major concern of the �-clone publication is the magnitude of �. We
aim at the maximum possible value of � in our scheme. A large
� means high distribution difference between the original and the
anonymized dataset.

We now compute the maximum value of �, for all distinct sen-
sitive values s1, s2, . . . , su of a dataset P . As dataset P has u
distinct sensitive values so there will be u sensitive sub-datasets as
W1,W2, . . . ,Wu. We also assume the ratio of these u sub-datasets
as: f(W1) ≤ f(W2) ≤ . . . ≤ f(Wu). As the ratio f(W1) of sen-
sitive value s1 is the smallest, the sub-dataset W1 will be the ‘key
sub-dataset’ and the number of initial empty equivalence classes
b = ∣W1∣ (i.e. the number of tuples in key sub-dataset). In an
ideal situation, if ℏj = 0 (j = 2, 3, . . . , n) for all n sub-datasets
(it occurs when 
j = �j in (6)) then �j = 0 for all sub-datasets.
In other case, where ℏj > 0 (i.e. 
j ∕= �j), we need to distort
the sub-dataset(s) by suppressing and/or adding counterfeiting ℏj

Table 4: Attribute domain size

Attribute Age Sex Education 
Birth 

Place 
Occupation Income 

Domain 

Size 
79 2 17 57 50 50 

tuples. In such case, we need to find the upper bound of the �j . We
denote such maximum value of �j as �max

j .
We consider the worst case and assume that, excluding the key

sub-dataset W1, for all other sub-datasets 
j ∕= �j and (�j −⌊�j⌋)
= 0.50. Now we need to compute the ℏj suppress and counterfeit
tuples for equal number of sub-datasets. The values of ℏj are calcu-
lated as per (7) and in any case the maximum number of distorted
(suppressed and/or counterfeit) tuples, denoted as ℏmax

j , are:

ℏmax
j ≤ ∣W�∣/2 (8)

The W� is the key sub-dataset (W1 in our case). So as per (8), the
maximum number of distorted (suppress and/or counterfeit) tuples
in any sub-dataset are not more than the half number of the tuples
in the key sub-dataset. Now if the property (8) holds for all sub-
datasets then following property will also hold for any sub-dataset
Wj :

�max
j = f(W�)/2 (9)

Now for any dataset P having at least two distinct sensitive val-
ues, the maximum frequency of key sub-dataset can be f(W�) =
0.40 to get worst case scenario when (�−⌊�⌋) = 0.50 for non-key
sub-dataset i.e. we have to suppress/counterfeit (0.40/2 ∗ ∣P ∣) tu-
ples from/to non-key sub-dataset. Even in such extreme case, the
�max
j = 0.10 for suppression and �max

j = 0.07 for counterfeiting.
If we have 3 sensitive values the �max

j = 0.125. In real life datasets,
we have moderate number of distinct sensitive values; causing even
lower �max

j . For Table 3(c) the �max
j is 0.07.

�-cloning is also not vulnerable to other privacy threats like min-
imality attack [27] and deFinett attack [15]. The minimality attack
[27] exploits the minimum generalization required for anonymiza-
tion and it cannot be successful on our scheme due to incorporation
of micro-statistics instead of (local or global) generalization. Ad-
versary cannot get the exact QIs range for any equivalence class
from its micro-statistics and adversary’s confidence remains split
about the inclusion of a tuple in an equivalence class or not. The
deFinett attack [15] can be successful when the frequency differ-
ence of a sensitive value between original and anonymous dataset
is ‘large’; which is not in the case of �-clone equivalence classes
because each �-clone equivalence class has all the sensitive values
of the original dataset with a small � threshold. So, adversary gets
very little information from �-cloned dataset after deFinett attack
[15].

7. EXPERIMENTS
Experiments are performed on a machine running a 2.4 Ghz

CPU with 3 Giga-byte memory. We deploy two real world datasets
OCC and SAL from United States census data downloadable from
http://ipums.org. Both contain 600k tuples and each tuple con-
tains the information of an American adult. OCC includes four
QI attributes, age, sex, education, birtℎ place, and a sensitive
attribute occupation. SAL contains the same set of QI attributes,
but different sensitive attribute income. All columns, except age,
are discrete and the sizes of their domains are given in Table 4.

We create five disjoint sub-datasets Qocci (Qsali ) (i ∈ 1, . . . , 5)
from OCC(SAL). It suffices to clarify the generation and gener-
alization of Qocci , since the same method is applied for Qsali . We



assign 100k tuples to each sub-dataset Qocci . The remaining 100k
tuples initiates an overlap pool. All sub-datasets and overlapping
pool have same set of sensitive values.

In the publication of 5 sub-datasets, we randomly select specific
overlapping tuples from overlap pool and insert them in eachQocci ,
subsequently each anonymous Qocc∗i (having 100k+ overlapping
tuples) is created that satisfies �-cloning. Here overlapping tuples
control the overlap rate among 5 sub-datasets. We repeat this pro-
cess by increasing the overlapping tuples as 20k, 40k, 60k, 80k,
100k, i.e. our experiments include 5 groups of sub-datasets each
with size of 120k, 140k, 160k, 180k, 200k. In each group, we the
same overlapping rate. We refer to these sub-datasets Qocci (Qsali )
as independent publishers. Broadly, we have five separate publish-
ers for OCC and SAL.

7.1 Failure of Conventional Generalization
In the first set of experiments, we show that the existing gen-

eralization methods lead to severe privacy disclosure in indepen-
dent data publications. The findings were also observed previously
in [11, 3]. We increase the overlapping tuples from 20k to 100k
and adopt the algorithm in [16] to compute ℓ-diverse [20] versions
Qocc∗1 , Qocc∗2 , . . . , Qocc∗n . Then, we identify all the overlapping
tuples that appear in any Qocc∗i and whose sensitive values will
definitely be revealed (called privacy risk tuples) using any another
sub-dataset. These privacy risk tuples are extracted using Defini-
tion 2; where we use Qocc∗1 as P ∗ and all other 4 sub-datasets are
treated as Q∗i . In Fig. 2(a), we plot the maximum number of pri-
vacy risk tuples in any sub-dataset as a function of ℓ. We repeat
this process by increasing ℓ from 2 to 10. The ℓ-diversity [20] fails
to support independent publications of overlapping data, because it
results in a large number of privacy risk tuples. Although fewer pri-
vacy risk tuples exist as ℓ increases, privacy risk tuples still cannot
be completely prevented with larger ℓ.

As all sub-datasets Qx∗i (x = occ or sal) and overlap pool have
the same set of sensitive values (Table 4) so �-cloning preserves
the privacy because in �-cloning the overlapping set (Definition 2)
always has all the sensitive values of the whole dataset and pri-
vacy compromise scenario ((2) in Section 4) does not occur. We
repeat these experiments on sub-datasets Qsali and the results are
illustrated in Fig. 2(b), confirming the same observations.

7.2 �-Cloning Evaluation
In following experiments, we examine the effectiveness of �-

cloning. We invoke the micro-statistics based anonymization on
Qx1 , Qx2 , . . . , Qx5 (x = occ or sal) to compute generalized versions
Qx∗1 , Qx∗2 , . . . , Qx∗5 . Each Qx∗i is characterized by overlapping tu-
ples and distortion control parameter � (� from Section 6.1.2). We
use 20% of dataset size as �, unless otherwise mentioned.

We cannot benchmark our experiments with existing partition-
based generalization schemes i.e. k-anonymity [25], ℓ-diversity
[20], t-closeness [19] etc. because all of these schemes are prone
to composition attack [11, 3].

7.2.1 Number of Distorted Tuples
Our algorithm needs to suppress and/or counterfeit some tuples

in the Assignment phase. We demonstrate that only a small number
of distorted tuples (both suppressed and counterfeited) are needed
to enforce �-cloning. In Fig. 3(a), we vary the dataset size from
120k to 200k and measure the number of distorted tuples in OCC
(SAL). The number of distorted tuples increases along with dataset
size because higher dataset size requires more tuples in each equiv-
alence class for assignment; resulting possibility of more distor-
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Figure 2: Successful composition attack with increasing overlap-
ping tuples and ℓ-diversity)
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Figure 3: Average and percentage of distorted (suppressed and
counterfeited) tuples in OCC and SAL with increasing dataset
size

tion. The maximum number of distorted tuples are only 579(607)
for dataset size of 200k in OCC (SAL).

In Fig. 3(b), we show the percentage of distorted tuples in OCC
(SAL) versus the dataset size. The percentage decreases as dataset
size increases. As a result, that micro-statistics based anonymiza-
tion can utilize more tuples. As dataset size increases, the total
number of distorted tuples also increases (Fig 3(a)) but overall the
percentage of distorted tuples with dataset size decreases (Fig 3(b)).
In any case the percentage of distorted tuples is less than 1% of
dataset size.

7.2.2 Utility of the Published Data.
In the following set of experiments, we will use Qx∗i (x = occ

or sal) to answer queries about the original sub-dataset Qxi . We
use aggregate queries, since they are the basic operation for numer-
ous data mining tasks (e.g., decision tree learning, association rule
mining, etc.). Specifically, each query has the form:

SELECT COUNT (*) FROM Qx∗i WHERE pred(t[Aqi1 ] AND
. . . AND t[Aqi4 ] AND t[S])

The Qx∗i is the sub-dataset generalized using �-cloning, (t[Aqi1 ],

. . . , t[Aqi4 ]) denote the four QI attributes, and t[S] is the sensitive
attribute occupation (income). For each attributeA, the condition
pred(A) has the form A ∈ �. Here � is a query parameter called
selection range, and has length ∣A∣.�, where ∣A∣ is the domain size
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Figure 4: Query error with fixed query selection range (�) and in-
creasing dataset size and increasing distance control parameter (�)
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Figure 5: Average workload error with increasing query selection
range (�) and increasing dataset size

of attribute A (see Table 4). A larger result is returned with higher
�. Our workload consists of 10000 queries with same sub-dataset
Qx∗i and sensitive value t[S].

Given a query, we obtain its actual result Ract from the original
sub-dataset Qxi , and compute an estimated answer Rest from its �-
clone generalized version Qx∗i . The relative error of a query equals
∣Ract−Rest∣/Ract. We measure the workload error as the median
relative error of all the queries of all sub-datasets.

Fig. 4(a), plots the workload error as a function of dataset size for
OCC and SAL respectively. In all experiments, the median error
is at most 2.5%. In the experiments of Fig. 4(b), we set dataset size
to 120k and measure the workload error as the function of distor-
tion control parameter �. The error decreases (accuracy improves)
with � because higher � results the more search in finding the clos-
est tuple during the assignment phase. Our experiments show that
error does not vary significantly with dataset size, and is not very
sensitive to the distortion control parameter �.

In the experiments of Fig. 5, we set dataset size to 120k and
200k (i.e. minimum and maximum values of dataset in Fig. 3) and
study workload error in Qx∗i (x = occ or sal) as the function of
query selection range �. The accuracy improves i.e. workload error
decreases with increase in �. This is expected because higher �
leads to larger query results, whereas, in general, aggregate analysis
is effective for sizable queries.

7.2.3 Computation Overhead.
The last experiment evaluates the efficiency of our micro-statistics

based generalization algorithm. In Fig. 6(a), we measure the aver-
age time of computing a generalized sub-dataset Qocc∗i (Qsal∗i ) as
function of dataset size. The cost is more expensive when dataset
size is higher, because the algorithm needs to process more tuples
in a dataset. In Fig. 6(b), we fix dataset size to 120k, and get the
computation time as a function of distortion control parameter �.
The overhead increases as � increases, since a larger � results the
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involvement of more tuples in finding the closest tuple during the
assignment phase. In comparison Figure 6(b) and Figure 4(b), we
see that � is a trade off for the efficiency and utility.

8. RELATED WORK
It is important to point out that the partition-based schemes in the

literature were not designed to be used in contexts where indepen-
dent releases of overlapping population are available from different
locations. Thus, essentially the composition attack is not a flaw in
these schemes, but rather it directs the community’s attention to an
important direction of research.

There has already been made substantial progress in privacy pre-
serving data publishing. One line has focused on taking into ac-
count other, known releases, such as previous publications by the
same organization (called sequential, serial or incremental releases)
[29, 31, 10] and multiple views of the same dataset [33, 34]. An-
other line has considered incorporating knowledge from partitioned
views to group individuals [33]. In our case, each publisher is in-
dependent and unaware from the dataset of other publisher(s).

Some other works have sought to model unknown background
knowledge of adversary [22, 6]. Martin et al. [22] and Chen et al.
[6] provide complexity measures for an adversary’s side informa-
tion (roughly, they measure the size of the smallest formula within
a CNF-like class that can encode the side information). Both works
design schemes that provably resist attacks based on side informa-
tion whose complexity is below a given threshold. A hypothetical
discussion of the same problem is in [11], driving concepts from
differential privacy [7, 9]. Differential privacy guarantees that the
attacker should not be able to distinguish between two possibilities,
i.e. a specific person’s record is in or not in a statistical database,
thus preserving the privacy. Most relevant to this paper are works
that elaborate the privacy risk due to the anonymous data release of
overlapping population by multiple locations [21, 13, 12]. All of
these incorporate the co-ordinated model; where all locations com-
municate with each other to calculate the privacy risk of overlap-
ping population and subsequently release dataset that is k-linkable
i.e. each overlapping record is minimum linked to k records in each
release.

Independent and asynchronous release by multiple locations (and
hence composition attacks) fall outside the models proposed by
these works. The sequential release models do not fit because they
assume the multiple synchronous releases from the single location.
In this paper, we deal with the case when there are multiple in-
dependent publishers. The complexity-based measures do not fit
because independent releases appear to have complexity that is lin-
ear in the size of the datasets. The differential privacy is ideally
suitable for interactive-setting (where there is no public release of
anonymous data) and solution purposed in [11] lacks the actual im-



plementation and test results. Moreover recent test results show
that no differently private algorithm can have meaningful utility un-
less the privacy requirement is very low [8, 24]. The co-ordinated
model also does not satisfy our requirement because we are deal-
ing with a non co-ordinated scenario where each location indepen-
dently anonymizes its data without having any communication with
other location(s).

9. CONCLUSION
Existing data publishing and serial data publishing methods do

not support multiple independent data publication by different pub-
lishers where there are overlapping individual records. This paper
has developed �-cloning model to prevent an adversary from using
independent data releases of multiple data owners to infer sensi-
tive information of overlapping individuals. We have provided an
efficient algorithm for computing anonymized dataset to achieve �-
cloning. We experimentally showed that the anonymized data ade-
quately protects privacy and yet supports effective data analysis.
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