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Abstract
The objective of subgroup discovery is to find groups of individuals who are sta-
tistically different from others in a large data set. Most existing measures of the
quality of subgroups are intuitive and do not precisely capture statistical differ-
ences of a group with the other, and their discovered results contain many re-
dundant subgroups. Odds ratio is a statistically sound measure to quantify the
statistical difference of two groups for a certain outcome and it is a very suitable
measure for quantifying the quality of subgroups. In this paper, we propose a
statistically sound framework for statistically non-redundant subgroup discovery:
measuring the quality of subgroups by the odds ratio and defining statistically
non-redundant subgroups by the error bounds of odds ratios. We show that our
proposed method is faster than most existing methods and discovers complete sta-
tistically non-redundant subgroups.
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1. Introduction

1.1. Subgroups and rules
The task of subgroup discovery was defined by Klösgen [24] and Wrobel [41]

as follows: “Given a population of individuals and a property of those individu-
als that we are interested in, find population subgroups that are statistically ‘most
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interesting’, for example, are as large as possible and have the most unusual sta-
tistical (distributional) characteristics with respect to the property of interest”. For
example, let the cancer be a property that we are interested in a medical data set.
Subgroups indicate people who are more vulnerable to the cancer than others.
Subgroup discovery has wide applications, such as [5, 17, 26, 27]. The subgroup
discovery has extended from nominal data to numerical data [19, 33]. In this
paper, we consider subgroup discovery in nominal data.

Subgroup discovery is closely related to rule discovery [37, 40]. A subgroup
is a subset of a data set, and can be described by a rule. For example, subgroup
“male and 40-50” comprises 40 to 50 year old male individuals. Assume that this
group has a higher chance to suffer from depression than others not in the group.
Equivalently, this subgroup can be represented as a rule “Gender = male and Age
= (40-50) → depression” with a high confidence. The discovery of subgroups is
equivalent to the discovery of rules. Subgroup discovery has been shown equiva-
lent to the discovery of contrast sets [6] and emerging patterns [12]. Association
rule discovery algorithms [2, 21] have been adapted to subgroup discovery [4, 23].
We refer readers to Novak et al.’s comprehensive survey [37] for detailed discus-
sions.

In the discussions in this paper, we use subgroups and rules exchangeably and
the right hand sides (RHS) of rules are fixed to a value of the outcome attribute,
the property of interest.

One major problem of subgroup discovery and application is redundancy. Sub-
groups are represented as descriptors (or left hand sides of rules). A number of
descriptors may correspond to the same set or overlapped sets of records (or in-
stances) in a data set. For example, “pregnant → depression ” and “female and
pregnant → depression” map to the same set of records in a data set. Semanti-
cally, they are the same and hence one is redundant. If we relax the definition
of redundant subgroups to include the descriptors mapping to record sets that are
overlapped (not necessarily identical), the number of redundant subgroups gets
very large. The relaxation of redundancy definition makes redundancy detection
more challenging. It is easily to find hundreds to thousands of subgroups that
slightly vary from each other. For example, we may find a number of subgroups,
such as “40-50 → depression”, “40-50 and male → depression”, “40-50 and male
and in Australia → depression”, and so on. They carry the similar information
and some are redundant to others.

The redundancy reduces the efficiency of the discovery. It is common that a re-
dundant subgroup set is tens to hundreds of times larger a non-redundant subgroup
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set because there are so many redundant subgroups. The search space for redun-
dant subgroups is also significantly larger than that for non-redundant subgroups.
The redundancy reduces the efficiency of subgroup discovery significantly.

The redundancy also reduces the usability of subgroups. The number of sub-
groups can be unrealistically large, for example, hundreds of thousands to mil-
lions. Users are only interested in and are only able to assess tens to a few hun-
dreds of subgroups. It is necessary to filter out “uninteresting” subgroups and
present a small number of subgroups to users. Top k seems an effective method
for such selection, however, it was found that 99 out of top 100 subgroups are
redundant in a data set [29]. A top k method that cannot remove redundant sub-
groups is not helpful.

The problem of redundancy has been studied for a few years. Most work
relied on the top-k solutions with various interesting metrics to sort the sub-
groups [4, 20, 28, 36]. The various interesting metrics remedy the problem but
does not solve the problem caused by the redundancy. Other studies use some
syntactical definitions to remove redundancies, for example, closure [29, 30], pro-
ductivity [39], relevance [18], constraints [7] and so on. They have achieved vari-
ous successes, but they rely on a constant threshold in the quality improvement to
remove redundant subgroups.

There is a general consensus in the previous research that a non redundant
subgroup should have a quality improvement over all its super subgroups. Let
us consider two subgroups “40-50 → depression” and “40-50 and male → de-
pression”. If the second subgroup has a lower quality than the first one, it is of no
interest to users when users are looking for high quality subgroups. When the sec-
ond one has a marginal quality improvement over the first one, it is not of interest
either since the improvement may be caused by fluctuations of data. For example,
a quantified quality value may change in data everyday with new added instances.
The second subgroup is only of interest to users when its quality is significantly
higher than that of the first one and the improvement is unlikely caused by data
fluctuations.

A question is how big an improvement should be. Most work chooses a base-
line, any non-zero improvement, or leaves the choice to users as a user specified
parameter [29, 30, 18, 7]. In fact, it is a difficult choice and any constant thresholds
are unsuitable. Fundamentally, we try to make a judgement that two subgroups
are not equivalent so one is not a redundant version of the other. In other words,
we would like to know if the qualities of two subgroups are statistically equiva-
lent. The answer to this question depends on the size of a subgroup and the counts
of the value of interest within and outside the subgroup. It will not be a con-
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stant threshold for all subgroups. Some work [39] answering this question uses a
hypothesis test whether two qualities of subgroups are equivalent.

In this paper, we propose a statistical sound definition of non-redundant sub-
groups where the quality improvement for determining redundancy vary with the
sizes of subgroups and the counts of the value of interest within and outside the
subgroups. We explore the computational properties for efficient discovering the
statistically non-redundant subgroups so the pruning redundant subgroups can be
achieved in the discovery process. We present an efficient optimal algorithm for
the efficient discovery of statistically non-redundant subgroups. The algorithm
has been shown more efficient than other classic subgroup discovery methods and
new non-redundant subgroup discovery methods especially in large data sets.

2. Related work

In this section, we mainly differentiate our work from other most related work.

2.1. Measures of the quality of subgroups
A measure of the quality of subgroups aims at capturing statistical difference

of a group with the other group including remaining individuals in a population.
Most quality measures of subgroups, such as generalisation quotient [16], bino-
mial test quality function [24], weighted relative accuracy [23], wighted Krimp
gain [29], support difference [6], and growth rate [12] (please refer to reviews [22,
37] for more definitions), intuitively capture the difference between two groups,
and they may not be statistically sound. One different measure [14] is to com-
pare the differences of Bayesian networks constructed from the subgroup and the
whole data. The larger the difference is, the higher quality is. However, it is only
possible to construct optimal Bayesian networks in very low dimensional data
sets. This measure has a significant limitation.

Odds ratio is a measure for quantifying the statistical difference of two groups
with regard to an outcome [15], and it has been widely used in health and medical
research and practice. It is very suitable for measuring the quality of subgroups.
Odds ratio has good interpretability. For example, if the odds ratio of a group of
patients to a cancer is 3, the group is 3 times more likely to suffer from the cancer
than others.

Odds ratio has an advantage over other statistical measures of the quality
of subgroups. Other statistical measures used in rule discovery such as Chi-
square [35] and p-value [13, 39], do not indicate the strength of the associa-
tion [15, 34]. They are unsuitable for comparing values of quality of two sub-
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groups and unsuitable for choosing top subgroups. In contrast, odds ratio indi-
cates the strength of an association [15]. The degree of association is necessary to
compare the strength of association of two subgroups to define redundancies.

2.2. Redundancy
There generally are two types of redundant subgroups.
The first type of redundant subgroups are those that have different descriptors

but contain the same set of data records. For example, sub groups “pregnant →
oedema” and “ female and pregnant → oedema” are the same subgroup. In many
cases, the equivalence of redundant subgroups are not so obvious to tell. Formally,
all such subgroups have the same closure in the attribute lattice of a data set [38].
This type of redundancy has been well defined in subgroup and rule discovery,
and typical works are [8, 31, 42]. Such redundant subgroups only account for a
small proportion of all redundant subgroups.

The second type of redundant subgroups are those that cover a subset (or a
similar set) of data records of some other subgroups. But their qualities are lower
than the qualities of other subgroups respectively. For example, subgroup “40-
50 and male → depression” is a redundant subgroup if its quality is lower than
that of subgroup “40-50 → depression”. Examples of this type of redundancy are
relevant subgroups [18], non-redundant subgroups [29, 30], productive rules [39],
optimal rules [32] and constraint rules [7].

The first type of redundancy can be considered as a special case of the second
type of redundancy when two subgroups cover the same set of records and have
the same quality. Non-redundant subgroups of the second type still involve many
statistically redundant subgroups. Let us assume that “40-50 → depression” is
a quality subgroup. There will be a lot of sub subgroups like “40-50 and male
→ depression”, “40-50 and male and in Australia → depression” and so on. If
those subgroups have higher quality than sub group “40-50 → depression”, they
are not detected by the existing definitions. However, those slight quality im-
provements are likely caused by data fluctuations. A constant minimum quality
improvement does not solve the problem since the required improvements vary
with the sizes of subgroups, and the counts of interesting value within and outside
the subgroups. A sound solution is to test if the quality improvement is statis-
tically significant. Webb [39] has used a hypothesis test approach to identify /
remove redundant patterns by holdout evaluation or direct adjustment. This pa-
per will use the confidence intervals of odds ratios to measure the significance of
quality improvement. The measurement results in effective pruning criteria for
subgroup discovery. Note that work in [13] made use of statistical test to validate
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the subgroups discovered. However, the test is for subgroups, not for the quality
improvement over other subgroups. Our proposed method tests both.

Redundancy results in too many subgroups, but few subgroups do not mean
that there is no redundancy. Due to the large number of subgroups, most discov-
ery methods are top k based ones, such as [4, 20, 28, 36]. A top k method only
selects subgroups with the highest quality up to the number k. The top k sub-
groups may still contain redundant subgroups. This has been observed by [29].
For example, in our experiment, all top 258 subgroups are variants of a statisti-
cally non-redundant subgroup ranked 259 in the subgroup list. So, it is possible
that all top k subgroups are redundant if we do not use a non-redundant subgroup
discovery method. More likely, all top k subgroups come from a dense subsection
of a data set and no subgroups cover other data sections. Therefore, when there is
a computational feasibility, an optimal discovery method is desirable. The algo-
rithm presented in this paper is an optimal one. It is efficient and guarantees the
completeness of results.

3. Statistically non-redundant subgroups and pruning criteria

3.1. Problem definition
Let data set D contain m descriptive attributes, A1, A2, . . . , Am, and one out-

come attribute, Z, and let all values be categorical. If there are numerical at-
tributes, they will be discretised firstly. One value in the outcome attribute is a
property that users are interested in. Let the data set contain n records, each of
which is a description of an individual. Let a descriptor be a set of values of some
attributes. A subgroup is a subset of D with the same descriptor. A subgroup is
interesting if it is statistically different from other individuals.

We link the subgroup definition to rule definition. Let each value in attributes
A1, A2, . . . , Am be uniquely coded, called an item. A set of items is called an
itemset. A set of records containing an itemset form a subgroup, and the itemset
is called the descriptor of the subgroup. The subgroup discovery problem is the
problem of discovering association rules with a fixed consequence.

In this paper, the RHS (the right hand side) of rules are fixed to a value of the
outcome attribute. In the following discussions, we do not present the RHS and
use the LHS (the left hand side) of a rule as a subgroup.

Given the contingency table of a subgroup in Table 1, P is the descriptor of
a subgroup and z is the value of interest in the outcome attribute Z. P indicates
all other individuals apart from the individuals included by subgroup P . Numbers
in cells are represented following the statistical convention. We also use them
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z z total
P n11 n12 n1∗
P n21 n22 n2∗

total n∗1 n∗2 n

Table 1: The contingency table of subgroup P . z is the value of interest.

to indicate different cells in the following discussions. The number of records
containing P in a data set is denoted as n1∗ where n11 records include the value
of interest and n12 records do not. P is the complementary subgroup of P and
n2∗ = n−n1∗. Again, n21 records in subgroup P include the value of interest, and
n22 records do not. When the context is clear, we use matrix [n11, n12;n21, n22] to
represent a contingency table.

The support of subgroup P in a data set is defined as supp(P ) = n11/n. We
call n1∗ the size of subgroup P .

The odds ratio of subgroup P is defined as the following.

OR(P ) =
n11

n12

/
n21

n22

=
n11 ∗ n22

n12 ∗ n21

An odds ratio of 1 indicates that z is equally likely to occur in both subgroups
P and P . An odds ratio greater than 1 indicates that z is more likely to occur in the
subgroup P than P . And an odds ratio less than 1 indicates that z is less likely to
occur in the P than P . In statistical terms, an odds ratio greater than 1 indicates the
strength of positive association between the subgroup and the property of interest.

Suppose that we have two inclusive subgroups P1 = (male, age 40-50) and P2 =
(male, age 40-50, living in City X). P2 is a sub subgroup of P1, and all individuals
included by P2 are included by P1. In principle, P2 is of interest only when its
odds ratio is significantly higher than P1 since our objective is to find subgroups
with high odds ratios. Note that subgroups of low odds ratios may be of interest
to users too, but it is a symmetric problem of the problem discussed in this paper
when z and z are swapped, and hence we do not consider it here.

Let OR(P2) = 2.2 and OR(P1) = 2.0. Is P2 interesting? Before we are
able to answer this question, we need to answer the following question: “Is there
a difference between OR(P2) = 2.2 and OR(P1) = 2.0 statistically?” In other
words, if one randomly samples a set of records with the size of P2 from subgroup
P1, how likely would s/he get an odds ratio of 2.2 or higher? If it is likely, P2 is a
random variation of P1 and we consider that it is redundant.

Definition 1 (Statistical redundancy) Consider subgroups P1 and its sub sub-
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group P2 where OR(P1) > 1 and OR(P2) > 1, subgroup P2 is statistically re-
dundant with respect to P1 if (1) OR(P2) ≤ OR(P1) or (2) OR(P2) > OR(P1)
but the difference between OR(P2) and OR(P1) is statistically insignificant.

For example, if (OR(P2) = 2.2)−(OR(P1) = 2.0) is statistically insignificant
in the previous example, then P2 is a statistically redundant subgroup of P1. Such
a significance depends on the size of subgroup P2. For example, if P2 is a large
subgroup, the 10% improvement in odds ratio is significant. In contrast, if P1 is
a small subgroup, the 10% improvement in odds ratio may be caused by the data
fluctuation and hence insignificant.

Now, we can summarise the objective of statistically non-redundant subgroup
discovery.

Problem 1 Given a data set and a value of interest, a subgroup is a subset of
data with the same descriptor. An interesting subgroup has at least the minimum
support and its odds ratio for the value of interest is greater than 1 and the differ-
ence is statistically significant. Non-redundant subgroup discovery is to find all
statistically non-redundant interesting subgroups.

3.2. A criterion for statistical redundancy and its computational properties
A measure of the quality of a subgroup is an approximation. When we say that

the quality of a subgroup is 3, it might be estimated as 2.9 when it is calculated in
a data set with two more days’ data, or as 3.15 in a data set with one more week
data. Such a difference is called a variation (or an uncertainty or an error) in the
measurements. So when we say that an estimation of the quality of a subgroup is
3, we imply that the quality is in an interval, e.g. [2.8, 3.2], called a confidence
interval. In the same measurement, 3.15 is not necessarily larger than 2.9 when
uncertainties are taken into consideration. When we see the qualities of two sub-
groups are 2.9 and 3.15 respectively, both subgroups very likely have the same
quality. In this section, we will discuss how to estimate the confidence interval
of an odd ratio, and how to use confidence intervals to determine the equality or
inequality of the qualities of two subgroups to define the redundancy.

Given a subgroup P with the contingency table in Table 1, the confidence in-
terval of the odds ratio is calculated as the following [15]
[OR(P )exp(−ω),OR(P )exp(ω)] where ω = zα/2

√
1

n11
+ 1

n12
+ 1

n21
+ 1

n22
. zα/2

is the critical value of the confidence interval. When the confidence is 95%, zα/2
= 1.96. In other words, OR(P ) is an estimation. Its real value is in the inter-
val [OR(P ) ,OR(P )+] with 95% probability, where OR(P ) and OR(P )+ stand
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OR

OR(P1)

P3

OR(P1)_

P2

OR(P1)+
P1

Figure 1: A demonstration of statistically non-redundant subgroups. Subgroup P3 is statistically
redundant with respect to subgroup P1 and subgroup P2 is not.

for OR(P )exp(−ω) and OR(P )exp(ω) respectively. OR(P ) and OR(P )+ are
called the left bound and the right bound of odds ratio OR(P ).

Given P1 and its sub subgroup P2, their odds ratios are estimated as
[OR(P1)−,OR(P1)+] and [OR(P2)−,OR(P2)+]. Suppose that OR(P2) > OR(P1).
The difference between the two odds ratios is statistically significant if OR(P2)− >
OR(P1)+. In other words, we have a high confidence to conclude that two odds
ratios are different if their confidence intervals do not overlap. Otherwise, the dif-
ference is insignificant. The wider the gap between the intervals, the smaller the
chance for two odds ratios being the same.

We note that the above analysis is based on the fact that the odds ratios of P1

and P2 are independent. In our case, they are not since P2 is a subset of P1. A
difference between the odds ratios of P1 and P2 is more significant than the same
difference between two independent odds ratios. In practice, a critical value for a
dependent case should be smaller than that for an independent case.

See Figure 1 for example. Odds ratios of subgroups P2 and P1 are statistically
different since their confidence intervals are not overlapped. In contrast, the dif-
ference between the odds ratios of subgroups P3 and P1 is insignificant since their
confidence intervals are overlapped. We have the following definition.

Definition 2 (A criterion for statistically redundant subgroups) Consider sub-
group P1 and its sub subgroup P2, subgroup P2 is statistically redundant with
respect to subgroup P1, if OR(P1)+ > OR(P2)−.

When OR(P2) ≤ OR(P1), OR(P1)+ > OR(P2)− trivially holds. When
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OR(P2) > OR(P1), we need to compare OR(P1)+ > OR(P2)− case by case.
When we search for statistically non-redundant subgroups using a branch and
bound algorithm, it will be good to know the upper bound of the left bounds of
odds ratios of all the sub subgroups of P1.

In order to obtain the upper bound of left bounds of all subgroups of subgroup
P1, we define variables x and y to quantify value changes between contingency
tables of subgroup P1 and its sub subgroup P2. Let the contingency table of sub-
group P1 be as follow.

Table I z z total
P1 a b a+ b

P1 c d c+ d
total a+ c b+ d n

We use a, b, c and d to indicate counts to avoid subscripts. a+ b+ c+ d = n.
The contingency table of P2 is given as follow.

Table II z z total
P2 a− x b− y a+ b− x− y

P2 c+ x d+ y b+ c+ x+ y
total a+ c b+ d n

0 ≤ x ≤ a and 0 ≤ y ≤ b. The size of subgroup P2 is at most the same as the
size of P1. Therefore, both counts in Cells n11 and n12 drop. However, the total
counts of z and z are constant, and hence the drops are added to Cells n21 and n22.
The variables in the specialisation of a subgroup to its sub subgroup are x and y.

In the following, we will discuss how the odds ratio of P2 and the left bound
of the odds ratio change with x and y.

Lemma 1 Given a subgroup P1, and one of its sub subgroups P2, their contin-
gency tables are described in Tables I and II where a, b, c and d are constants.
Let x = 0. OR(P2) monotonously increases with y. OR(P2)− monotonously
increases with y when d+ y > b− y.
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Proof

OR(P2) =
a

c
∗ d+ y

b− y

dOR(P2)

d y
=

a

c
∗ b+ d

(b− y)2
> 0

Therefore, OR(P2) monotonously increases with y.

ω = zα/2

√
1

a
+

1

c
+

1

b− y
+

1

d+ y
= zα/2

√
w1

d(−ω)

d y
=

zα/2
2

w
− 1

2
1 (

1

(b− y)2
− 1

(d+ y)2
) > 0

OR(P2)− = OR(P2)e
−ω

dOR(P2)−
d y

=
dOR(P2)

d y
e−ω +OR(P2)e

−ω d(−ω)

d y
> 0

Therefore, OR(P2)− monotonously increases with y when d+ y > b− y. �

The practical meanings of Lemma 1 is that with the increase of y, OR(P2)
increases and so does OR(P2)−. Therefore, in order to have a sub subgroup with
the largest odds ratio and the largest left bound of the odds ratio, value y should
be maximised.

The following example shows that condition (d+y) > (b−y) (or equivalently
n22 > n21) in Lemma 2, is easily satisfied in subgroup discovery. This is because
n21 indicates the count of false positives of a subgroup, and this count needs to be
small to make a subgroup interesting.

depression normal total
(male, 40-50) 15 5 20

Others 35 45 80
total 50 50 100

Lemma 2 Given a subgroup P1, and one of its sub subgroups P2, their contin-
gency tables are described Tables I and II where a, b, c and d are constants. Let
y = 0. OR(P2) monotonously decreases with x. OR(P )− monotonously de-
creases with x.
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Proof

OR(P2) =
a− x

c+ x
∗ d

b
dOR(P2)

dx
= −d

b
∗ a+ c

(c+ x)2
< 0

Therefore, OR(P2) monotonously decreases with x.

ω = zα/2

√
1

a− x
+

1

c+ x
+

1

b
+

1

d
= zα/2

√
w2

d(−ω)

d x
=

zα/2
2

w
− 1

2
2 (

1

(a− x)2
− 1

(c+ x)2
)

OR(P2)− = OR(P2)e
−ω

dOR(P2)−
d x

=
dOR(P2)

dx
e−ω +OR(P2)e

−ω d(−ω)

d x

=
d

b
e−ω(− a+ c

(c+ x)2
+

a− x

c+ x
∗
zα/2
2

w
− 1

2
2 (

1

(a− x)2
− 1

(c+ x)2
))

Let A = a+c
(c+x)2

and B = a−x
c+x

∗ zα/2

2
w

− 1
2

2 ( 1
(a−x)2

− 1
(c+x)2

).

B <
a− x

c+ x
∗
zα/2
2

w
− 1

2
2 (

1

(a− x)2
)

=
zα/2
2

w
− 1

2
2

1

(c+ x)(a− x)

To have B < A (so that dOR(P2)−
dx

< 0), it is necessary that the following
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inequations hold.

zα/2
2

w
− 1

2
2

1

(c+ x)(a− x)
<

a+ c

(c+ x)2

zα/2
2

w
− 1

2
2

1

a− x
<

a+ c

c+ x

w
− 1

2
2 <

2

zα/2
∗ (a+ c)(a− x)

c+ x√
1

a− x
+

1

c+ x
+

1

b
+

1

d
>

zα/2
2

∗ c+ x

(a+ c)(a− x)√
1

a− x
>

zα/2
2

∗ c+ x

(a+ c)(a− x)

(a− x) <
4

z2α/2
(
(a+ c)(a− x)

c+ x
)2

1 <
4(a− x)

z2α/2
(
a+ c

c+ x
)2 (1)

Because (a + c) > (c + x), Inequation (1) holds when zα/2 is smaller than
2
√
#min support count since (a − x) is bounded by the count of the minimum

support. Normally, zα/2 = 1.96, corresponding to the 95% confidence level, re-
quires the count of the minimum support as 1. zα/2 = 4, corresponding to the
99.99% confidence level, requires the count of the minimum support as 4. The
count of the minimum support is at least 5 in all subgroup discovery applications.
So, Inequation (1) holds.

Therefore, OR(P )− monotonously decreases with x.
�

The practical meanings of Lemma 2 is that with the increase of x, OR(P2)
decreases, and so does OR(P )−. Therefore, in order to have a sub subgroup with
the largest odds ratio and the largest left bound of the odds ratio, x should be
minimised.

Now we are able to deduce the upper bound of odds ratios and the upper bound
of the left bounds of odds ratios of all sub subgroups of subgroup P1.

Theorem 1 Given a subgroup P1, its contingency table is described in Table I
where a, b, c and d are constants. The largest possible odds ratio of all its sub
subgroups is OR(P1)

ub = a(b+d−β)
βc

where β ≥ 5. The largest possible left bound
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of the odds ratios of all sub subgroups of P1 is OR(P1)
ub
− = OR(P1)

ube−ω where

ω = zα/2
√

1
a
+ 1

c
+ 1

β
+ 1

b+d−β
.

Proof Let P2 be a sub subgroup of P1. Its contingency table is described as
Table II. By Lemma 2, we have the following inequation when x takes the smallest
value.

OR(P2) =
(a− x)(d+ y)

(c+ x)(b− y)
≤ a(d+ y)

c(b− y)

By Lemma 1, we have the following inequation when y takes the largest pos-
sible number, i.e. b− β.

a(d+ y)

c(b− y)
≤ a(d+ b− β)

βc

Therefore, the largest odds ratio of OR(P2) is a(b+d−β)
βc

. It is the upper bound
of odds ratios of all sub subgroups of P1, denoted as OR(P1)

ub.
Since both OR(P2) and OR(P2)− satisfy the same monotonous properties

Lemmas 1 and 2, the points of their largest values overlap. The upper bound
of the left bounds of the odds ratios of all sub subgroups of P1 is OR(P1)

ub
− =

OR(P1)
ube−ω where ω = zα/2

√
1
a
+ 1

c
+ 1

β
+ 1

b+d−β
. �

Now we explain the practical meanings of β. Let us start with an example.
If a subgroup has the following contingency table x11 = 20, x12 = 2, x21 =
30, x22 = 48, its odds ratio is 16. Assume that its sub subgroup has the following
contingency table x11 = 20, x12 = 1, x21 = 30, x22 = 49. The odds ratio of
the sub subgroup is 32.7. The difference of the two contingency tables is that
one instance is moved from Cell n12 to Cell n22 from the subgroup to the sub
subgroup. Such a change could be caused by a data fluctuation. However, the
odds ratio is doubled. As χ square for testing association [10], the counts in a
contingency table should be at least 5 to be reliable. The count of n21 and n22

are much larger than 5 as long as a data set is not too small. The count of n11 is
bounded by the minimum support. Here β is the lower bound for n12 for a reliable
odds ratio estimation. When the count in n12 falls lower than β, we use the β as a
count.

The theorem can be used for the efficient discovery of subgroups in a branch
and bound search. When we search for the current subgroup P1, we can obtain
the upper bound of left-bounds of confidence intervals of odds ratios of all sub
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subgroups of subgroup P1. If OR(P1)
ub
− ≤ OR(P1)+, then all sub subgroups of

P1 are statistically redundant. More specifically, we have the following pruning
criterion.

Criterion 1 (Upper bound pruning) Consider a subgroup P1 and let OR(P1)
ub
−

be the upper bound of left bounds of odds ratios of all sub subgroups of P1. If
OR(P1)

ub
− ≤ OR(P1)+, all sub subgroups of P1 are prunable.

Proof When OR(P1)
ub
− ≤ OR(P1)+, the highest possible left bound of the odds

ratios of all sub subgroups of P1 is not as high as the right bound of the odd ratio
of P1. So the confidence interval of odds ratio of P1 overlaps with that of any of its
sub subgroups. According to Definition 2, all sub subgroups of P1 are statistically
redundant. So they should be pruned. �

This criterion is very effective in a branch and bound search. For example, let
a data set contain ten attribute values S = {a, b, c, d, e, f, g, h, i, j} and a value of
interest z. Let the length of the descriptor of a subgroup be up to 5. The candidate
subgroups include the sets in the power set of S with the cardinality up to 5, and
the number of the candidates is 637. Let us assume that all candidate subgroups
satisfy the minimum support requirement, and P1 = a is the current subgroup
under consideration. The number of all sub subgroups of P1 is

∑i=4
i=1

(
9
i

)
= 255.

If OR(P1)
ub
− < OR(P1)+. The 255 sub subgroups should not be searched, and the

search space is reduced greatly.
Another pruning criterion extended from the optimality pruning criterion in [32].

Criterion 2 (Optimality pruning) Let P2 be a sub subgroup of P1. The contin-
gency tables of the two subgroups are described in Table I and II. If y = 0, then
P2 and all its sub subgroups are prunable.

Proof Firstly, we prove that P2 is prunable. When y = 0, OR(P2) ≤ OR(P1)
following Lemma 2 because of x ≥ 0, and hence OR(P2)− < OR(P1)+. If P1 is
statistically non-redundant, P2 is statistically redundant with respect to P1. If P1 is
statistically redundant with respect to another subgroup P , P2 is also statistically
redundant to P . Therefore, P2 is statistically redundant.

Secondly, we will prove that all sub subgroups of P2 are prunable. We start
with some notations. Let I(P1) include all instances containing the descriptor of
subgroup P1 in a data set. I(P1) = I+(P1) ∪ I−(P1) where I+(P1) contains all
instances in I(P1) with the property of interest and I−(P1) contains those without.
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Let the set difference of descriptors of P1 and P2 be Q, i.e. P2\P1 = Q.
Consider that Q is also a subgroup. I−(P2) = I−(P1) ∩ I−(Q). When y = 0,
I−(P2) = I−(P1) and equivalently I−(P1) ⊆ I−(Q).

Let P2R be a sub subgroup of P2 and P2R is also a sub subgroup of P1R.
I−(P1R) ⊆ I−(P1) ⊆ I−(Q), and hence y′ = |I−(P1R)| − |I−(P2R)| = 0
by noting that P2R = P1QR. Following Lemma 2, OR(P2R) ≤ OR(P1R) be-
cause of y′ = 0, and hence OR(P2R)− < OR(P1R)+. If P1R is statistically
non-redundant, P2R is statistically redundant with respect to P1R. If P1R is sta-
tistically redundant with respect to another subgroup P ′, P2R is also statistically
redundant to P ′. Therefore, subgroup P2R is statistically redundant.

P2R is any sub subgroup of P2 and hence all sub subgroups of P2 are statisti-
cally redundant. �

Now we discuss the practical meanings of Criterion 2. In a branch and bound
search, we only search sub subgroups that have non-zero y values from their su-
per subgroups. For example, let P1 = (age 40-50) and P2 = (age 40-50, male).
Assume that y = 0 in the specialisation of subgroup P1 to P2. In other words,
when subgroup P1 is specialised to subgroup P2, no false positive instances have
been reduced. So all sub subgroups of P2 should not be searched because they are
redundant. For example, subgroup (age 40-50, male, living in City X) is redun-
dant to subgroup (age 40-50, living in City X). Note that the criterion makes no
comparison between subgroups (age 40-50, male, living in City X) with subgroup
(age 40-50). The comparisons are between a super subgroup and a sub subgroup
with and without term “male”, the set difference between descriptors of P1 and
P2.

The closure pruning [8, 31, 42] is implied by the above optimality pruning.
When subgroups P1 and P2 have the same closure, P1 and P2 have the same
support and the same contingency tables. Equivalently, x = 0 and y = 0 (the x
and y in Tables I and II). In contrast, the optimality pruning only needs y = 0. So,
the closure pruning is implied by the optimality pruning.

4. Algorithm

We design an efficient algorithm to discover statistically non-redundant sub-
groups by using Criteria 1 and 2. The algorithm is based on a branch and bound
search. The algorithm is an optimal one because it returns all statistically non-
redundant subgroups.

16



4.1. Data structure
This algorithm employs the prefix tree as the base data structure for subgroup

discovery. A prefix tree is an ordered tree to store ordered sets. Each node stores
an ordered set. A node stores the maximal common set (prefix set) of its child
nodes. The label of a node is the different object between its set and the set of
its parent (the last object in its ordered set). The root of the prefix tree stores an
empty set. Given a set of objects, called O, a complete prefix tree will store the
power set of the set O. Figure 2 shows an exemplar prefix tree. A prefix tree has
been shown to be a good data structure for branch and bound search [7, 9].

For a data set stored as a table, we firstly code each distinct value uniquely,
and call the coded value as an item. Let us assume that all items are ordered. The
way of ordering does not matter at this stage (see the end of this section for more
discussions). The order is used to prevent the generation of duplicate candidates,
such as abc and cba. When the prefix tree is used for subgroup discovery, each
node stores a subgroup and is labelled by an item, which is the last item in the
descriptor of the subgroup stored at the node. The prefix of the descriptor of a
subgroup is the descriptor of its directly linked parent nodes in the prefix tree.

d

d

d

c d d
ad bc bd

abcd

dd
acdabc

c

ab
b

ac

b
c

d

cd

Root

a
a db

Label

Subgroup

abd

c

c

bcd

Figure 2: An example of prefix tree. a, b, c, d here stand for items, uniquely coded attribute values.
An itemset is a descriptor of a subgroup.

To facilitate pruning by Criteria 2, backtrack links to all of its parent nodes of
a subgroup should be added. For example, nodes ab, bc and ac are parent nodes of
node abc. There is a direct link between nodes abc and ab, but there are no links
between node abc and nodes ac and bc. Adding backtrack links between node
abc and nodes ac and bc is easy for finding super subgroups of a subgroup in the
previous level. For the simplicity of illustration, we do not draw backtrack links
in the figure.
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a d y
a c y
a b c y
a b c d y

b c d y
a d n

b d n
b c d n
b n

c d n

Table 2: An itemised data set for the running example. a, b, c, d indicate values of descriptive
attributes. When a value does not occur in a row, we leave the cell empty. y and n indicate values
of the outcome attribute.

There are some advantages for using a prefix tree as the data structure.

• Pairs for candidate generation are naturally grouped under a node. For ex-
ample, abc and abd are under node ab. We do not have to search for them
in a list or a hash tree. See Subsection 4.3 for details.

• A stored subgroup is easily accessed because its descriptor shows the path
from the root to the node storing itself. For example, labels a, c and d in
sequence lead to subgroup acd.

• All candidates can be counted efficiently against a record by a tracing oper-
ation in one run. See subsection 4.4 for more details.

In this algorithm, we assume that the order is fixed. The order can be changed
in each branch based on the frequencies of subgroups. Such a change would im-
prove the efficiency of algorithm [9]. We have not employed such an optimisation
in this implementation.

4.2. A running example
We use the following running example to explain the algorithm and to demon-

strate the effectiveness of pruning.

Example 1 Values in Table 2 are itemised. This is a small data set, and we mainly
used it to show how Criteria 1 and 2 work.
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Frequent itemsets Closed frequent itemsets Itemsets searched
a, b, c, d, a, b, c, d, a, b, c, d
ab, ac, ad, bc, bd, cd, ac, ad, bc, bd, cd bc, bd, cd.
abc, abd, acd, bcd abc, bcd
abcd abcd

Table 3: The sets of frequent itemsets, closed frequent itemsets and itemsets searched by the
algorithm. Itemsets are descriptors of subgroups.

Let the count of the minimum support be 1. Let ‘y’ be the value of interest.
To avoid the division by zero, we set a count as 0.5 when it is 0. β is also set as
0.5 (equivalent to a 0 count) for computing the upper bound of the left bounds of
the odds ratios of all the sub subgroups of a subgroup. The confidence level is set
as 68%, corresponding to the critical value of 1 because the size of the data set is
small.

Itemsets are descriptors of subgroups and represent subgroups. The sets of
frequent itemsets, frequent closed itemsets and the itemsets searched by the algo-
rithm are listed in Table 3. The proposed algorithm does not search for any Level
3 and 4 itemsets. Super itemsets of a and bc are pruned by Criterion 1, and super
itemsets of cd are pruned Criterion 2. Therefore, no Level 3 candidates will be
generated as shown in Function 1.

Since sub subgroups of both a and bc are pruned by the same criterion, we use
bc as an example to show how they are pruned. The contingency table associated
with subgroup bc is [3, 1; 2, 4]. OR(bc) = 6 corresponding to the confidence
interval [1.4, 25]. The confidence interval is quite large since the data set is very
small. The significance test penalises subgroups of small supports.

The contingency table associated with the upper bound of all the sub sub-
groups of subgroup bc is [3, 0.5; 2, 5]. The upper bound of the left bounds of the
odds ratios of all sub subgroups of bc is OR(bc)ub− = 2.6. Since OR(bc)ub− <
OR(bc)+, all sub subgroups of bc are statistically redundant and they should
pruned. Therefore, node bc is removed.

The contingency tables of subgroups c and cd are [4, 2; 1, 3] and [2, 2; 3, 3]
respectively. The difference of Cells n12 of the two contingency tables is zero,
and hence y = 0. According to Criterion 2, all sub subgroups of cd and itself are
pruned.

We will return to this example after we present the complete algorithm.
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4.3. Candidate generation and first pruning
Candidate generation and pruning in the prefix tree are presented in the follow-

ing function. l-unordered subsets of set P are subsets of set P with the cardinality
of l.

Function 1 (NewLevel (prefix tree))
Input: prefix tree T built and pruned to Level k.
Output: prefix tree T with k + 1 level.

1: for each node W at Level k − 1 do
2: for each pair of child nodes U and V under W do
3: union the sets of U and V to form a new set P
4: check if all unordered l-subsets (unordered) of the set P are stored in T
5: if any unordered subset is not stored in T then
6: skip the current pair and continue to the next pair
7: end if
8: store set P in a child of U (or V ) which stores the prefix set of the set P
9: record backtrack links to nodes storing the l-unordered subsets of set P

10: end for
11: end for

We use the example in Figure 2 to elaborate the function. Let W = a be a
node in Level 1. Nodes ab, ac and ad are child nodes of node W . Let U = ab
and V = ac. The union of U and V form a new candidate P = abc in Level 3 of
the prefix tree. These have been done by Lines 2 and 3. Note that we do not try
the union of ab and bc, which are from different parent nodes. The candidates by
combining non-sibling nodes are redundant. For example, the union of ab and bc
is redundant to the combination of ab and ac.

The validity of a new candidate is determined by whether all its super sub-
groups are in the prefix tree. For candidate abc, we will need to check if nodes
ab, ac and bc exist. Since abc is formed by ab and ac, they do exist. The only
unchecked super subgroup is bc. This check is done by Line 4. Assume that node
bc exists. abc is added as a descendant node of ab, and this is done by Line 8.
Assume that node bc does not exist. Candidate abc is discarded and other sibling
nodes are tested, such as, ab and ad. For the ease of accessing the super sub-
groups of a candidate subgroup, the backtrack links are added to super subgroups
of a subgroup. This has been done by Line 9.

Note that the function will ensure that no sub subgroups will be generated if a
subgroup is removed. In Example 1, node a is pruned by Criterion 1. The whole
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branch rooted by a will not generated in the prefix tree. In other words, all sub
subgroups of subgroup a are removed.

4.4. Support counting
Counting by the prefix tree is efficient since descriptors of subgroups indicate

pathes to nodes storing them. All candidates at one level can be counted against a
record in one run. Count is a recursive function.

Function 2 (SupportCount (prefix tree, dataset))
Input: Prefix tree T with Level k + 1 uncounted, and data set D.
Output: Prefix tree T with Level k + 1 counted.

for each record r in D do
Count (T , r)

end for

Count (T ′, r′)
1: let p be the label of the root of T ′

2: if p /∈ r′ or p is not the root of T then
3: return
4: end if
5: let P be the subgroup stored at the root of T ′

6: if the length of the descriptor of P == (k + 1) then
7: increment the count of P by 1
8: return
9: end if

10: remove items preceding p and p from r′

11: if r′ == ∅ then
12: return
13: end if
14: for each child node Y of node P do
15: let TY be the subtree rooted by node Y
16: Count(TY , r

′)
17: end for

We use an example to show how the function works. Suppose that we count
the tree in Figure 2 against record {b, c, d} for subgroups stored at Level 2 (and
imagine that Levels 3 and 4 do not exist). Now, k = 1.

Count is a recursive function. It is firstly called by Count (the root of T ,
{b, c, d}). Then four subroutines will be called by following Lines 14-17. They
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are: (I) Count (node a under the root, {b, c, d}), (II) Count (node b under the root,
{b, c, d}), (III) Count (node c under the root, {b, c, d}), and (IV) Count (node d
under the root, {b, c, d}). We use Subroutines (I), (II), and (IV) to further show
how the function works.

Subroutine (I) Count (node a under the root, {b, c, d}) will be terminated by
Lines 2-4 since a is not in record {b, c, d}. Therefore, the whole branch under
node a will be bypassed and this is a reason for the efficiency.

The following two subroutines will be called by Subroutine (II): (A) Count (node
c under node b, {c, d}), (B) Count (node d under node b , {c, d}). Note that item
b is removed from record {b, c, d} by Line 10 in Subroutine II. Again we only ex-
plain subroutine (A) Count (node c under node b, {c, d}) since both Subroutines
(A) and (B) work in the same way.

In Lines 6-9 of subroutine (A) Count (node c under node b, {c, d}), the count
of subgroup bc will be incremented by 1 and the subroutine will be terminated.
Similarly subgroups bd and cd will be counted.

Subroutine (IV) Count (node d under the root, {b, c, d}) is terminated at Lines
11-13. After removing item d and items preceding item d, namely b and c from
record r′ = {b, c, d}. Record r′ = ∅, and the subroutine is terminated.

Count function does not search for the whole prefix tree, and only searches
for parts of the prefix tree storing subgroups which descriptors are subsets of the
record. For example, in the above example, the branch under node a have not
been searched.

4.5. Pruning and subgroup selection
Pruning is implemented by Criteria 1 and 2 and the frequency requirement.

Function 3 (Pruning&Selection (prefix tree, subgroup list))
Input: Prefix tree T with Level k+1 counted. A list of statistically non-redundant
subgroups L
Output: Prefix tree T with Level k + 1 pruned. Subgroup list L with new statisti-
cally non-redundant subgroups at Level k+1 added

1: for each node P at Level k + 1 do
2: if the support of subgroup P ≤ the minimum support then
3: remove node P from tree T and continue to the next node
4: end if
5: compute OR(P ), OR(P )+, OR(P )− and OR(P )ub−
6: if (OR(P )− − 1) > 0 and P is statistically non-redundant then
7: add P to L
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8: if OR(P )+ > OR(P )ub− then
9: remove node P from tree T and continue to the next node

10: end if
11: end if
12: for each parent node R of P at Level k do
13: compute change y in cell n12 from R to P
14: if y == 0 then
15: remove node P from tree T and continue to the next node
16: end if
17: end for
18: end for

The first pruning process is based on the frequency requirement. If a subgroup
is infrequent, so are all its sub subgroups and hence they are all pruned. This
has been implemented by Lines 2-4. In Example 1, no node is pruned by the
frequency requirement. However, if a node is pruned, none of its sub subgroups
will be generated in the prefix tree following the candidate generation function.

The second pruning process is based on Criterion 1. All statistically redundant
subgroups judged by the criterion will be pruned by Lines 8-10. In Example 1,
both nodes a and bc are pruned by this criterion. The pruned statistically redundant
subgroups have the same anti-monotonic property as infrequent subgroups. For
example, the whole branch under node a will be pruned.

The third pruning process is based on Criterion 2 in Lines 12-16. In Exam-
ple 1, node cd is pruned in this way. Again, the pruned statistically redundant
subgroups follow the same anti-monotonic property as infrequent subgroups. No
sub subgroups of cd will be generated or tested.

All statistically non-redundant subgroups are added to the subgroup list ac-
cording to Definition 1 in Lines 6-7. Backtrack links are used in Line 12 to fetch
parent nodes of P .

4.6. The overall algorithm
The overall algorithm is presented in Algorithm 1, which firstly transfers at-

tribute value data to transactional data with items and then initiates a prefix tree. It
subsequently calls Functions 1, 2, and 3 in a loop until there is no new candidate
in the prefix tree.

We run the algorithm on the data set in Example 1. In the first level, nodes a,
b, c, d are generated by Line 4. In Line 5, subgroup a is tested as a statistically
non-redundant subgroup and is added to L. Subsequently, a is pruned by Lines
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Algorithm 1 Statistically Non-redundant Subgroup discovery (SNS)
Input: data set D, the minimum support, significance critical value.
Output: a list of all statistically significant subgroups L

1: let L = ∅
2: code attribute values in D to items
3: count support of items
4: initiate prefix tree T
5: Pruning&Selection (T )
6: let k = 1
7: NewLevel (T )
8: while k + 1 level of tree T is non-empty do
9: SupportCount (T , D)

10: Pruning&Selection (T )
11: k = k + 1
12: NewLevel (T )
13: end while
14: output L

8-9 in Function Pruning&Selection. The remaining nodes are b, c and d.
In the second level, nodes bc, bd and cd are generated by Line 7. Their fre-

quencies will be counted by Line 9. In Line 10, bc is tested as a statistically
non-redundant subgroup and is added to L. Subsequently, node bc is pruned by
Lines 8-9 in Function Pruning&Selection. Node cd is pruned by Lines 14-15 in
Function Pruning&Selection. The remaining node is bd.

No node will be generated in level 3 by Line 12. The program is terminated
and L = {a, bc} is returned. A summary of generated candidates, statistically
non-redundant subgroups and the pruned prefix tree is given in Figure 3.

Next, we discuss correctness of Algorithm 1.

Theorem 2 Algorithm 1 produces the complete set of statistically non-redundant
subgroups correctly.

Proof Firstly, if there are no pruning processes, the algorithm will produce the
complete prefix tree. This means that the algorithm will search for all candidates
for statistically non-redundant subgroups.

Secondly, both Criteria 1 and 2 have been proved that they prune the search
space that does not produce statistically non-redundant subgroups.

24



c d d
bd

b
c

d

cd

Root

a
db

c
a

bc

Figure 3: The pruned prefix tree in Example 1.The subgroups highlighted in bold are statistically
non-redundant subgroups. Pruned candidates are crossed.

Therefore, the algorithm will produce the complete set of statistically non-
redundant subgroups correctly. �

5. Experiments

In this section, we will demonstrate the efficiency of the proposed method
in comparison with six classic and recent subgroup discovery methods. We will
also point out a potential for relaxing pruning criteria for more efficient heuristic
subgroup discovery.

5.1. Data
We employ ten frequently used data sets from UCIML repository [3]. Data

sets Hypothyroid and Sick are in the directory of Thyroid Disease data set. Their
size ranges from small to large, and their dimensionality vary from very small to
medium. The numeric attributes have been removed in Adult and Census-Income
data sets. Numeric attributes in other data sets have been discretized by using
the discretization function of MLC++ [25]. For Census-Income data, the com-
bined training and test data set D contains in total 299,285 records. We randomly
sampled 50K from data set D without replacement and form the first sub data set
D1. We then randomly sampled 50K from the remaining records of D without
replacement and combined the newly sampled data with the previous data set D1

to form the second sub data set D2. In this way, we formed five sub data sets D1

to D5 with the size of 50K, 100K, 150K, 200K and 250K respectively. These data
sets were used for the scalability evaluation.

A description of data sets is listed in Table 4. In the experiments, we set the
smaller class as the value of interest.
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Name #Records #Attributes Distributions
Adult 48842 8 23.9% & 76.1%

Breast cancer Wisconsin 699 9 34.5% & 65.5%
Census-Income 250000 33 6.2% & 93.8%
German Credit 1000 15 30% & 70%
Hypothyroid 3163 23 4.8% & 95.2%

kr-vs-kp 3196 36 47.8% & 52.2%
Mushroom 8124 22 48.2% & 51.8%

Sick 2800 26 6.1% & 93.9%
Tic-Tac-Toe 968 9 34.7% & 65.3%

Congressional voting 435 16 38.6% 61.4%

Table 4: A brief description of data sets used in experiments

The parameters of SNS algorithm is set as the following. β value is set as
5. The critical value of an odds ratio greater than 1 is set as 1.96 corresponding
to 95% confidence level. The critical value for testing overlapping confidence
intervals of odds ratios is set as 1. This is because that when we compare the lower
bound of the odds ratio of a subgroup with the upper bound of the odds ratio of
another subgroup, the uncertainty has been considered in both ends. Therefore,
it is fair to use a smaller critical value than that for testing an odds ratio greater
than 1. Other parameters are set differently to match comparison methods and are
detailed in the following sections.

All experiments are performed on a computer with 4 core Intel i7-3370 CPU@
3.4 GHz and 16 GB RAM. Our method is running on Ubuntu operating system
and other comparison methods are running on 64-bit Windows operating system.

5.2. The efficiency of the algorithm
We compare the proposed method with six subgroup discovery methods for ef-

ficiency, including four classic methods and two recent non-redundant subgroup
discovery methods. SD [16] is a beam search based rule induction method for
subgroup discovery. CN2-SD [28] extends CN2 [11], a beam search based rule in-
duction algorithm, for subgroup discovery. Apriori-SD [23] is an association rule
mining based subgroup discovery algorithm, and its base algorithm is Apriori [2].
SD-Map [4] is another association rule mining based subgroup discovery method,
and its base algorithm is FP-growth [21]. DSSD [29, 30] is a non-redundant sub-
group discovery method based on the beam search strategy. ID-RSD [18] is a
recent top-k relevant subgroup discovery method.
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The parameter setting follows the setting in DSSD paper [29]. The count of
the minimum support of a subgroup is 10 (except 100 for the Census data), and
the maximum length of a subgroup is 5. For a top k method, the k is set as 10,000.
k=10,000 looks large in a top k discovery method, but it is not large if we search
for non-redundant subgroups. In work [29], 10,000 top subgroups are used to find
100 non-redundant subgroups since a small k may contain only one or two non-
redundant subgroups. If the total number of subgroups is fewer than 10,000. A
top k method is similar to an optimal discovery method, such as SNS, since both
discover all the best subgroups (note that a beam search based method does not
still). This is what we need for a fair comparison. In our demonstrations in the
next section, top 10,000 subgroups do not include all statistically non-redundant
subgroups in Hypothyroid data set. So k=10,000 is not large.

DSSD, ID-RSD and SD-Map programs were provided by authors. Other
methods were implemented in Orange data mining software tool [1]. Other pa-
rameters use the default ones in the software tools.

The proposed method SNS is faster than other methods as shown in Table 5,
which lists the execution time of all methods on ten data sets. In a large data set,
the Census data, our method is the only one that can find results in two hour time
frame. In a medium data set, the Adult data set, our method is significantly faster
than all other methods. In kr-vs-kp data set, SD and DSSD are faster than SNS.
Both SD and DSSD are beam search based methods. A beam search based method
searches the candidate space using a fixed beam width, and it misses quality sub-
groups when the number of attributes is much larger than the beam width. This is
a case in kr-vs-kp data set. SD finds 20 subgroups and DSSD finds 3 unrepeated
non-redundant subgroups. In contrast, SNS finds 1638 subgroups with the same
setting. Note that kr-vs-kp is a chess data set. There are many ways to win (and
lose) a chess game, and a large number of subgroups is expected. This further
shows that an optimal method is necessary for non-redundant subgroup discovery
when it is computationally feasible.

To demonstrate that the SNS algorithm does not use a high memory usage
to trade for a fast speed. We list the peak memory usage of the SNS and other
algorithms in Table 5.2. We only list the data sets that all algorithms return results
within two hours. The results show that the SNS uses a small amount of memory,
and its memory usage is the second smallest on average in all algorithms. CN2-SD
makes use the smallest memory on average but it is a heuristic algorithm and does
not guarantee the completeness of discoveries. Note that the memory usage of
Apriori-SD in data set Tic-tac is the smallest, but Apriori-SD does not return any
subgroup in the data set. In contrast, SNS discovers 71 statistically non-redundant
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SNS SD CN2-SD Apriori-SD SD-Map DSSD ID-RSD
Adult 0 864 31.3 zero 38 m 35.7 m 138
BCW 0 3 20 4 0 28 0

Census 60.9m - - zero > 2h > 2h -
German 0 16 38 zero 21.9 m 39 67

Hypothyroid 3 32 217 - 22.1 226 10
Kr-vs-kp 145 34 304 - 83.1m 61 29.6m

Mushroom 1 50 12.4m - 121.4m 298 9
Sick 14 25 255 - 30.3m 48 18

Tic-tac-toe 0 1 9 2 0 5 1
Voting 0 1 10 190 23m 14 1

Table 5: A comparison of execution time of different methods on ten data sets. The default time
unit is in second. ’-’ indicates running out of memory. ‘zero’ indicates no subgroup returned. We
terminated a program after 2 hours running.

Census SNS SD CN2-SD Apriori-SD SD-Map DSSD ID-RSD
BCW 1.1 8.4 1.9 2.4 177.2 48.4 135.3

German 9.4 20.8 3.0 319.7 419.7 53.4 3858.6
Tic-tac-toe 2.1 11.6 1.7 1.5 237.9 31.9 1070.8

Voting 1.2 10.8 1.8 39.1 440.8 35.1 943.6

Table 6: A comparison of peak memory usage of the algorithms. Only data sets that all algorithms
return results within two hours are listed.

subgroups in the data set with the same setting.
The scalability of the SNS with data size is shown in Figure 4. The parameters

are set as before. Both running time and memory usage of the SNS scale well with
the size of data sets. This is a reason that the SNS is the only algorithm running
on the Census data set, the largest data set in all experimental data sets. However,
SNS does not scale well with the the number of attributes since the number of
candidates is ultimately exponentially increasing with the number of attributes.
This is a common drawback for optimal subgroup (and rule) discovery methods.

SNS is designed for discovering all the statistically non-redundant subgroups
constrained only by the minimum support and the maximum length of descrip-
tors of subgroups. Other algorithms are designed for discovering top k subgroups
which include statistically redundant subgroups, and they do not guarantee the
completeness of the discoverers. For a fair comparison, k for a top k method
should be large to ensure its discovery is compete or near complete. For exam-
ple, top 10,000 non-redundant subgroups do not include all 29 statistically non-
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Figure 4: The scalability of the SNS algorithm with data size.

redundant subgroups as shown in the following section. A large k makes those
algorithms inefficient. So the experimental results show that those methods are
incapable of discovering statistically non-redundant subgroups. An optimal ap-
proach is necessary since there is a significant loss of the quality subgroups by a
top k discovery method. SNS is an efficient and optimal algorithm to discover all
statistically non-redundant subgroups.

5.3. Improvement over top k subgroup discovery
It is well known that an optimal search method produces many subgroups, and

in some cases, too many. Top k search is a widely used strategy to avoid too many
subgroups discovered. However, we will show that even if for a top k method, it
is necessary to have a mechanism to remove statistically redundant subgroups to
avoid significant loss of subgroups caused by that all top k subgroups come from
one subsection of a data set.

Let us use the Hypothyroid data set with the minimum local support of 0.5 to
show the above points. The minimum local support of 0.5 means that each sub-
group will contain at least 50% samples in the disease group. This support is sig-
nificant large and is not a cause for too many subgroups. The quality (or interest-
ingness) measure is odds ratio. All top 258 discovered non-redundant subgroups
(defined by the first type definition in the Related Work section by using minimal
generators [38, 42]) do not include a single statistically non-redundant subgroup.
All the subgroups are variations of the first statistically non-redundant subgroup
which is ranked 259 in the list. The statistically non-redundant subgroup is “TSH
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ID Subgroups Size OR OR− OR+

1 age > 71.5 477 3.99 3.39 4.71
2 TT4 < 87.5 641 3.88 3.30 4.55
3 T4U < 0.895 715 8.04 6.76 9.57
4 1 & 2 107 9.14 7.30 11.44
5 1 & 2 & 3 60 18.43 14.04 24.20

Table 7: Examples of sub and super subgroups in discovered statistically non-redundant subgroups

> 27.5”. Other statistically redundant subgroups are like “TSH>27.5, sick=f”,
“TSH>27.5, sick=f, pregnant=f”, “TSH>27.5, sick=f, pregnant=f, thyroid surgery=f”,
and so on, which have marginally larger odds ratios than that of “TSH>27.5”.
When k = 500, only 1 statistically non-redundant subgroup is included. When
k = 1000, 5 statistically non-redundant subgroups are included. In other words,
24 (83%) statistically non-redundant subgroups are missed. When k = 47762,
all (29) statistically non-redundant subgroups are discovered. At this point, post
pruning is necessary to find interesting subgroups.

A remedy to the above problem is to find the top k largest subgroups (with the
highest support) satisfying users constraints. In the implementation, when a sub-
group is discovered to satisfy the user’s constraints, we do not search for any of its
more specific subgroups. As a result, many statistically redundant subgroups will
be avoid. However, there are two problems associating with the solution. Firstly,
users normally do not know how to set the right parameters for the constraints.
A wrong setting means a significant loss of quality subgroups. Secondly, such
a method will lose the subgroups with the highest quality since many subgroups
with high quality are hid deeply in the search lattice. More than a half statisti-
cally non-redundant subgroups from the Hypothyroid data set have sub or super
subgroups. Table 7 shows a few examples. A simple exclusion of more specific
subgroups will lead to a significant loss of such subgroups.

5.4. A further exploration of pruning criteria
One interesting question is how much more reduction in the search space that

we can achieve without losing the completeness of discoveries. Pruning criterion 2
requires y = 0, or the change in cell n12 to be zero in a subgroup specialisation
process. As an approximation, we may set y ≤ δ where δ is a small number
instead of 0. In other words, we stop searching for sub subgroups of the current
subgroup (P ) if the change in cell n12 is very small in the specialisation process
from a super subgroup of P to P . We should assess the results of this change in
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Figure 5: The completeness drop versus the running time improvement with different δ. Bottom
graphs show the running time reduction. Top graphs show the percentage of retained statistically
non-redundant subgroups.

this experiment.
Figure 5 lists the reduction of the running time of the implemented statistically

non-redundant subgroup discovery method with different δ and the retention rate
of statistically non-redundant subgroups in comparison with those with δ = 0.
The retention rate is the ratio of the number of subgroups discovered to the total
number of subgroups that should be discovered.

Any non-zero δ results in a loss in the discovery of statistically non-redundant
subgroups. This shows that the pruning criterion is very tight already. However,
if we can tolerate a certain level of incompleteness in the discoveries, the time
efficiency can be improved significantly. For example, when δ = 2, 85% reduction
in running time for the Hypothyroid data set and 32% reduction for the Sick data
set, whereas the loss of statistically non-redundant subgroups is 28% and 7.7%
respectively.

We note the dual speeds in the reduction of the running time, and of the com-
pleteness of the discovered statistically non-redundant subgroups in Figure 5. The
reduction in running time is significantly faster than the reduction of the com-
pleteness of the discoveries. This makes a good tradeoff for a big time efficiency
improvement with a small loss in the discoveries.
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6. Conclusion

Most existing subgroup discovering methods use some intuitive measures to
capture statistical difference of a subgroup with the other, and they do not exclude
statistically redundant subgroups in their discoveries. Odds ratio is a statistical
measure widely used in practice to measure statistical differences of two groups
and is very suitable for measuring the quality of subgroups. In this paper, we
have proposed a framework for efficient non-redundant subgroup discovery by
using the odds ratio to define subgroups and the confidence intervals of odds ra-
tios to define statistically non-redundant subgroups. We have studied criteria for
pruning redundant subgroups, and proposed an algorithm for efficient statistically
non-redundant subgroup discovery. We show that the proposed algorithm is faster
than six classic and recent subgroup discovery algorithms, especially for large data
sets. We demonstrate that a top k subgroup discovery method needs pruning sta-
tistically redundant subgroups to avoid the loss of quality subgroups discovered.
We also show that a proposed pruning criterion is very tight in term of pruning the
search space while keeping the completeness of discoveries.

As an optimal subgroup discovery algorithm, the proposed method is very
efficient and scales well with data size. However, it does not scale well with
dimensions. The number of candidate subgroups increases exponentially with the
total number of values in attributes and the large number of candidate subgroups
reduce the speed and consume memory quickly. A solution is by feature selection.
It is our future work to study suitable feature selection methods for subgroup
discovery.
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