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In this paper, we study a problem of protecting privacy of individuals in large
public survey rating data. We propose a novel (k, ε, l)-anonymity model to protect
privacy in large survey rating data, in which each survey record is required to
be similar with at least k − 1 others based on the non-sensitive ratings, where
the similarity is controlled by ε, and the standard deviation of sensitive ratings
is at least l. We study an interesting yet nontrivial satisfaction problem of the
proposed model, which is to decide whether a survey rating data set satisfies
the privacy requirements given by the user. For this problem, we investigate
its inherent properties theoretically, and devise a novel slicing technique to solve
it. We analyze the computation complexity of the proposed slicing technique, and
conduct extensive experiments on two real-life data sets, and the results show that
the slicing technique is fast and scalable with data size and much more efficient in
terms of execution time and space overhead than the heuristic pairwise method.

1. INTRODUCTION

The problem of privacy-preserving data publishing has
received a lot of attention in recent years. Privacy
preservation on relational data has been studied
extensively. A major category of privacy attacks on
relational data is to re-identify individuals by joining
a published table containing sensitive information
with some external tables. Most of existing work
can be formulated in the following context: several
organizations, such as hospitals, publish detailed data
(called microdata) about individuals (e.g. medical
records) for research or statistical purposes [1, 2, 3, 4].

Privacy risks of publishing microdata are well-
known. Famous attacks include de-anonymisation
of the Massachusetts hospital discharge database by
joining it with a public voter database [1] and privacy
breaches caused by AOL search data [5]. Even if
identifiers such as names and social security numbers
have been removed, the adversary can use linking [1],
homogeneity and background attacks [2] to re-identify
individual data records or sensitive information of
individuals. To overcome the re-identification attacks,
k-anonymity was proposed [1, 6, 7, 8]. Specifically, a
data set is said to be k-anonymous (k ≥ 1) if, on the
quasi-identifier (QID) attributes (that is, the maximal
set of join attributes to re-identify individual records),
each record is identical with at least k−1 other records.
The larger the value of k, the better the privacy is
protected. Several algorithms are proposed to enforce

this principle [9, 10, 11, 12, 13, 14, 15]. Machanavajjhala
et al. [2] showed that a k-anonymous table may lack of
diversity in the sensitive attributes. To overcome this
weakness, they propose the l-diversity [2]. However,
even l-diversity is insufficient to prevent attribute
disclosure due to the skewness and the similarity attack.
To amend this problem, t-closeness [3] was proposed to
solve the attribute disclosure vulnerabilities inherent to
previous models.

Recently, a new privacy concern has emerged
in privacy preservation research: how to protect
individuals’ privacy in large survey rating data.
Though several models and many algorithms have been
proposed to preserve privacy in relational data (e.g.,
k-anonymity [1], l-diversity [2], t-closeness [3], etc.),
most of the existing studies are incapable of handling
rating data, since the survey rating data normally does
not have a fixed set of personal identifiable attributes
as relational data, and it is characterized by high
dimensionality and sparseness. The survey rating data
shares the similar format with transactional data. The
privacy preserving research of transactional data has
recently been acknowledged as an important problem
in the data mining literature [16, 17]. To our best
knowledge, there is no current research addressing the
issue of how to efficiently determine whether the survey
rating data satisfies the privacy requirement. In this
paper, we propose a (k, ε, l)-anonymity model to protect
privacy in the large survey rating data and study
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the Satisfaction Problem (Section 5) of the proposed
model, which is to decide whether a survey rating
data set satisfies the given privacy requirements. By
utilizing the largeness and sparseness properties, we
develop a novel slicing technique solving the satisfaction
problem. Our extensive experiments confirm that our
new slicing algorithm is fast and scalable in practical
compared with the heuristic pairwise algorithm. The
main contributions of the paper are summarized as
follows:

(1) Propose a novel (k, ε, l)-anonymity model to protect
individual’s privacy in large survey rating data.
The principle demands that each transaction be
similar with k − 1 others, where the similarity is
measured by ε metric, and it further requires the
standard deviation of the sensitive ratings be at
least l. ε captures the protection range of each
individual, whereas k is to lower an adversary’s
chance of beating that protection, and l reflects
diversity of the sensitive ratings.

(2) Investigate the theoretical properties of (k, ε, l)-
anonymity model. Specifically, we prove a sufficient
condition of the existence of at least one (k, ε, l)-
anonymity solution in large survey rating data,
and we prove the lower and upper bound of the
parameter l.

(3) Apply the flag matrix to index the rating data and
devise a novel slicing technique by searching closest
neighbors in large, sparse and high dimensional
rating data to determine the satisfaction problem,
which is to decide if the given rating data satisfies
privacy requirements.

(4) Analyze the computational complexity of the slicing
algorithm in a theoretical way and examine one
special case when the survey rating data set follows
uniform distribution.

(5) Conduct extensive experiments to show that the
slicing approach is scalable, time efficient and
space efficient compared with the heuristic pairwise
method.

The rest of the paper is organized as follows. The
motivation of the paper and its rationality are introduce
in Section 2. We survey the related work in Section
3. We formally defined the (k, ε, l)-anonymity model
and investigate its theoretical properties in Section 4.
The novel slicing algorithm is presented in Section 5.
The analysis of the algorithm complexity is detailed in
Section 6. The extensive experiments are included in
Section 7. Finally, we conclude the paper in Section 8.

2. MOTIVATION

On October 2, 2006, Netflix, the world’s largest online
DVD rental service, announced the $1-million Netflix

Prize to improve their movie recommendation service
[18]. To aid contestants, Netflix publicly released a
data set containing 100,480,507 movie ratings, created
by 480,189 Netflix subscribers between December 1999
and December 2005. Narayanan and Shmatikov shown
in their recent work [19] that an attacker only needs
a little information to identify the anonymized movie
rating transaction of the individual. They re-identified
Netflix movie ratings using the Internet Movie Database
(IMDb) as a source of auxiliary information and
successfully identified the Netflix records of known
users, uncovering their political preferences and other
potentially sensitive information.

We consider the privacy risk in publishing anonymous
survey rating data. For example, in a life style survey,
ratings to some issues are non-sensitive, such as the
likeness of book “Harry Potter”, movie “Star Wars” and
food “Sushi”. Ratings to some issues are sensitive, such
as the income level and sexuality frequency. Assume
that each survey participant is cautious about his/her
privacy and does not reveal his/her ratings. However,
it is easy to find his/her preferences on non-sensitive
issues from publicly available information sources, such
as personal weblog or social networks. An attacker
can use these preferences to re-identify an individual
in the anonymous published survey rating data and
consequently find sensitive ratings of a victim.

Based on the public preferences, person’s ratings
on sensitive issues may be revealed in a supposedly
anonymized survey rating data set. An example is
given in the Table 1. In a social network, people make
comments on various issues, which are not considered
sensitive. Some comments can be summarized as in
Table 1(b). People rate many issues in a survey. Some
issues are non-sensitive while some are sensitive. We
assume that people are aware of their privacy and do
not reveal their ratings, either non-sensitive or sensitive
ones. However, individuals in the anonymoized survey
rating data are potentially identifiable based on their
public comments from other sources. For example,
Alice is at risk of being identified, since the attacker
knows Alice’s preference on issue 1 is ‘excellent’, by
cross-checking Table 1(a) and (b), s/he will deduce that
t1 in Table 1(a) is linked to Alice, the sensitive rating
on issue 4 of Alice will be disclosed. This example
motivates us the following research question:

(Satisfaction Problem): Given a large survey rating
data set T with the privacy requirements, how to
efficiently determine whether T satisfies the given
privacy requirements?

Although the satisfaction problem is easy and
straightforward to be determined in the relational
databases, it is nontrivial in the large survey rating data
set. The research of the privacy protection initiated
in the relational databases, in which several state-
of-art privacy paradigms [1, 2, 3] are proposed and
many greedy or heuristic algorithms [4, 11, 13, 14]
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non-sensitive sensitive

ID issue 1 issue 2 issue 3 issue 4
t1 6 1 null 6
t2 1 6 null 1
t3 2 5 null 1
t4 1 null 5 1
t5 2 null 6 5

(a)

non-sensitive issues

name issue 1 issue 2 issue 3
Alice excellent so bad -
Bob awful top -
Jack bad - good

(b)

TABLE 1: (a) A published survey rating data set containing ratings of survey participants on both sensitive
and non-sensitive issues. (b) Public comments on some non-sensitive issues of some participants of the survey.
By matching the ratings on non-sensitive issues with public available preferences, t1 is linked to Alice, and
her sensitive rating is revealed.

are developed to enforce the privacy principles. In
the relational database, taking k-anonymity as an
example [1, 7], it requires each record be identical
with at least k − 1 others with respect to a set of
quasi-identifier attributes. Given an integer k and a
relational data set T , it is easy to determine if T
satisfies k-anonymity requirement since the equality has
the transitive property, whenever a transaction a is
identical with b, and b is in turn indistinguishable with
c, then a is the same as c. With this property, each
transaction in T only needs to be check once and the
time complexity is at most O(n2d), where n is the
number of transactions in T and d is the size of the
quasi-identifier attributes. So the satisfaction problem
is trivial in relational data sets. While, the situation
is different for the large rating data. First of all, the
survey rating data normally does not have a fixed set
of personal identifiable attributes as relational data. In
addition, the survey rating data is characterized by high
dimensionality and sparseness. The lack of a clear set
of personal identifiable attributes together with its high
dimensionality and sparseness make the determination
of satisfaction problem challenging. Second, the defined
dissimilarity distance between two transactions (ε-
proximate) does not possess the transitive property.
When a transaction a is ε-proximate with b, and b is
ε-proximate with c, then usually a is not ε-proximate
with c. Each transaction in T has to be checked
for as many as n times in the extreme case, which
makes it highly inefficient to determine the satisfaction
problem. It calls for smarter technique to efficiently
determine the satisfaction problem before anonymizaing
the survey rating data. To our best knowledge, this
research is the first touch of the satisfaction of privacy
requirements in the survey rating data. In order to solve
the Satisfaction Problem, in this paper, we utilize the
largeness and sparseness properties to develop a novel
slicing technique.

3. RELATED WORK

Privacy preserving data publishing has received
considerable attention in recent years. especially in
the context of relational data [2, 6, 9, 10, 11, 12,
13, 14, 20]. All these works assume a given set of

attributes QID on which an individual is identified,
and anonymize data records on the QID. Their main
difference consist in the selected privacy model and in
various approaches employed to anonymize the data.
The author of [9] presents a study on the relationship
between the dimensionality of QID and information
loss, and concludes that, as the dimensionality of
QID increases, information loss increases quickly.
Transactional databases present exactly the worst case
scenario for existing anonymisation approaches because
of high dimension of QID. To our best knowledge, all
existing solutions in the context of k-anonymity [7, 8],
l-diversity [2] and t-closeness [3] assume a relational
table, which typically has a low dimensional QID. As
we have illustrated in Section 2, the determination of
whether the relational databases satisfy the privacy
requirements is easy and straightforward. However, it
is non-trivia for large survey rating data characterized
by high dimensionality and sparseness.

There are few previous work considering the
privacy of large rating data. In collaboration with
MovieLens recommendation service, [21] correlated
public mentions of movies in the MovieLens discussion
forum with the users’ movie rating histories in the
internal MovieLens data set. Recent study reveals a
new type of attack on anonymized data for transactional
data [19]. Movie rating data supposedly to be
anonymized is re-identified by linking non-anonymized
data from other source. In our recent work [22],
we assumed that the survey rating data sets have
violated the privacy requirements, and we discussed
how to publish anonymous survey rating data by using
graph modification methods. No solution exists for
how to determine whether the high dimensional large
survey rating databases satisfy the underlying privacy
requirements.

Though we consider data publishing for data mining
purposes, we assume that the data publisher has no
capability or interests in data mining. Therefore,
it is not realistic to expect such data publishers to
perform privacy-preserving data mining on behalf of
the recipient. In fact, the data may be published
on the Internet without a specific recipient. For this
reason, techniques for privacy-preserving data mining
[23, 24, 25] cannot be applied to data publishing.
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Privacy-preservation of transactional data has been
acknowledged as an important problem in the data
mining literature. There us a family of literature [26, 27]
addressing the privacy threats caused by publishing
data mining results such as frequent item sets and
association rules. Existing works on topic [28, 29]
focus on publishing patterns, The patterns are mined
from the original data, and the resulting set of rules is
sanitized to present privacy breaches. In contrast, our
work addresses the privacy threats caused by publishing
data for data mining. As discussed above, we do
not assume that the data publisher can perform data
mining tasks, and we assume that the data must be
made available to the recipient. The two scenarios
have different assumptions on the capability of the data
publisher and the information requirement of the data
recipient. The recent work on topic [16, 17] focus on
high dimensional transaction data, while our focus is
to validate the privacy requirements in an efficient way
before the data anonymization.

This paper is loosely related to the work on
anonymizing social networks [30]. A social network
is a graph in which a node represents a social entity
(e.g., a person) and an edge represents a relationship
between the social entities. Although the data is very
different from transaction data, the model of attacks
is similar to ours: An attacker constructs a small
subgraph connected to a target individual and then
matches the subgraph to the whole social network,
attempting to re-identify the target individual’s node,
and therefore, other unknown connection to the node.
[30] demonstrates the severity of privacy threats in
nowadays social networks, but does not provide a
solution to prevent such attacks. In this paper, we study
the Satisfaction Problem, which is to decide whether
a survey rating data set satisfies the given privacy
requirements and it is an important step before data
anonymization.

In [31], the authors investigated a systematic
approach for authenticating clients by three factors,
namely password, smart-card and biometrics. A generic
and secure framework was proposed to upgrade two-
factor authentication to three-factor authentication.
The conversion could not only significantly improves
the information assurance at low-cost but also protects
client privacy in distributed systems. The research
work in [31] focus on maximizing user’s privacy through
authentication, while our proposed method is through
database modification.

4. PROBLEM FORMALIZATION

We assume that a survey rating data set publishes
people’s ratings on a range of issues. In a lifestyle
survey, some issues are sensitive, such as income level
and sexuality frequency, while some are non-sensitive,
such as the likeness of a book, a movie or a kind
of food. Each survey participant is cautious about

his/her privacy and does not reveal his/her ratings.
However, an attacker can use the public available
information to identify an individual’s sensitive ratings
in the supposedly anonymous survey rating data. Our
objective is to design effective models to protect privacy
of people’s sensitive ratings in the published survey
rating data.

Given a survey rating data set T , each transaction
contains a set of numbers indicate the ratings on
some issues. Let (o1, o2, · · · , op, s1, s2, · · · , sq) be a
transaction, oi ∈ {1 : r, null}, i = 1, 2, · · · , p and sj ∈
{1 : r, null}, j = 1, 2, · · · , q, where r is the maximum
rating and null indicates that a survey participant did
not rate. o1, · · · , op stand for non-sensitive ratings and
s1, · · · , sq denote sensitive ratings. Each transaction
belongs to a survey participant.

Although each survey participant is wary about
their privacy and does not disclose his/her ratings,
an attacker may find a victim’s preference (not exact
rating scores) by personal familiarity or by reading the
victim’s comments on some issues from personal Weblog
or social networks. We consider that attackers know
preferences of non-sensitive issues of a victim but do
not know exact ratings and want to find out the victim’s
ratings on some sensitive issues.

4.1. Background knowledge

The auxiliary information of an attacker includes: (i)
the knowledge that a victim is in the survey rating data;
(ii) preferences of the victims on some non-sensitive
issues. The attacker wants to find ratings on sensitive
issues of the victim.

In practice, knowledge of Types (i) and (ii) can be
gleaned from an external database [19]. For example,
in the context of Table 1(b), an external database may
be the IMDb. By examining the anonymous data
set in Table 1(a), the adversary can identify a small
number of candidate groups that contain the record of
the victim. It will be the unfortunate scenario where
there is only one record in the candidate group. For
example, since t1 is unique in Table 1(a), Alice is at
risk of being identified. If the candidate group contains
not only the victim but other records, an adversary
may use this group to infer the sensitive value of the
victim individual. For example, although it is difficult
to identify whether t2 or t3 in Table 1(a) belongs to
Bob, since both records have the same sensitive value,
Bob’s private information is identified.

In order to avoid such attack, we propose a two-
step protection model. Our first step is to protect
individual’s identity. In the released data set, every
transaction should be “similar” to at least to (k − 1)
other records based on the non-sensitive ratings so that
no survey participants are identifiable. For example, t1
in Table 1(a) is unique, and based on the preference
of Alice in Table 1(b), her sensitive issues can be re-
identified in the supposed anonymized data set. Jack’s
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sensitive issues, on the other hand, is much safer. Since
t4 and t5 in Table 1(a) form a similar group based on
their non-sensitive rating.

The second step is to prevent the sensitive rating
from being inferred in an anonymized data set. The
idea is to require that the sensitive ratings in a similar
group should be diverse. For example, although t2 and
t3 in Table 1(a) form a similar group based on their
non-sensitive rating, their sensitive ratings are identical.
Therefore, an attacker can immediately infer Bob’s
preference on the sensitive issue without identifying
which transaction belongs to Bob. In contrast, Jack’s
preference on the sensitive issue is much safer than both
Alice and Bob.

4.2. (k, ε, l)-anonymity

Let TA = {oA1 , oA2 , · · · , oAp
, sA1 , sA2 , · · · , sAq

} be
the ratings for a survey participant A and TB =
{oB1 , oB2 , · · · , oBp

, sB1 , sB2 , · · · , sBq
} be the ratings for

a participant B. We define the dissimilarity between
two non-sensitive ratings as follows.

Dis(oAi
, oBi

) =







|oAi
− oBi

| if oAi
, oBi

∈ {1 : r}
0 if oAi

= oBi
= null

r otherwise
(1)

Definition 4.1 (ε-proximate). Given a survey
rating data set T with a small positive num-
ber ε, two transactions TA, TB ∈ T , where
TA = {oA1 , oA2 , · · · , oAp

, sA1 , sA2 , · · · , sAq
} and TB =

{oB1 , oB2 , · · · , oBp
, sB1 , sB2 , · · · , sBq

}. We say TA and
TB are ε-proximate, if ∀ 1 ≤ i ≤ p, Dis(oAi

, oBi
) ≤ ε.

We say T is ε-proximate, if every two transactions in
T are ε-proximate.

If two transactions are ε-proximate, the dissimilarity
between their non-sensitive ratings is bounded by ε. In
our running example, suppose ε = 1, ratings 5 and 6
may have no difference in interpretation, so t4 and t5 in
Table 1(a) are 1-proximate based on their non-sensitive
rating. If a group of transactions are in ε-proximate,
then the dissimilarity between each pair of their non-
sensitive ratings is bounded by ε. For example, if
T = {t1, t2, t3}, then it is easy to verify that T is 5-
proximate.

Definition 4.2 ((k, ε)-anonymity). A survey rat-
ing data set T is said to be (k, ε)-anonymous if ev-
ery transaction is ε-proximate with at least (k − 1)
other transactions. The transaction t ∈ T with all the
other transactions that ε-proximate with t form a (k, ε)-
anonymous group.

For instance, there are two (2,5)-anonymous groups
in Table 1(a). The first one is formed by {t1, t2, t3}
and the second one is formed by {t4, t5}. The idea
behind this privacy principle is to make each transaction
contains non-sensitive attributes are similar with other
transactions in order to avoid linking to personal

identity. (k, ε)-anonymity well preserves identity
privacy. It guarantees that no individual is identifiable
with the probability greater than the probability of 1/k.
Both parameters k and ε are intuitive and operable in
real-world applications. The parameter ε captures the
protection range of each identity, whereas the parameter
k is to lower an adversary’s chance of beating that
protection. The larger the k and ε are, the better
protection it will provide.

Although (k, ε)-anonymity privacy principle can
protect people’s identity, it fails to protect individuals’
private information. Let us consider one (k, ε)-
anonymous group. If the transactions of the group
have the same rating on a number of sensitive issues, an
attacker can know the preference on the sensitive issues
of each individual without knowing which transaction
belongs to whom. For example, in Table 1(a), t2 and t3
are in a (2, 1)-anonymous group, but they have the same
rating on the sensitive issue, and thus Bob’s private
information is breaching.

This example illustrates the limitation of the (k, ε)-
anonymity model. To mitigate the limitation, we
require more diversity of sensitive ratings in the
anonymous groups. In the following, we define the
distance between two sensitive ratings, which leads
to the metric for measuring the diversity of sensitive
ratings in the anonymous groups.

First, we define dissimilarity between two sensitive
rating scores as follows.

Dis(sAi
, sBi

) =







|sAi
− sBi

| if sAi
, sBi

∈ {1 : r}
r if sAi

= sBi
= null

r otherwise
(2)

Note that there is only one difference between
dissimilarities of sensitive ratings Dis(sAi

, sBj
) and

dissimilarities of non-sensitive ratings Dis(oAi
, oBj

),
that is, in the definition of Dis(ooi

, ooj
), null−null = 0,

and for the definition of Dis(sAi
, sBj

), null− null = r.
This is because for sensitive issues, two null ratings
mean that an attacker will not get information from two
survey participants, and hence are good for the diversity
of the group.

Next, we introduce the metric to measure the
diversity of sensitive ratings. For a sensitive issue s,
let the vector of ratings of the group be [s1, s2, · · · , sg],
where si ∈ {1 : r, null}. The means of the ratings is
defined as follows:

s̄ =
1

Q

g
∑

i=1

si

where Q is the number of non-null values, and si ±
null = si. The standard deviation of the rating is then
defined as:

SD(s) =

√

√

√

√

1

g

g
∑

i=1

(si − s̄)2 (3)
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For instance in Table 1(a), for the sensitive issue 4, the
means of the ratings is (6 + 1 + 1 + 1 + 5)/5 = 2.8 and
the standard deviation of the rating is 2.23 according
to Equation (3).

Definition 4.3 ((k, ε, l)-anonymity). A survey
rating data set is said to be (k, ε, l)-anonymous if
and only if the standard deviation of ratings for each
sensitive issue is at least l in each (k, ε)-anonymous
group.

Still consider Table 1(a) as an example. t4 and
t5 is 1-proximate with the standard deviation of 2.
If we set k = 2, l = 2, then this group satisfies
(2,1,2)-anonymity requirement. The (k, ε, l)-anonymity
requirement allows sufficient diversity of sensitive issues
in T , therefore it could prevent the inference from the
(k, ε)-anonymous groups to a sensitive issue with a high
probability.

4.3. Characteristics of (k, ε, l)-anonymity

In this section, we investigate the properties of (k, ε, l)-
anonymity model.

Definition 4.4. Given a subset G of T ,
neighbor(t, G) is the set of tuples whose non-sensitive
values are ε-proximate with t and |neighbor(t, G)|
indicates its cardinality. maxsize(G) is the largest
size neighbor(t, G) of every t ∈ G. Formally,
maxsize(G) = max∀t∈G |neighbor(t, G)|.

For example, let T be the data in Table 1(a),
consisting of t1, · · · , t5, and G = T . Assume
ε = 1, then |neighbor(t1, G)| = {t1} since no
other transaction in G is 1-proximate with t1 and
|neighbor(t1, G)| = 1. Similarly, neighbor(t2, G) =
{t2, t3} with |neighbor(t2, G)| = 2 because t2 and t3
are 1-proximate with t1. maxsize(G) = 2, because no
other transaction t ∈ G has a neighbor(t, G) higher
than 2. maxsize(G) has the following property:

Lemma 4.1. Let G1, G2 be two partition of G and
G1 ∪G2 = G. Then,

maxsize(G)

|G|
≤ max{

maxsize(G1)

|G1|
,
maxsize(G2)

|G2|
}

Proof: We first show maxsize(G) ≤ maxsize(G1) +
maxsize(G2). Due to symmetry, assume t ∈ G1, and
that maxsize(G) is the size of the neighbor covering
set neighbor(t, G) of a tuple t ∈ G. Use S1 (S2) to
denote the set of tuples in neighbor(t, G) that also
belong to G1 (G2). Obviously, neighbor(t, G) = S1∪S2

and S1 ∩ S2 = ∅. Let t′ be the tuple in S2 with
the largest range. Notice that S1 ⊆ neighbor(t, G1)
and S2 ⊆ neighbor(t′, G2). Therefore, maxsize(G) =
|S1| + |S2| ≤ |neighbor(t, G1)| + |neighbor(t′, G2)| ≤
maxsize(G1) + maxsize(G2).

Given any subset G of T , we define α(G) =
maxsize(G)/|G|, and α(G1), α(G2) in the same

manner. As maxsize(G) ≤ maxsize(G1) +
maxsize(G2), we have (|G1| + |G2|) · α(G) = |G1| ·

α(G1)+ |G2| ·α(G2), leading to |G1|
|G2|
· (α(G)−α(G1))+

α(G) ≤ α(G2). If α(G) ≤ α(G1), lemma holds. If

α(G) ≥ α(G1), the term |G1|
|G2|
· (α(G) − α(G1)) > 0;

hence, α(G) ≤ α(G2). No matter in which case, lemma
holds. �

Note that if G = ∪n
i=1Gi, the result of the lemma

can be extended to maxsize(G)
|G| ≤ maxn

i=1{
maxsize(Gi)

|Gi|
}.

In our example with ε = 5, G1 = {t1, t2, t3} and
G2 = {t4, t5}. Clearly, G1 ∪ G2 = T . It is easy
to verify that maxsize(G1) = neighbor(t2, G1) = 2
and maxsize(G2) = neighbor(t4, G2) = 2. Hence,
2
5 < max{ 2

3 , 2
2} = 1, the inequality in Lemma holds.

Theorem 4.1. Given ε and a partition of T =
∪n

i=1Gi, if T has at least one (k, ε)-anonymity solution,

then k ≤ dmaxsize(T )·|Gj |
|T | e, where

maxsize(Gj)
|Gj|

=

maxn
i=1{

maxsize(Gi)
|Gi|

}.

Proof: Suppose |neighbor(t, Gj)| = maxsizeGj and

k > dmaxsize(G)·|Gj|
|T | e. If T has a (k, ε)-anonymous

solution, then the possibility of t being identified is at

least 1
neighbor(t,Gj) , which is greater than |T |

maxsize(T )·|Gj |

due to the fact that maxsize(T )
|T | ≤ maxsize(Gj)

|Gj|
. With

our assumption, we get that the possibility of t being
identified is greater than 1

k
, which contradicts with the

fact that T has a (k, ε)-anonymous solution. �

Theorem 4.1 provides a sufficient condition for the
existence of a (k, ε)-anonymity solution. In our
running example with ε = 1, we already know that
maxsize(G) = 2, then according to Theorem 4.1, if
a (k, ε)-anonymity exists, then k ≤ d 2×3

5 e = 2.

Lemma 4.2. Given S = {s1, s2, · · · , sn} as the
sensitive ratings of T . Let S1 and S2 be two partitions
of S and S1 ∪ S2 = S. Then,

SD(S) ≥ min{SD(S1), SD(S2)}

Proof: Without loss of generality, suppose S1 =
{s1, s2, · · · , sk} and S2 = {sk+1, · · · , sn} and SD(S1) ≤

SD(S2). s̄ =
P

n
i=1 si

n
, s̄1 =

P

k
i=1 si

n
and s̄2 =

P

n
i=k+1 si

n
.
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Next, we show that SD(S) > SD(S1).

SD2(S)− SD2(S1) =

∑n
i=1(xi − x̄)2

n
−

∑k
i=1(xi − x̄1)

2

k

=
1

nk
(k

n
∑

i=1

(xi − x̄)2 − n
k

∑

i=1

(xi − x̄1)
2)

=
1

nk
(k

n
∑

i=1

(xi − x̄)2 − k
k

∑

i=1

(xi − x̄1)
2 − (n− k)

k
∑

i=1

(xi − x̄1)
2)

Since SD(S1) ≤ SD(S2),

∑k

i=1(xi − x̄1)
2

k
≤

∑n−k

i=1 (xi − x̄2)
2

n− k

≥
1

nk
(k

n
∑

i=1

(xi − x̄)2 − k

k
∑

i=1

(xi − x̄1)
2 − k

n
∑

i=k+1

(xi − x̄2)
2)

=
1

n
(

n
∑

i=1

(xi − x̄)2 −
k

∑

i=1

(xi − x̄1)
2 −

n
∑

i=k+1

(xi − x̄2)
2)

=
1

n
(

k
∑

i=1

((xi − x̄)2 − (xi − x̄1)
2) +

n
∑

i=k+1

((xi − x̄)2 − (xi − x̄2)
2)

Since kx̄1 =

k
∑

i=1

xi and (n− k)x̄2 =

n
∑

i=k+1

xi, then

=
1

n
(k(x̄1 − x̄)2 + (n− k)(x̄2 − x̄)2) ≥ 0

(4)

Therefore, the lemma holds. �

Note that if S = ∪n
i=1Si, the result of the lemma

can be extended to SD(S) ≥ minn
i=1{SD(Si)}. In

our example with ε = 5, the ratings of the sensitive
issue 4 S = {6, 1, 1, 1, 5} are divided into two groups
S1 = {6, 1, 1} and S2 = {1, 5}. It is easy to verify
that SD(S) = 2.23, SD(S1) = 2.35 and SD(S2) =
2. Therefore, SD(S) > min{SD(S1), SD(S2)}, the
inequality in Lemma holds.

Corollary 4.1. Let S be the ratings of the sensitive
issue of T , and be divided into n groups, S1, · · · , Sn. If
∀i, SD(Si) ≥ l0. Then, SD(S) ≥ l0.

The following theorem gives the upper bound of the
parameter l in the (k, ε, l)-anonymity model.

Theorem 4.2. Let S be the set of ratings of the
sensitive issue of T . Suppose S min and S max be
the minimum and maximum ratings in S, then the

maximum standard deviation of S is (S max−S min)
2 .

Proof: For the ease of description, we write S min as
a and S max as b, we only need to prove the following
inequality holds with (a ≤ c ≤ b):

√

(a− a+b+c
3 )2 + (b− a+b+c

3 )2 + (c− a+b+c
3 )2

3
≤

(b− a)

2
(5)

Let f(c) be written as:

f(c) =
(a− a+b+c

3 )2 + (b− a+b+c
3 )2 + (c− a+b+c

3 )2

3

The graph of f(c) is a parabola, and after simplifying
the function, the axis of symmetry is c = a+b

2 , and since

f ′(x) = 6 > 0 and a ≤ a+b
2 ≤ b, the function has the

minimum value (b−a)2

6 , then

(b− a)2

6
≤ f(c) ≤ min{f(a), f(b)}

because f(a) = f(b) = 6(b−a)2

27 , then

(b− a)2

6
≤ f(c) ≤

6(b− a)2

27

Due to the fact that 6(b−a)2

27 < (b−a)2

4 , then Equation
(5) holds. The proof of Theorem 4.2 completes. �

5. SATISFYING PRIVACY REQUIRE-

MENTS

In this section, we formulate the satisfaction problem
and develop a slicing technique based on the properties
discussed in Section 4.3 to determine the following
Satisfaction Problem.

Definition 5.1 (Satisfaction Problem). Given
a survey rating data set T and privacy requirements
k, ε, l, the satisfaction problem of (k, ε, l)-anonymity
is to decide whether T satisfies the k, ε, l privacy
requirements.

The satisfaction problem is to determine whether the
user’s given privacy requirement is satisfied by the given
data set. It is a very important step before anonymizing
the survey rating data. If the data set has already
met the requirements, it is not necessary to make any
modifications before publishing. As follows, we propose
a novel slice technique to solve the satisfaction problem.

5.1. Satisfaction algorithms

Recall that we are given a survey rating data set
consisting of a set of transactions T = {t1, t2, · · · , tn},
|T | = n. Each transaction ti ∈ T contains issues from
an issue set I = {i1, i2, · · · , im}, |I| = m. Consider that
both n (the number of survey participants) and m (the
number of issues) may be very large. For example, a
million of users rate thousands of movies. The efficient
identification of the violation to privacy requirement is
nontrivial. Firstly, the dissimilarity matrix is very big
if we try to compute all pairwise distances. The time
complexity is O(n2m). Secondly, the data matrix may
not fit in the memory. An algorithm needs to read data
from disk frequently.

We plan to utilize the sparseness of the survey rating
data set to speed up the algorithm. The data set is
very spare if we consider null values as empty. Here,
we define a binary flag matrix F to record if there is a
rating or not for each issue (column).

Fij =

{

1 if ij ∈ ti
0 if ij /∈ ti

The Computer Journal, Vol. ??, No. ??, ????
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non-sensitive sensitive

ID issue 1 issue 2 issue 3 issue 4
t1 3 6 null 6
t2 2 5 null 1
t3 4 7 null 4
t4 5 6 null 1
t5 1 null 5 1
t6 2 null 6 5

TABLE 2: Sample rating data

For instance, the flag matrix associated with Table 1(a)
is:

F =













1 1 0
1 1 0
1 1 0
1 0 1
1 0 1













(6)

in which, each row corresponds to survey participants
and each column corresponds to non-sensitive issues. If
we want to find the transactions that are ε-proximate
with t1, intuitively, we need not to compute the
dissimilarity between t1 and t4, and between t1 and t5
since both t4 and t5 do not rate issue 2. Based on
the sparseness property, it could significant reduce the
amount of the pairwise dissimilarity computation.

Definition 5.2 (Hamming Distance). [32] Ham-
ming distance between two vectors in the flag matrix
of equal length is the number of positions for which
the corresponding symbols are different. We denote the
Hamming distance between two vectors v1 and v2 as
H(v1, v2).

In other words, Hamming distance measures the
minimum number of substitutions required to change
one into the other, or the number of errors that
transformed one vector into the other. For example,
if v1 = (1, 1, 0) and v2 = (1, 0, 1), then H(v1, v2) = 2.
If the Hamming distance between two vectors are zero,
then these two vectors are identical.

Definition 5.3 (Hamming Group). Hamming
group is the set of vectors, in which the Hamming
distance between any two vectors of the flag matrix
is zero. The maximal Hamming group is a Hamming
group that is not a subset of any other Hamming group.

For example, there are two maximal Hamming groups
in the flag matrix (6), which are made of vectors
{(1, 1, 0), (1, 1, 0), (1, 1, 0)} and {(1, 0, 1), (1, 0, 1)} and
they are actually groups of {t1, t2, t3} and {t4, t5} in
T .

Now we focus on the how to group T in order to
fulfill the privacy requirement. As we has explained in
the previous example that the first three transactions
form a maximal Hamming group and the last two
transactions form the other one, which inspires us
for the idea of the first step of the algorithm. It
works as follows: firstly, we find out all the maximal

Hamming groups, namely H1, · · · , Hk. For each
Hamming group Hi, 1 ≤ i ≤ k, we test for the privacy
requirement. In our running example, if given ε = 5,
the two maximal Hamming groups made of {t1, t2, t3}
and {t4, t5} are already satisfying with the privacy
requirement. However, if having a look at Table 2, the
flag matrix of which is

F′ =

















1 1 0
1 1 0
1 1 0
1 1 0
1 0 1
1 0 1

















(7)

The maximal Hamming groups are H1 = {t1, t2, t3, t4}
and H2 = {t5, t6}. If given ε = 1, H2 has already
met the requirement, but H1 does not. In this case,
smarter technique is required to further process the
group H1. Here, we adopt a greedy slicing technique
to solve challenge.

5.2. Search by slicing

Our slicing algorithm is based on the projection search
paradigm first used by Friedman [33]. Friedman’s
simple technique works as follows. In the preprocessing
step, d dimensional training points are ordered in d
different ways by individually sorting each of their
coordinates. Each of the d sorted coordinates arrays can
be thought of as a 1-D axis with the entire d dimensional
space projected onto it. Given a point q, the nearest
neighbor is found as follows. A small ε is subtracted
from and added to each of q’s coordinates to obtain
two values. Two binary search searches are performed
on each of the sorted arrays to locate the positions
of both values. An axis with the minimum number
of points in between the position is chosen. Finally,
points in between the positions on the chosen axis are
exhaustively searched to obtain the closest point. The
complexity of is O(ndε) and is clearly inefficient in high
d.

5.2.1. To determine k and l when given ε
Our slicing technique is proposed to efficiently search for
the neighbor within distance ε in high dimension. As
we shall see, the complexity of the proposed algorithm
grows very slowly with dimension for small ε. We
illustrate the proposed slicing technique using a simple
example in 3-D space, as shown in Figure 1. Given
t = (t1, t2, t3) ∈ T , our goal is to slice out a set of
transactions T (t ∈ T ) that are ε-proximate. Our
approach is first to find the ε-proximate of t, which is
the set of transactions that lie inside a cube Ct of side
2ε centered at t. Since ε is typically small, the number
of points inside the cube is also small. The ε-proximate
of C ′

t can then be found by an exhaustive comparison
within the ε-proximate of t. If there are no transactions
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FIGURE 1: The slicing technique finds a set of
transactions Ct inside a cube of size 2ε within the
ε-proximate of t. The ε-proximate of the set Ct can
then be found by an exhaustive search in the cube.

inside the cube Ct, we know that the ε-proximate of t
is empty, so as the ε-proximate of the set C ′

t.
The transactions within the cube can be found

as follows. First we find the transactions that are
sandwiched between a pair of parallel planes X1, X2

(See Figure 1) and add them to a candidate set. The
planes are perpendicular to the first axis of coordinate
frame and are located on either side of the transaction
t at a distance of ε. Next, we trim the candidate set by
disregarding transactions that are not also sandwiched
between the parallel pair of Y1 and Y2, that are
perpendicular to X1 and X2, again located on either
side of t at a distance of ε. This procedure is repeated
for Z1 and Z2 at the end of which, the candidate set
contains only transactions within the cube of size 2ε
centered at t. Slicing(ε, T, t0) (Algorithm 1) describes
how to find the ε-proximate of the set Ct0 with t0 ∈ Ct0 .

Since the number of transactions in the final ε-
proximate is typically small, the cost of the exhaustive
comparison is negligible. The major computational cost
in the slicing process occurs therefore in constructing
and trimming the candidate set.

Suppose the set C ′
t (t ∈ C ′

t) is finally ε-proximate.
We repeat the process for another transaction on the
set T \ C ′

t. Finally, there comes to two situations. One
is that all transactions are grouped into anonymous
groups with each group having at least two transactions.
The other situation is that for some t′ ∈ T there is no
ε-proximate for it, in this case, we let t′ form an (k, ε)-
anonymous group by itself.

Algorithm 1: Slicing(ε, T, t0)( )
1 Candidate← {t0}; S ← ∅
2 / ∗ To slice out the cube, ε-proximate of t0 ∗ /
3 for j ← 1 to n
4 do if |tj − t0| < ε
5 then Candidate← Candidate ∪ {tj}
6 S ← S ∪ {j}
7 / ∗ To trim the ε-proximate of t0 ∗ /
8 PCan← Candidate
9 for i← 1 to |S|

10 do for j ← 1 to |S|
11 do if |tS(i) − tS(j)| > ε
12 then PCan← PCan \ {tS(i)}
13 return PCan

We use the sample rating data in Table 2 to illustrate
how the slicing algorithm works. If we want to
find a (k, ε)-anonymity solution with ε = 1. The
first step is to slice out the transactions that are ε-
proximate with the first transaction t1, and we use Ct to
denote the set of transactions, where Ct = {t1, t2, t3}.
The next step is to trim Ct to make it ε-proximate,
and the method is to verify if the distance between
any two elements in Ct is bounded by ε. In this
example, dissimilarity between t2 and t3 is greater
than ε, then we take one out of Ct (we choose t3
here), and after that, we could obtain the new set
C′

t = Ct \ {t3} = {t1, t2}, which is already ε-proximate.
Repeat this process on T ′ = T \ C ′

t, and finally we can
find one (2, 1)-anonymity solution consisting of three
anonymous groups {{t1, t2}, {t3, t4}, {t5, t6}}. Further,
if we consider sensitive issues, actually, there is enough
diversity in each (k, ε)-anonymous group with l = 1.5.
So for this example, it satisfies (2, 1, 1.5)-anonymity
requirement.

Further, if we partition T into {G1, G2}, where G1 =
{t1, t2, t3, t4} and G2 = {t5, t6}, we get maxsize(T ) = 3
and maxsize(G1) = 3 with ε = 1. So according to

Theorem 4.1, k ≤ dmaxsize(T )·|G1|
|T | e, which is 3×4

6 = 2.

This example also verifies Theorem 4.1.

5.2.2. To determine ε and l when given k
In this section, we discuss the situation when k
is known, and how to find out a solution that
satisfies (k, ε, l)-anonymity principle with ε as smaller as
possible. To solve this problem, we combine the slicing
technique and binary search in our algorithm.

Binary search is a technique for locating a particular
value in a sorted list of values. It makes progressively
better guesses, and closes in on the sought value
by selecting the middle element in the span (which,
because the list is in sorted order, is the median value),
comparing its value to the target value, and determining
if the selected value is greater than, less than, or equal
to the target value. A guess that turns out to be too
high becomes the new upper bound of the span, and
a guess that is too low becomes the new lower bound.
Pursuing this strategy iteratively, it narrows the search
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by a factor of two each time, and finds the target value
or else determines that it is not in the list at all.

Our algorithm starts from the upper bound ε =
r (r is the maximum rating in T ) and begins with
transaction t1 ∈ T , at the initial stage, all transactions
fall into one (k, ε)-anonymous group. We further our
search by setting ε to r

2 , which is a middle element
between 0 and r. For this new ε, we need to find
out all transactions that are r

2 -proximate by running
slicing technique discussed before. Our objective is to
determine whether or not the set of transactions that
is r

2 -proximate neighborhood has the capacity greater
than the given k. If yes, we set new upper bound
to r

2 and search among the interval [0, r
2 ]. Continue

this process for interval [0, r
2 ] with middle element r

4 .
Else, we set the new lower bound to r

2 and continue
searching in [ r

2 , r] with middle element 3r
4 . Repeat this

until reaching the termination condition. We terminate
searching if for the interval [upper bound, lower bound],
|upper bound− lower bound| < 1. Finally, ε returns to
the unique integer in the interval [upper bound, lower
bound].

Consider our running example with k = 2. We begin
with ε = 6 and return to an anonymous solution with
all transactions in one group. Next we try ε = 3
and the interval [0,6] is partitioned into [0,3] and [3,6].
By using the slicing algorithm, it returns that there
is a set of transactions which is 3-proximate, and its
capacity is less than 2. Then, we move to the interval
[3,6] and try ε = 4.5, the ε is still not large enough.
We finish the search until we get that ε is in the
interval [4.5, 5.25], and since |5.25 − 4.5| < 1, the
search terminates and ε returns to 5. Finally we can
find one (2, 5, 2)-anonymous solution consisting of two
anonymous groups {{t1, t2, t3}, {t4, t5}}.

5.2.3. To determine k and ε when given l
In this section, we discuss the situation when l is given,
and how to find a solution satisfying (k, ε, l)-anonymity
principle with ε as small as possible. Let S be the
ratings of the sensitive issue of T , and SD(S) = l0 be
the standard deviation computed by Equation (3).

Case 1: When l > l0. In this case, suppose there
exists one solution that satisfies both principles. Let
T be divided into n groups, and in each group, the
similarity of any two transactions are bounded by ε, and
the number of transactions in each group is at least k,
and the standard deviation of the sensitive ratings in
each group is at least l. According to Corollary 4.1, the
standard deviation of the sensitive ratings of T SD(S)
is at least l as well, which makes SD(S) > l0, and this
is a contradiction with SD(S) = l0. Hence, if l > l0,
there is no required solution.

Case 2: When l ≤ l0. The algorithm starts from
ε = r, and at this initial stage, all transactions fall
into one (k, ε, l)-anonymous group. Next, we continue
our search by setting ε to r

2 , which is a middle element

between 0 and r. For this new ε, we need to verify
if the standard deviation of the sensitive ratings in
each group formed by this new ε is at least l. If
yes, we set new upper bound to r

2 and search among
the interval [0, r

2 ] and continue to test for the middle
element r

4 . Else, we set the new lower bound to r
2

and continue searching in [ r
2 , r] by testing the middle

element 3r
4 . Repeat this until reaching the termination

condition. We terminate searching if there exists an
ε in the interval [upper bound, lower bound] with
|upper bound − lower bound| < 1 and the sensitive
ratings in each group formed by this ε is at least l.
Finally, ε returns to the unique integer in the interval
[upper bound, lower bound].

Consider the example in Table 2 with l = 2. The
standard deviation of the sensitive ratings of T is 2.1.
Since l < 2.1, then there exists a solution that meets
the privacy principle. We begin with ε = 6, which
returns to a solution containing all transactions in one
group. Obviously, it meets both principles. Next we try
ε = 3 and the interval [0,6] is partitioned into [0,3] and
[3,6]. The (k, ε)-anonymous groups formed when ε = 3
are {t1, t2, t3, t4} and {t5, t6}. We further verify the
standard deviation of sensitive ratings in both group,
and both are greater than 2. It means when ε = 3,
there exists a solution that satisfies (2,3,2)-anonymity.
In order to find the solution with smallest ε, we continue
our search in the interval [0,3] and try the middle value
ε = 1.5. It returns to three groups {t1, t2}, {t3, t4}
and {t5, t6}, however, the standard deviation of the
sensitive ratings of the second group is 1.5 < l. Next,
we continue for search in [1.5, 3] and still could not
meet the (k, ε, l)-anonymity requirement. We finish the
search until we get that ε is in the interval [2.375, 3], and
since |3−2.375|< 1, the search terminates and ε returns
to 3. Finally we can find one solution that meets (2,3,2)-
anonymity principle, and it consists of two anonymous
groups {t1, t2, t3, t4} and {t5, t6}.

5.3. Pruning and adjusting

In this section, we discuss the refine technique used in
order to obtain the accurate (k, ε)-anonymous groups.
Without the refine process, some solutions are possibly
missing due to the greedy choice of ε-proximate. Let us
take Table 2 as an example. If we set ε = 2 and try to
find the (k, ε)-anonymous groups. The resulting (k, ε)-
anonymous groups are made of {t1, t3, t4}, {t2}, {t5, t6},
which is not the desired solution, since t2 is unique in
the second group. However, with ε = 2, we could easily
find that the desired (k, ε)-anonymous groups consist of
{t1, t2}, {t3, t4}, {t5, t6} in Table 2. From this fact, we
see that some solutions might be missed from our slicing
process, and it is necessary to develop the appropriate
method to retrieve the “missing” ones. The reason for
the missing solutions is because of the greedy choice of
ε-proximate. In every iteration of the algorithm, for the
transaction ti, we slice out all the transactions that are
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ε-proximate with ti and delete them from the original
data set and continue the slicing process for the next
transaction tj . During this process, it might happen
that there is no other transactions that are ε-proximate
with tj , but there might be some tk which is ε-proximate
with both ti and tj . Since the set that is ε-proximate
was deleted in order to continue the next search, some
inaccurate groupings occur.

In order to fix this problem, our idea is to re-check
each group that is found by the algorithms to see if
the singleton groups can borrow some transactions from
large groups (refer to the group having more than three
transactions). If there is some transaction ti in the large
group is ε-proximate with tj in the singleton group,
then we move the transaction ti to the singleton group
containing tj . Repeat this until the following conditions
are satisfied.

Case 1: No singleton group exists in the pruned (k, ε)-
anonymous groups. In this case, we retrieve the missing
solutions. For example, if we set ε = 2 in Table 2
and try to find out the (k, ε)-anonymous groups. By
using the slicing algorithm, three anonymous groups
{t1, t3, t4}, {t2}, {t5, t6} are found. Since there is a
singleton, the pruning process is triggered, which
happens between the large group {t1, t3, t4} and the
singleton group {t2}. Because Dis|t1−t2| < ε = 2, then
transaction t1 is moved from the large group {t1, t3, t4}
to the singleton group {t2}, and two adjusted groups
{t3, t4} and {t1, t2} are formed after the moving.

Case 2: There still exist some singleton groups. In
this case, we say there is no solution for this given ε. In
order to find the solution, it is necessary to enlarge the
value of ε.

6. ALGORITHM COMPLEXITY

In this section, we attempt to analyze the computa-
tional complexity of our proposed slicing algorithm. Re-
call that our data set consisting of a set of survey records
T = {t1, t2, · · · , tn}, |T | = n. Each transaction ti ∈ T
contains issues from I = {i1, i2, · · · , im}, |I| = m. The
major computational cost is in the process of candidate
construction and trimming. The number of transac-
tions initially added to the candidate list not only de-
pends on ε, but also on the location and distribution of
the transaction. Hence, to facilitate analysis, we assume
uniformly distributed transaction set. In the following,
we denote random variables by uppercase letter, for in-
stance, X . Vector x is in the form of ~x. Suffixes are used
to denote individual elements of vectors, for instance,
xk is the kth element of vector ~x.

If we need to find the transactions that are ε-
proximate with ~t ∈ T , Figure 2 shows the transaction t
and other n−1 transactions in 2-D drawn from a known
distribution. Recall that the candidate set is initialized
with transactions sandwiched between a hyperplane
pair in the first dimension, or more generally, in the

t

ti

2ε axis i

di

Cti

FIGURE 2: The projection of transactions to one
dimension of the search space and the number
of transactions inside C is given by binomial
distribution.

ith dimension. This corresponds to the transactions fall
into area Cti

in Figure 2, where the entire transaction
set and ~t are projected to ith coordinate axis. The
boundaries of Cti

are where the hyperplanes intersect
the axis i, at ti− ε and ti + ε. Let Mi be the number of
transactions in Cti

. In order to determine the average
number of transactions added to the candidate set,
we must compute E[Mi]. Let Zi be the dissimilarity
between ti and any other transaction in the candidate
set and denote Pi to be the possibility that any
projected transaction is ε-proximate with ti; that is,

Pi = P{−ε ≤ Zi ≤ ε|ti} (8)

and if Mi is binomial distributed, the density of Mi in
term of Pi is:

P{Mi = k|ti} = P k
i (1− Pi)

n−k

(

n

k

)

(9)

From (9), the average number of transactions in Cti
,

E[Mi|ti] is determined to be:

E[Mi|ti] =

n
∑

k=0

kP{Mi = k|ti} = nPi (10)

Note that E[Mi|ti] is a random variable that depends on
i and the location of ~t. If the distribution of ~t is known,
the expected number of transactions can be computed
as E[Mi] = E[E[Mi|ti]]. Next, we derive an expression
for the total number of transactions remaining on the
candidate set as we trim through the dimensions in
the sequence 1, 2, · · · , m. If Nk is the total number of
transactions before iteration k, then

Nk = PiNk−1 = n

k
∏

j=1

Pj , N0 = n (11)

Let N to be the total cost of the process of constructing
and trimming the candidates. For each trimming,
we need to perform constant times searches and
comparisons. If we assign one unit cost to each
operation, then with (11)

N = N1 + c
m−1
∑

k=1

Nk = n(Pi + c
m−1
∑

k=1

k
∏

i=1

Pi) (12)
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whose expected values is:

E[N |~t] = nE[Pi + c

m−1
∑

k=1

k
∏

i=1

Pi] (13)

From the equation (13), if the distribution of ~t and ~Z are
known, we can compute E[N ] = E[E[N |~t]] in term of ε.
Next, we shall examine one particular case: uniformly
distributed transaction records.

Uniformly distributed survey rating data: We
denote ~X a random variable for the Transaction set T .
Now, we look at a special case when ~X is uniformly
distributed. For any dimension i, we assume an
independent and uniform distribution with extent h on
each of its coordinates as:

fXi
(x) =

{

1/h if −h/2 ≤ x ≤ h/2
0 otherwise

(14)

By using equation (14) and the fact that Zi = Xi − ti,
an expression for density of Zi can be written as:

fZi|ti
(z) =

{

1/h if −h/2− ti ≤ x ≤ h/2− ti
0 otherwise

, ∀i

Then, Pi in the equation (8) can be written as:

Pi = P{−ε ≤ Zi ≤ ε|ti} =

∫ ε

−ε

fZi|ti
(z)dz ≤

∫ ε

−ε

1

h
dz ≤

2ε

h
(15)

Putting (15) into (13), we obtain the upper bound:

E[N ] = n(
2ε

h
+ c(

2ε

h
+ (

2ε

h
)2 + · · ·+ (

2ε

h
)m−1)

= n(
2ε

h
+ c(

1 − ( 2ε
h

)m

1− 2ε
h

− 1))

= O(nε + n
1− εm

1− ε
)

(16)

We observe that for small ε, εm ≈ 0, and (16) becomes

E[N ] ≈ O(nε + n
1

1− ε
) (17)

which is independent of dimension m and note that
we have left out the cost of exhaustive comparison for
ε-proximate neighborhood within the final hypercube.
The reason is that the cost of an exhaustive comparison
is dependent on the distance metric used. It is very
small and can be neglected in most cases when n� m.
If it needs to be considered, it can be added to the
equation (17). Overall, the total cost for transaction
set T is O(n2ε + n2 1

1−ε
), which is more efficient than

the heuristic pairwise approach running in O(n2m).

7. EXPERIMENTAL STUDY

In this section, we experimentally evaluate the efficiency
of the proposed slicing algorithm. Our objectives are
two-fold. First, we verify that our slice algorithm is fast
and scalable for the satisfaction problem. Second, we
show that the slicing technique is not only time efficient,
but also space efficient compared with the heuristic
pairwise algorithm.

7.1. Data sets

Our experimentation deploys two real-world databases.
MovieLens5 and Netflix data sets6. MovieLens data set
was made available by the GroupLens Research Project
at the University of Minnesota. The data set contains
100,000 ratings (5-star scale), 943 users and 1682
movies. Each user has rated at lease 20 movies. Netflix
data set was released by Netflix for competition. The
movie rating files contain over 100,480,507 ratings from
480,189 randomly-chosen, anonymous Netflix customers
over 17 thousand movie titles. The data were collected
between October, 1998 and December, 2005 and reflect
the distribution of all ratings received during this
period. The ratings are on a scale from 1 to 5 (integral)
stars. In both data sets, a user is considered as an
object while a movie is regarded as an attribute and
many entries are empty since a user only rated a small
number of movies. Except for rating movies, users’
ratings some simple demographic information (e.g., age
range) are also included. In our experiments, we treat
the users’ ratings on movies as non-sensitive issues and
ratings on others as sensitive ones.

7.2. Efficiency

Data used for Figure 3(a) is generated by re-sampling
the Movielens and Netflix data sets while varying the
percentage of data from 10% to 100%. For both data
sets, we evaluate the running time for the (k, ε, l)-
anonymity model with default setting k = 20, ε =
1, l = 2. For both testing data sets, the execution time
for (k, ε, l)-anonymity is increasing with the increased
data percentage. This is because as the percentage of
data increases, the computation cost increases too. The
result is expected since the overhead is increased with
the more dimensions.

Next, we evaluate how the parameters affect the
cost of computing. Data set used for this sets of
experiments are the whole sets of MovieLens and
Netflix data and we evaluate by varying the value
of ε, k and l. With k = 20, l = 2, Figure 3(b)
shows the computational cost as a function of ε,
in determining (k, ε, l)-anonymity requirement of both
data sets. Interestingly, in both data sets, as ε increases,
the cost initially becomes lower but then increases
monotonically. This phenomenon is due to a pair
of contradicting factors that push up and down the
running time, respectively. At the initial stage, when ε
is small, more computation efforts are put into finding ε-
proximate of the transaction, but less used in exhaustive
search for proper ε-proximate neighborhood, and this
explains the initial decent of overall cost. On the
other hand, as ε grows, there are fewer possible ε-
proximate neighborhoods, thus reducing the searching
time for this part, but the number of transactions

5http://www.grouplens.org/taxonomy/term/14.
6http://www.netflixprize.com/.
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FIGURE 3: Running time comparison on Movielens and Netflix data sets vs. (a) Data percentage varies (b)
ε varies
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FIGURE 4: Running time comparison on Movielens and Netflix data sets vs. (c) k varies (d) L varies

in the ε-proximate neighborhood is increased, which
results in huge exhaustive search for proper ε-proximate
neighborhood and this causes the eventual cost increase.
Setting ε = 2, Figure 4(a) displays the results of running
time by varying k from 10 to 60 for both data sets. The
cost drops as k grows. This is expected, because fewer
search efforts for proper ε-proximate neighborhoods
needed for a greater k, allowing our algorithm to
terminate earlier. We also run the experiment by
varying the parameter l and the results are shown in
Figure 4(b). Since the rating of both data sets are
between 1 and 5, then according to Theorem 4.2, 2
is already the largest possible l. When l = 0, there
is no diversity requirement among the sensitive issues,
and the (k, ε, l)-anonymity model is reduced to (k, ε)-
anonymity model. As we can see, the running time
increases with l, because more computation is needed
in order to enforce stronger privacy control.

In addition to show the scalability and efficiency
of the slicing algorithm itself, we also experimented
the comparison between the slicing algorithm (Slicing)
and the heuristic pairwise algorithm (Pairwise), which
works by computing all the pairwise distance to
construct the dissimilarity matrix and identify the

violation of the privacy requirements. We implemented
both algorithms and studied the impact of the execution
time on the data percentage, the value of ε, the value
of K and the value of L.

Figure 5 plots the running time of both slicing and
pairwise algorithms on the Movielens data set. Figure
5(a) describe the trend of the algorithms by varying
the percentage of the data set. From the graph we can
see, the slicing algorithm is far more efficient than the
heuristic pairwise algorithm especially when the volume
of the data becomes larger. This is because, when the
dimension of the data increases, the disadvantage of
the heuristic pairwise algorithm, which is to compute
all the dissimilarity distance, dominates the most of
the execution time. On the other hand, the smarter
grouping technique used in the slicing process makes
less computation cost for the slicing algorithm. The
similar trend is shown in Figure 5(b) by varying the
value of ε, in which the slicing algorithm is almost 3
times faster than the the heuristic pairwise algorithm.
The running time comparisons of both algorithms in
Netflix data set by varying the value of K and L are
shown in Figure 6(a) and (b). Even on a larger data
set, the slicing algorithm outperformed the pairwise
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FIGURE 5: Running time comparison of Slicing and Pairwise methods on Movielens data set vs. (a) Data
percentage varies (b) ε varies
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FIGURE 6: Running time comparison of Slicing and Pairwise methods on Netflix data set vs. (c) k varies
(d) L varies

algorithm, and the running time of Slicing is quick
enough to be used in practical.

7.3. Space complexity

In addition to evaluate the efficiency of the proposed
slicing technique, we also investigate the storage
overheads of the algorithms. We adopt the peak
memory to measure the storage overheads, which
indicates the maximum memory used during the
implementation.

Figure 7 shows the space complexity comparison of
the slicing method and the pairwise approach on the
Movielens data set by varying the percentage of the
data and the value of ε. In both cases, the slicing
algorithm takes less peak memory than the pairwise
method, this is expected, since the pairwise approach
computes all the possible distances and use them for
identifying the validation of the privacy requirement,
which takes much more space to store the dissimilarity
matrix. We conduct the experiments by varying the
value of K and L on a larger Netflix data set, and plot
the storage overheads in Figure 8. From the figure,
the space overhead is less for the slicing algorithm

than for the pairwise method, which again outlines the
disadvantage of the pairwise method, enumerating all
the possible distances. The graph shows that the slicing
algorithm need almost two times less memory than the
heuristic pairwise approach.

8. CONCLUSION AND FUTURE WORK

We have studied the problems of protecting sensitive
ratings of individuals in a large public survey rating
data. Such privacy risk has emerged in a recent study on
the de-identification of published movie rating data. We
proposed a novel (k, ε, l)-anonymity privacy principle
for protecting privacy in such survey rating data. We
theoretically investigated the properties of this model,
and studied the satisfaction problem, which is to decide
whether a survey rating data set satisfies the privacy
requirements given by the user. A fast slicing technique
was proposed to solve the satisfaction problem by
searching closest neighbors in large, sparse and high
dimensional survey rating data. The experimental
results show that the slicing technique is fast and
scalable in practical.

This work also initiates the future investigations of
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FIGURE 7: Space Complexity comparison of Slicing and Pairwise methods on Movielens data set vs. (a)
Data percentage varies (b) ε varies
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approaches on anonymizing the survey rating data.
Traditional approaches on anonymizing no matter
relational data sets or transactional data set are by
generalization or suppression, and the published data
set has the same number of data but with some fields
being modified to meet the privacy requirements. As
shown in the literatures, this kind of anonymization
problem is normally NP-hard, and several algorithms
are devised along this framework to minimize the
certain pre-defined cost metrics. Inspired by the
research in this paper, the satisfaction problem can
be further used to develop a different method to
anonymizing the data set. The idea is straightforward
with the result of the satisfaction problem. If the rating
data set has already satisfies the privacy requirement,
it is not necessary to do any anonymization to publish
it. Otherwise, we anonymize the data set by deleting
some of the records to make it meet the privacy
requirement. The criteria during the deletion can be
various (for example, to minimize the number of deleted
records) to make it as much as useful in the data
mining or other research purposes. We believe that this
new anonymization method is flexible in the choice of

privacy parameters and efficient in the execution with
the practical usage.
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