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Abstract

Anonymization is a practical approach to protect privacy in data. The major objective
of privacy preserving data publishing is to protect private information in data whereas
data is still useful for some intended applications, such as building classification mod-
els. In this paper, we argue that data generalization in anonymization should be de-
termined by the classification capability of data rather than the privacy requirement.
We make use of mutual information for measuring classification capability for gener-
alization, and propose two k-anonymity algorithms to produce anonymized tables for
building accurate classification models. The algorithms generalize attributes to max-
imize the classification capability, and then suppress values by a privacy requirement
k (IACk) or distributional constraints (IACc). Experimental results show that algo-
rithm IACk supports more accurate classification models and is faster than a benchmark
utility-aware data anonymization algorithm.

Keywords: Privacy, anonymization, k-anonymity, classification, mutual information,
Kullback-Leibler divergence.

1. introduction

1.1. Data privacy and anonymization

Privacy preservation has become a major issue in many data mining applications.
Various organisations, such as hospitals, medical administrations and insurance com-
panies, have collected a large amount of data over years. However, these organisations
are reluctant to publish the data because of privacy concern. It is necessary to ensure
privacy protection when data is published.

Anonymization is a major technique for protecting privacy in data publishing. For
example, k-anonymity [19] protects data privacy by ensuring that the probability for
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identifying an individual in a published data set is at most 1/k. A common way to
achieve k-anonymity is to generalize values within the person identifiable attributes in
a table, called quasi-identifier. For example, if the following information, “gender =
male, age = 45, postcode = 5011”, is too specific in a data set, e.g. fewer than k men of
age 45 live in the suburb of postcode 5011. These people are potentially identifiable.
If the record is generalized as ”gender = male, age = 45 - 55, postcode = 5009 - 5012”,
more than k people will have the same person identifiable information in the data and
hence their privacy is better preserved. The higher the privacy protection requirement
is, the more the generalization will be. The most generalized form of a record is the “*,
*, *”. The replacement of values with “*”s is called suppression. This is equivalent to
that nothing is published for identity-related attributes.

Much research work has been conducted to enhance the protection level of the k-
anonymity model, such as, l-diversity [15], (α, k)-anonymity [23], and t-closeness [13].
These models impose further protective requirements on the published data. They
block attribute inference channels from identity-related attributes to sensitive values
in the data. These models provide strong privacy protection, but are not good for
some data mining tasks, such as classification, because associations between some
attributes and classes have been purposely hidden. Models preventing attribute infer-
ence, such as, l-diversity and t-closeness, impose an upper bound for classification
accuracies [14].

The goal for publishing a data set is to make it useful rather than to lock it in
owner’s safe case. Building classification models is a major utility. For example, the
hospital data is released to public for modeling causes of diseases. Normally, it is not
an obligation for a data owner to build models but it is an obligation for a data owner
to keep data privacy when the data is released. In many circumstances, k anonymity
provides sufficient protection. For example, every released medical record has been
authorized by a patient, and there is no privacy concern in the data itself However k-
anonymization is necessary for preventing the medical data set from being linked to
other patient sensitive information such as DNA sequences.

Most research on data utility has focused on value precision. The purpose is to min-
imise value generalisations in an anonymized table. Criteria such as distortion [12], un-
certainty [24], query accuracy [11], information loss [20], and information utility [25]
capture this information directly. The smaller modifications are made to a data set, the
better the anonymization is. To increase value precision of anonymized tables, many
anonymization techniques, such as, multidimensional [10] and local recoding [12, 24]
methods, have been proposed. These methods reduce uncertainty or distortions of the
anonymized data.

1.2. Related work and motivations
When the anonymized data is for building classification models, the utility require-

ment is quite different. Generalization is not a problem for building many interpretable
classification models, such as decision trees and naive Bayes models. However, do-
main consistency is important and many precision based anonymization methods are
not applicable [12, 24]. For example, values generalized to overlapping intervals, such
as (10 - 14), (11 - 12), and (13 - 17), are not good for classification model building.
generalized values mixed with different levels of an attribute taxonomy hierarchy, such
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as, 11th, 12th and senior secondary (which is a generalization of 11th and 12th) of Ed-
ucation attribute, are not good for building classification models either. Other methods
are required for data anonymization for classification utility.

# of Quasi-identifier Other attributes
repeating rows Gender Age Blood pressure . . . Problem

5 male 60 high . . . yes
5 male 70 high . . . yes
1 male 30 normal . . . yes
1 female 70 high . . . no
5 female 30 normal . . . no
5 female 40 normal . . . no

(a) Raw table

# of Quasi-identifier Other attributes
repeating rows Gender Age Blood pressure . . . Problem

5 male * high . . . yes
5 male * high . . . yes
1 male * normal . . . yes
1 female * high . . . no
5 female * normal . . . no
5 female * normal . . . no

(b) anonymized by the current classification-aware anonymization methods

# of Quasi-identifier Other attributes
repeating rows Gender Age Blood pressure . . . Problem

5 male 60-70 high . . . yes
5 male 60-70 high . . . yes
1 * * normal . . . yes
1 * * high . . . no
5 female 30-40 normal . . . no
5 female 30-40 normal . . . no
(c) anonymized by the proposed algorithm

Table 1: An illustration of various classification-aware anonymization methods (k=10)

Many previous studies aiming at classification utility have been done. Iyengar [6]
has firstly proposed an optimization approach to minimise class impurity in data gener-
alization. The optimization has been shown impractical for medium and large data sets.
Wang et al. have proposed a bottom up anonymization method for classification util-
ity [21], which only handles categorical values. An improved method, called TDS (top-
down specialization method), from the same research group has been proposed [4].
TDS makes use of the single dimensional generalization approach. It is efficient and
keeps good classification capability in the anonymized data. A further improvement
of TDS is called TDR [5] (Top-Down Refinement). TDR improves functionalities of
TDS greatly. It handles both categorical and numerical values with and without gen-
eralization taxonomy trees. It also handles data with multiple quasi-identifiers. Re-
cently, Kisilevich el al. [7] have proposed a multi-dimensional suppression approach,
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called kACTUS, for classification-aware anonymization. kACTUS makes use of a de-
cision tree, i.e. C4.5 [17], as a base for deciding multi-dimensional regions to be sup-
pressed. The pioneering work in multi-dimensional generalization has been proposed
by Lefevre et al. [10], called Mondrian. Mondrian has then been extended to InfoGain
Mondrian for various utilities including classification [11]. InfoGain Mondrian has
been shown to achieve better classification accuracy than the TDS, and is a benchmark
algorithm for classification based anonymization. Other privacy classification work has
been done on the publishing classification models without violating the k-anonymity
constraint. Friedman et al. have proposed a method for building k-anonymous deci-
sion trees [3]. Sharkey et al. [18] have also proposed a method for publishing decision
trees along with a pseudo data set generated by the tree model. The release of a model
lacks great flexibilities to users in comparison to the release of data. Firstly, there are
many different types of classification models. A data owner won’t know which model
that a user is interested in. Secondly, for the same type of models, many adjustable
parameters will lead to different models. For example, some users are interested in the
specificity and some are interested in the precision. Their required models are quite
different. Therefore, in this paper, we consider data publishing instead of model pub-
lishing.

Let us look at three most recent and closely related methods in data publishing for
classification utility: InfoGain Mondrian [11], TDR [5], and kACTUS [7]. Interest-
ingly, they produce the same 10-anonymous table for Table 1(a) following very differ-
ent pathes. InfoGain Mondrian is a multi-dimensional generalization method, and it
partitions the data space into a number of disjoined (hyper) rectangular regions by at-
tributes in the quasi-identifier. The smallest partitioned regions (not optimized because
the optimal solution is intractable), each of which contains at least k data points, are
used for attribute value generalization. In this example, attribute Gender is partitioned
along male and female. Any partition in attribute Age will lead to a region which has
data points fewer than 10. Therefore, the Age attribute is kept at the top level “*”.
TDR starts with a table with all values suppressed. TDR then tests attributes Gender
and Age to find out which will lead to better trade off between information gain and
anonymity loss. Attribute Gender wins and attribute Gender is refined, and as a result
values of males and females are shown. Note that classes (problems) have been well
separated by attribute Gender. Values in Age are kept suppressed because the release
of values in Age does not improve classification performance. kACTUS firstly builds
a decision tree on Gender and Age attributes. The decision tree contains one node with
the test that “whether gender = male or not”. Both outcome branches contain 11 data
points each and hence they comply with 10-anonymity. Attribute Age has not been
referenced in the decision tree and hence all values are suppressed.

A disadvantage of the anonymized table in Table 1(b) is that it suppresses too
many values when the data set has satisfied the privacy requirement. It is true that no
other anonymization method is able to improve the classification accuracy in this 10-
anonymous table. However, when other attributes are taken into account, it will be use-
ful to have relationships between attributes Age and Blood Pressure. In other large data
sets, such relationships potentially help classification. Normally the quasi-identifier is
only a part of all the attributes, and we should not assume that a classification model
is built on the quasi-identifier only. The combination of the quasi-identifier and other
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attributes potentially results in a more accurate classification model than that from the
quasi-identifier alone. Furthermore, the assessment of classification capability depends
on a criterion employed. For example, a criterion that is good for decision trees may
not be good for logistic regression. We are unable to have a criterion that is good for
all classification models, but it will be beneficial to maintain as many data values as
possible. In contrast, both TDR and kACTUS have been designed with an implicit
principle that only releases a small number of values to support a good classification
model while the anonymity requirement is satisfied. As a result, their anonymized data
is potentially not good for all classification models.

InfoGain Mondrian [11] utilises a principle that makes the minimal changes (gener-
alizations) to a data set to achieve k-anonymity with the consideration of classification
utility in the generalization process. The selection of an attribute to partition a data set
aims to minimise weighted entropy to the classification advantage. This principle is
very reasonable because it leaves as much information as possible in the anonymized
data set. Such information will be helpful for building various classification models
with different classification methods. However, it does not produce a better result in
this data set in comparison to the two previous methods using an opposite principle.
The reason lies in the generalization process. Region (male, 60-70) contains 10 data
points, and region (male, 30-40) contains only 1 data point. It is better to suppress one
data point in region (Male, 30-40) than to generalize Age 30-40 and 60-70 to 30-70
(or * in this case). A major benefit of the suppression is that the Age attribute is rel-
atively complete and it has potential for other classification utilities, such as building
classification models by using attributes Age and Blood Pressure.

We have seen the benefit of combining generalization with suppression. How-
ever, we should not extend InfoGain Mondrian [11] to produce classification-aware
anonymized data sets by incorporating suppression. Two disadvantages of multi-dimensional
generalization limit its applications in classification. One is the inconsistent domain
and the other is possible overfitting to the quasi-identifier. For example, region (male,
21-40) and (female, 11-30) are legitimate partitions in the multi-dimensional gener-
alization. Such partition leads to overlapping intervals 11-30 and 21-40 in the Age
attribute and this causes problems for many classification methods. Let us assume that
given male, it is good for classification to partition Age into 21-40 and 41-70. However,
such a partition might not be good for another attribute, say Blood pressure, which
is not in the quasi-identifier. When multiple attributes are conjunctively generalized
within the quasi-identifier for classification, this reduces the chance for an attribute in
the quasi-identifier to join another attribute for classification. Multi-dimensional gener-
alization overfits anonymized data to the quasi-identifier, and the overfitting potentially
damages the overall classification capability of anonymized data sets.

Based on the above discussions, we propose a new anonymization method for clas-
sification utility, which combines global generalization and local suppression. Levels
of generalization are determined by the data distribution instead of the privacy require-
ment to better preserve data classification capability. Suppression is then used to re-
move detailed information locally to achieve data anonymization. The information
loss in the suppression can be measured by Kullback-Leibler divergence and mutual
information change. These measures give an objective assessment on quality of data
after the suppression. The proposed algorithm has been shown to support more accu-

5



Quasi-identifier Other
Gender Age Postcode attributes Problem
male 35 4350 . . . yes
male 40 4351 . . . no
male 45 4350 . . . no

female 43 4352 . . . yes
female 62 4353 . . . yes
female 68 4352 . . . no

(a) Raw table

Quasi-identifier Other
Gender Age Postcode attributes Problem
male [31, 40] 435* . . . yes
male [31, 40] 435* . . . no

* [41, 50] 435* . . . no
* [41, 50] 435* . . . yes

female [61, 70] 435* . . . yes
female [61, 70] 435* . . . no

(b) 2-anonymous table

Table 2: A raw table and a 2-anonymous table

rate models, and be faster than the benchmark utility-aware anonymization algorithm,
InfoGain Mondrian.

2. Problem description

2.1. Problem definition

The problem to be resolved in this paper is given as the following. Given a data
set, generalization hierarchies for attributes in the quasi-identifier, and a k (or utility
constraints), how to produce an anonymized data set which is good for building classi-
fication models?

2.2. Revisiting basic concepts of k-anonymization

The objective of k-anonymization is to make every tuple in identity-related at-
tributes of a published table identical to at least (k − 1) other tuples. Identity-related
attributes are those which potentially identify individuals in a table. For example, all
tuples in columns {Gender, Age, Postcode} of Table 2 are unique, and hence problems
of these individuals may be revealed if the table is published. To preserve their pri-
vacy, we may generalize Gender and Postcode attribute values such that each tuple in
attribute set {Gender, Age, Postcode} has at least two occurrences. A view after this
generalization is given in Table 2(b).

Since various countries use different postcode schemes, in this paper, we adopt a
simplified postcode scheme, where its hierarchy {4201, 420*, 42**, 4***, *} corre-
sponds to {suburb, city, region, state, unknown}, respectively. A tuple for an attribute
set in a record is an ordered list of values corresponding to the attribute set in the record.
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Definition 1 (Quasi-identifier) A quasi-identifier (QID) is a set of attributes in a table
that potentially identify individuals in the table.

For example, attribute set {Gender, Age, Postcode} in Table 2(a) is a quasi-identifier.
Table 2(a) potentially reveals private information of patients. Normally, a quasi-identifier
is specified by domain experts.

Definition 2 (Equivalence class) An equivalence class of a table with respect to an at-
tribute set is the set of all tuples in the table containing identical values for the attribute
set.

For example, tuples 1 and 2 in Table 2(b) form an equivalence class with respect to
attribute set {Gender, Age, Postcode}. Their corresponding values are identical.

Definition 3 (k-anonymity property) A table is k-anonymous with respect to a quasi-
identifier if the size of every equivalence class with respect to the attribute set is k or
more.

k-anonymity requires that every tuple occurrence for a given quasi-identifier has a
frequency of at least k. For example, Table 2(a) does not satisfy 2-anonymity property
since all tuples are unique.

Definition 4 (k-anonymization) k-anonymization is a process to modify a table to
another table that satisfies the k-anonymity property with respect to the quasi-identifier.

For example, Table 2(b) is a 2-anonymous view of Table 2(a) since the size of all
equivalence classes with respect to the quasi-identifier {Gender, Age, Postcode} is at
least 2.

Generalization is a common way for anonymization. Generalization maps a value
to a range or a coarsened value, for example, age of 35 is generalized to 31 - 40 and
nationality Chinese is generalized to Asian. In the process of generalization, the value
precision of the original values is lost partially. When values are generalized to the
highest level *, this generalization is called suppression. Suppression is a generaliza-
tion from any level to the highest level. Suppression removes a value from a table and
replace it by *. Suppression looks rough but is very useful in practice. It hides infor-
mation effectively without affecting values from irrelevant tuples. Suppressed values
are equivalent to missing values which most classification methods can handle.

2.3. Why k-anonymization?

Some readers may wonder why we still study k-anonymization given so many new
enhanced privacy protective models, such as, l-diversity [15], (α, k)−anonymity [23]
and t-closeness [13], have been presented. We believe that k-anonymization has its
unique application potential that could not be replaced by other enhanced models.
Firstly, these enhanced models require more generalizations than the k-anonymity
model and reduces the utility (especially model building utility) greatly. Secondly,
the k-anonymity model is mainly designed for preventing linking attack. The risk of
linking attack is much higher than the risk of other attacks, such as homogeneity and
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background knowledge attacks [15]. In many cases, we only need to prevent linking
attack. For example, given a medical data set that itself does not contain sensitive in-
formation (Date of Birth, Gender, Postcode, Diagnosis). The publication of diagnosis
results is consented by patients for research purpose. Another DNA sequence data set
is very sensitive, (DNAsequence). A DNA sequence contains gene signatures of many
diseases, and so some diagnoses can be used to link to DNA sequences [16]. There-
fore, an individual in a medical data is potentially linked to his/her DNA sequence. The
DNA sequence contains more information than the gene signature of the disease that
is consented by a patient for disclosure. For example, it contains family vulnerability
of some diseases which should be private for the whole family. Therefore, the medical
data set should be k-anonymized to prevent such linking attacks.

2.4. Utility of anonymous tables

Utility is a subjective criterion. It is difficult to give a general fits-all definition
for utility. The closeness of values in an anonymized data set to values in the original
data set has been a criterion, for example, distortions [12], uncertainty [24] and query
accuracy. Other criteria [11], such as discernability metric [1] and normalized average
equivalence class size [10] are indirect measurement of value precision. A major ob-
jective of anonymization is to enable building quality models on the anonymized data.
An anonymized data set does not have to be close to the original data set at the value
level, but a model built on the anonymized data should be as good as a model built on
the original data.

Some may argue that we may release a model instead of a table. Firstly, there are
many model building methods and we do not know which model a user is interested
in. Secondly, for a model building method, there are many adjustable parameters. The
parameters are fully dependent on the applications. One set of parameters does not suit
all. A released model does not suit all users.

When the utility is for model building, value consistency is very important. For
example, values from mixed attribute domains, such as values in Age attribute includ-
ing 23, 10-15, 20- 30, 30-60, are not good for most classification tools. Most model
building tools require attribute values from one domain. Values in overlapping inter-
vals, such as 11 - 20 and 15 - 25, make building classification models even more diffi-
cult. A global recoding anonymization such as in [1, 4, 9] can produce an anonymized
data with consistent attribute domain, but in some cases they may over generalize an
attribute. For example, if two values out of 1000 values of an attribute need general-
ization to achieve k-anonymity. A global recoding method will generalize 1000 values
and this causes over generalization. A better strategy is to suppress the two values.
In this paper we employ global generalization and local suppression to keep attribute
consistency and to avoid over generalization.

3. Determine the best generalization level

3.1. For single attributes

Let quasi-identifier of a data set beQ = {A1, A2, . . . , Am}, Attributes in the quasi-
identifier are association with a set of attribute taxonomy hierarchies {T1, T2, . . . , Tm},
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Figure 1: An examples of attribute generalization taxonomy and its height label.

which define the way for generalizing values. Let a data set D = {Q,O,C}, where O
is a set of other attributes that are irrelevant to anonymization and C is a set of class
labels (c1, c2, . . . , cp).

Let Ti be an attribute taxonomy hierarchy. Level 1 is the most general value, repre-
senting any or all. We denote any or all as ‘*’. Level h is the most specific level with all
values in the original data set. Levels in between are intermediate levels representing
varying value specificities. For example, an attribute generalization hierarchy is given
in Figure 1.

The question is which generalization level is best for classification. Mutual infor-
mation has been frequently used for such a purpose.

The uncertainty associating with the set of class labels is described as the following.

H(C) = −
p∑

k=1

freq (ck)× log2 freq(ck)

In classification term, entropy H(C) indicates the classification uncertainty with-
out using other attribute information. When we make use of an attribute to do the
classification, the uncertainty reduction for the classification is quantified by the mu-
tual information.

I(Ai(l);C) = H(C)−H(C|Ai(l))

H(C|Ai(l)) is the conditional entropy of attribute C given attribute Ai at level l.
Let Ai(l) = {ai1, ai2, . . . , ainl

i
} where nl

i is the number of distinct values of attribute

i at level l. H(C|Ai(l)) = −
∑nl

i
j=1

∑p
k=1 freq (ck|aij)× log2 freq(ck|aij).

The mutual entropy is interpreted as that the amount of uncertainty in class label C,
minus the amount of uncertainty inC which remains after attributeAi(l) is known. The
mutual information can be used to indicate the classification potential of an attribute.
In our problem, we use it to measure classification capability of different generalization
levels of an attribute.

Mutual information varies with the number of distinct values in attribute Ai. Nor-
mally, a large number of distinct values leads to large mutual information. For ex-
ample, if every value is distinct in attribute Ai, log2 freq(ck|aij(l)) = 0 and hence
I(Ai(l);C) = H(C) is maximized. However, such an attribute has little predictive
power. Let us assume that Ai contains student IDs and C indicates whether a student
learns computer science. Ai explains C very well in the existing data, but does not
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A1 A2 . . . Am Class
1 . . . y
2 . . . y
3 . . . y
4 . . . y
5 . . . n
6 . . . n
7 . . . y
8 . . . n

A1 A2 . . . Am Class
[1, 2] . . . y
[1, 2] . . . y
[3, 4] . . . y
[3, 4] . . . y
[5, 6] . . . n
[5, 6] . . . n
[7, 8] . . . y
[7, 8] . . . n

(a)level 4 (b) level 3
A1 A2 . . . Am Class

[1, 4] . . . y
[1, 4] . . . y
[1, 4] . . . y
[1, 4] . . . y
[5, 8] . . . n
[5, 8] . . . n
[5, 8] . . . y
[5, 8] . . . n

A1 A2 . . . Am Class
∗ . . . y
∗ . . . y
∗ . . . y
∗ . . . y
∗ . . . n
∗ . . . n
∗ . . . y
∗ . . . n

(c) level 2 (d) level 1

Table 3: Data at different generalization levels

predict future data since IDs do not repeat for future students. It is unreliable to make
a prediction from a small number of observations. In contrast, the Gender attribute
has more predictive power than the ID attribute since male students are more likely to
study computer science than female students and this trend has not changed for a few
years. For one attribute, generalization will increase repeated values in an attribute, but
over-generalization makes the attribute less useful for classification. There is a trade
off between generalization and prediction capability.

The mutual information is biased towards attributes of many values. To avoid such
bias, we normalize the mutual information by using the attribute entropy. IN denotes
normalized mutual information.

IN (Ai(l);C) =
I(Ai(l);C)
H(Ai(l))

where H(Ai(l)) = −
∑nl

i
j=1 freq(aij(l)) log2 freq(aij(l)) is the attribute entropy at

level l and indicates the uncertainty of the attribute at level l.
We compare the normalized mutual information of all possible generalization lev-

els. The one with the highest normalized mutual information is the best for the classi-
fication.

Example 1 Table 3 lists a data set in different generalization levels. The attribute
taxonomy is based on Figure 1.
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The summary of their entropy, mutual information and normalized mutual informa-
tion is listed below.

l H(C) H(C|A1(l)) I(A1(l); C) IN (A1(l); C)

4 0.97 0 0.97 0.32
3 0.97 0.25 0.72 0.36
2 0.97 0.41 0.56 0.56
1 0.97 0.97 0 0

From the above table, we see that the classification capability has been maximized
at level 2.

3.2. For multiple attributes

The above process is possible to be extended to multiple attributes. For example,
when we consider attribute set {A1, A2}, domain A12 should contain all value pairs
of A1 and A2. Consider the generalization levels of different domains. Domains of
different attributes at different levels form a generalization lattice. It is possible to
find an optimal node in the generalization lattice that maximize the normalized mutual
information. However, we do not consider such extension for the classification reasons.

Firstly, the quasi-identifier is only a small part of data attributes. Users do not
intend to use the quasi-identifier only to build models. Users are more interested in
the classification using attributes from both the quasi-identifier and other attributes.
For example, female with high blood pressure, where Blood Pressure is a non quasi-
identifier attribute. If we optimize the normalized mutual information within the quasi-
identifier over multiple attributes, a classification model may fit the quasi-identifier too
much and ignores other attributes.

Secondly, when multiple attributes are considered to maximize the normalized mu-
tual information, we take advantage of classification capability of multiple attributes.
The more attributes are considered, the fewer records are associating with each com-
bined attribute value. In classification terms, the risk for overfitting increases. Overfit-
ting is what we try to avoid in classification.

4. Measuring information loss in suppression

Previous generalization is not enough to produce tables with adequate privacy pro-
tection. Suppression is necessary to produce tables with sufficient privacy protection.
We do not use further generalization since the domain consistency is important for
classification. Suppression produces missing values, which can be handled by most
classification methods.

k is a parameter of privacy requirement. Normally, the larger the k is the better
protection for privacy. k is usually determined by users as an input parameter for a
program. However, a large k may distort the data distribution and make models on the
data useless. We need other criteria for measuring distributional changes in suppression
for k-anonymization.

The effect of suppression on a data set should be measured by the distribution
change of the data set before and after suppression. Kullback-Leibler divergence [8]
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is an information criterion to measure the difference between two probability distribu-
tions.

Let D′ = (A′1, A
′
2, . . . , A

′
m, O,C) be a table being generalized as discussed in

Section 3. Note that l has been determined and fixed in the generalization process.
In this section, l is a constant and hence is omitted. To distinguish attribute domains
here from those in Section 3, we add a prime symbol to Ai. (A′1, A

′
2, . . . , A

′
m) form

the quasi-identifier, O includes other attributes, and C contains class labels. Let table
D′′ = (A′′1 , A

′′
2 , . . . , A

′′
m, O,C) be a suppressed table of table ofD′. We need the value

distribution in A′′i to approximate the value distribution in A′i to reduce the adverse
effect of suppression. Let A′i = {a′i1, a′i2, . . . , a′ini

} where ni is the number of distinct
values in A′i. Similarly, A′′i = {a′′i1, a′′i2, . . . , a′′ini

}. A′i and A′′i are at the same level
of attribute generalization taxonomy hierarchy, but A′′i includes suppressed values. We
assume that suppressed values are also included in A′i with a zero frequency. So both
A′i andA′′i include the same set of domain values with different frequencies. Kullback-
Leibler divergence between attributes A′i and A′′i is defined as the following.

D(A′i||A′′i )

=
ni∑
j

freq(a′ij) log2

freq(a′ij)
freq(a′′ij)

= −
ni∑
j

freq(a′ij) log2(freq(a′′ij)) +
ni∑
j

freq(a′ij) log2(freq(a′ij))

In information theory, Kullback-Leibler divergence characterises the extra message
length in bits when samples are coded based on distribution A′′i instead of A′i. The
smaller Kullback-Leibler divergence, the closer distribution A′′i is to A′i.

Since Kullback-Leibler divergences vary from attributes to attributes, we normal-
ize them so that they are comparable between attributes. DN stands for normalized
Kullback-Leibler divergence.

DN (A′i||A′′i ) =
D(A′i||A′′i )
H(A′i)

where H(A′i) =
∑ni

j freq(a′ij) log2(freq(a′ij)) is the entropy of attribute A′i.
One objective of suppression is to keep DN (A′i||A′′i ) ≤ δD. δD is the maximum

allowed change of Kullback-Leibler divergence, and is set as a small positive number.
This is to cap the maximum distributional change of suppression.

We also need to make sure that the joint distribution of an attribute and the class
attribute will not be affected by suppression. In other words, we wish that the clas-
sification capability of an attribute will not be significantly affected by suppression.
Both positive and negative changes of classification capability are unfavorable. Posi-
tive changes of classification capability will lead to misleading models, and negative
changes of classification capability will result in low quality models. The normalized
mutual information is a proper measure for such changes.

Another objective of suppression is to keep |IN (A′′i ;C)−IN (A′i;C)| ≤ δG, where
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A′
1 A′

2 A′
3 . . . A′

m Class
[1, 4] M . . . y
[1, 4] M . . . y
[1, 4] M . . . y
[1, 4] F . . . y
[5, 8] F . . . n
[5, 8] F . . . n
[5, 8] F . . . y
[5, 8] F . . . n

A′′
1 A′′

2 A′′
3 . . . A′′

m Class
[1, 4] M . . . y
[1, 4] M . . . y
[1, 4] M . . . y
∗ ∗ . . . y

[5, 8] F . . . n
[5, 8] F . . . n
[5, 8] F . . . y
[5, 8] F . . . n

(a) (b)

Table 4: (a) A generalized data set. (b) The data set with suppression.

δG is the maximum normalized mutual entropy change allowed in suppression. This is
to control the maximum classification capability change.

In practice, it would be difficult to determine right δD and δG. However, we can
estimate them in a practical way, using fractions of maximum values. The maximum
mutual information is H(C) and H(C)/H(A′i) is a very big change in normalized
mutual information for attribute A′i. The maximum normalized Kullback-Leibler di-
vergence can be estimated by DN (A′i||A∗i ) where A∗i keeps one tuple of every value in
A′i.

Example 2 Table 4(a) shows a generalized table, which does not satisfy 2-anonymity.
Table 4(b) shows a new table satisfying 3-anonymity after suppressing one record.
Attribute distributions in Table 4(b) are supposed to approximate attribute distributions
in Table 4(a). We use A′1 as an example to show how DN (A′i||A′′i ) and IN (A′′i ;C) −
IN (A′i;C) are computed.

We use the following summary to compute D(A′1||A′′1).

values freq(a′1j) freq(a′′1j)
[1, 4] 4/8 = 0.5 3/8 = 0.375
[5, 8] 4/8 = 0.5 4/8 = 0.5
∗ 0 1/8 = 0.125

Therefore, we have the following results.

D(A′1||A′′1) = 0.5 log2(
0.5

0.375
) + 0.5 log2(

0.5
0.5

) = 0.21

DN (A′1||A′′1) =
D(A′i||A′′i )
H(A′1)

= 0.21

We know that IN (A′1;C) = 0.56 from Example 1. We use the following summary
to compute I(A′′1 ;C)

values freq(a′′1j) freq(y|a′′1j) freq(n|a′′1j)
[1, 4] 3/7 = 0.43 3/3 = 1 0
[5, 8] 4/7 = 0.57 1/4 = 0.25 3/4 = 0.75
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Algorithm 1 Information based Anonymization for Classification given k (IACk)
Input: Data setD, taxonomy hierarchies {T1, T2, . . . , Tm} of quasi-identifier attributes
{A1, A2, . . . , Am}, and k
Output: a k-anonymous table of D, the largest normalized mutual in-
formation change α and the largest normalized Kullback-Leibler divergence
β.

1: for each attribute i in the quasi-identifier do
2: compute normalized mutual information for each hierarchical level l in Ti

3: find l′ that maximizes the normalized mutual information
4: generalize attribute Ai to level l′ as A′i
5: end for
6: sort D′ (after generalization) by the quasi-identifier
7: compute equivalence classes E
8: suppress values in equivalence classes with size < k
9: let α be the largest normalized mutual information change resulted by suppression

10: let β be the largest normalized Kullback-Leibler divergence resulted by suppres-
sion

11: return D′′ (after suppression), α and β

Note that in the above table, we discard ∗ value. This is because that the classifi-
cation of y or n based on ∗ does not make sense. We wish that a classification model
without using suppressed values is as good as a model using all values. We have the
following results for suppression in A′′1 .

I(A′′1 ;C) = H(C)−H(C|A′′1) = 0.98− 0.46 = 0.52

IN (A′′1 ;C) =
I(A′′1 ;C)
H(A′′1)

= 0.52/0.98 = 0.53

|IN (A′′1 ;C)− IN (A′1;C)| = |0.53− 0.56| = 0.03

5. Algorithm

In this section, we present an information based anonymization algorithm and its
variant. The algorithm takes an input parameter of privacy requirement k and outputs
an anonymized data set and the largest normalized mutual information change and
Kullback-Leibler divergence caused by suppression. The variant takes the maximum
allowed normalized mutual information change and Kullback-Leibler divergence, δG
and δD, as input parameters, and outputs an anonymized data set and the largest k
that satisfies the constraints. Both make use of the same generalization process but
determine the number of suppressions based on different criteria. Both algorithms
have the same time complexity.

The pseudo-code of the proposed algorithm is listed in Algorithm 1. The algorithm
takes two major steps to produce anonymous tables: generalization and suppression.
The generalization step generalizes attributes in the quasi-identifier to the best levels
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for classification. The suppression step achieves k anonymity by suppressing values in
the quasi-identifier of equivalence classes whose sizes are less than k.

Lines 1-5 implement the generalization step. For each attribute, the level of the
highest normalized mutual information is computed. Then all values in the attribute
are generalized to that level. If there is not a level with the highest normalized mu-
tual information for an attribute, the attribute will not been generalized. When two or
more levels correspond to the highest mutual information, the attribute values will be
generalized to the level closer to the bottom (opposite to the root) of the generalization
taxonomy.

Lines 6-8 form equivalence classes and then create k-anonymous table. Firstly, data
records are sorted by a criterion so that tuples of an equivalence class are adjacent. This
is faster than forming equivalence class by computing pair wise dissimilarity between
tuples. Secondly, values in equivalence classes whose size is less than k are suppressed.
Line 9-11 computes the largest normalized mutual information change and Kullback-
Leibler divergence caused by the suppression.

The complexity of this algorithm is estimated as the following. Let m be the size
of quasi-identifier, n be the number of tuples, and l be the average height of attribute
taxonomy hierarchies. In the generalization step, the normalized mutual information
of every level of the attribute hierarchy of every attribute is computed. Each computa-
tion needs going through all attribute values once. The cost is m × h × n. The cost
for generalization is negligible. For forming equivalence classes, all tuples are sorted
by a criterion and the cost is n log(n). The time for forming equivalence classes is
negligible. The total cost is O(m × h × n + n log(n)). Note that both m (the size
of quasi-identifier) and h (the average height of attribute hierarchies) are small. The
complexity of the algorithm is in the order of n log(n).

We then present a variant with input parameters of distributional constraints (IACc),
the maximum thresholds of normalized Kullback-Leibler divergence and normalized
mutual information change δD and δG. IACc does not take k as an input but outputs
the maximum k that satisfies the user’s constraints. IACc calls IACk with k = 1, and
suppresses equivalence classes from the smallest size to the largest size. The suppres-
sion stops when either normalized Kullback-Leibler divergence or normalized mutual
information difference is larger than the corresponding threshold. The k is association
with the largest size of equivalence classes being suppressed.

The pseudo-code of the variant is listed in Algorithm 2. Line 1 calls IACk with
k = 1. Line 2 sorts equivalence classes by their sizes. This makes it easy in the next
steps to find equivalence classes of the smallest size to suppress. Lines 5-15 implement
suppression. The suppression starts from the smallest equivalence classes. The number
of suppressions is constrained by the thresholds of the maximum normalized Kullback-
Leibler divergence and mutual information change. The suppression stops when either
of the constraints is dissatisfied.

Now we estimate the time complexity of Algorithm 2. We use notations as before.
The base complexity is O(n log(n)) since the input data set has been pre-processed by
IACk without suppression. Let nE be the number of equivalence classes after the gen-
eralization by IACk. The sort of equivalence classes by sizes will take O(nE log(nE))
time. Let p be the number of the smallest size equivalence classes being suppressed.
The time used for suppression isO(m×p). Sincem� n and p� n, the time for sup-
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Algorithm 2 A variant of IACk for given distributional constraints (IACc)
Input: Data setD, taxonomy hierarchies {T1, T2, . . . , Tm} of quasi-identifier attributes
{A1, A2, . . . , Am}, and the maximum thresholds of normalized Kullback-Leibler di-
vergence and normalized mutual information change δD and δG.
Output: a k-anonymous view of D, and the largest k satisfying the con-
straints.

1: call IACk with k = 1
2: sort equivalence classes by their sizes
3: let {A′1, A′2, . . . , A′m} be the quasi-identifier of the current D′ (after generaliza-

tion)
4: let emin = 0
5: while (TRUE) do
6: let Emin = {Emin 1, Emin 2, . . . } contain all equivalence classes of the smallest

size in all un-suppressed equivalence classes
7: let e′min = emin and emin = |Emin 1|
8: suppress values in the quasi-identifier of Emin

9: let {A′′1 , A′′2 , . . . , A′′m} be the quasi-identifier of current D′′ (after suppression)
10: for each attribute i in the quasi-identifier do
11: if DN (A′i||A′′i ) > δD OR |IN (A′′i ;C)− IN (A′i;C)| > δG then
12: restore values in Emin, let emin = e′min and then break while loop
13: end if
14: end for
15: end while
16: let k = |emin|+ 1
17: return k and D′′

pression is negligible. The complexity of Algorithm 2 is O(n log(n) + nE log(nE)).
Because of nE < n, the complexity of Algorithm 2 is also in the order of n log(n), the
same as that of Algorithm 1.

6. A proof concept experiment

The objectives of the experiment are to demonstrate concepts discussed, and to
compare the classification utility of anonymized data sets of the proposed method with
a benchmark utility-aware anonymized algorithm, InfoGain Mondrian [11].

The adult data set from UCIrvine Machine Learning Repository [2] has become a
benchmark data set for comparing k-anonymity methods. The data set has been used
in most k-anonymity studies [4, 9, 10, 11, 24]. We eliminated records with unknown
values. The resulting data set contains 45,222 tuples. We make use of 8 attributes as the
quasi-identifier and one attribute as the class attribute, which are described in Table 5.

To benchmark our method with other existing methods, we compare our method
with InfoGain Mondrian [11], which has been demonstrated to be better than other
methods to anonymize data for various utilities including classification. Since the In-
foGain Mondrian takes k as an input parameter, we use IACk for the comparison. We
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Attribute Distinct Quasi- Comments
Values identifier

1 Age 74 Yes Taxonomy Tree of height 7
2 Work Class 7 No Taxonomy Tree of height 5
3 Education 16 No Taxonomy Tree of height 5
4 Martial Status 7 No Taxonomy Tree of height 4
5 Occupation 14 No Taxonomy Tree of height 3
6 Race 5 Yes Taxonomy Tree of height 3
7 Sex 2 Yes Taxonomy Tree of height 2
8 Native Country 41 Yes Taxonomy Tree of height 4
9 Salary Class 2 No Target class

Table 5: Description of Adult Data Set

(a) (b)

Figure 2: (a) Normalized mutual information at different levels of generalization hierarchies of eight at-
tributes; and (b) Cumulative tuples over different sizes of equivalence classes after the generalization to the
best levels for classification.

use the same attribute taxonomies for our algorithm and InfoGain Mondrian in the
comparison.

Figure 2(a) shows normalized mutual information at different levels of attribute
generalization hierarchies of the eight attributes. Attribute Age reaches the peak at
level 3, Education at 2, Occupation at 2, Marital status at 2, Native Country at 2. These
attributes are generalized to the levels corresponding to their peaks. Other three at-
tributes do not have peaks of normalized mutual information, and hence have not been
generalized. For example, Gender attribute has only two levels in its generalization
hierarchy. It would cause too much information loss if values in Gender attribute were
generalized.

Figure 2(b) lists the cumulative number of tuples in equivalence classes of different
sizes after attributes are generalized to best levels for classification from the smallest to
the largest. The generalized table is not 2-anonymous yet since around 2% tuples are
unique. Some tuples are to be suppressed to achieve k-anonymity for k ≥ 2. Normal-
ized Kullback-Leibler divergences and normalized mutual information corresponding
to various levels of suppression are listed in Figure 3.

Figure 3(a) shows normalized Kullback-Leibler divergence of different attributes
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(a) (b)

Figure 3: (a) Normalized Kullback-Leibler divergences and (b) normalized mutual information correspond-
ing to different suppression levels.

with different levels of suppression. In order to achieve k-anonymity, values in the
quasi-identifier of all equivalence classes whose sizes are smaller than k are suppressed.
Note that sizes of equivalence classes are not continuous integers and hence k is not the
multiple of two, five or ten. The normalized Kullback-Leibler divergences of some at-
tributes are significantly larger than others. The largest ones are from attributes Native
Country and Race. Value distributions of these two attributes are skewed. For example,
most records in Native Country column have the value of United-States, and remaining
records have values of many other countries. The suppression of those low frequency
values causes large distributional changes. However, those low frequency values are
more likely in the equivalence classes of small size, and hence are more likely removed.
This is a reason that normalized Kullback-Leibler divergences of the two attributes are
largest. In contrast, the distribution of attribute Sex is quite even, hence its normal-
ized Kullback-Leibler divergence is relatively small with the same number of value
suppressions.

Figure 3(b) lists normalized mutual information of different attributes with differ-
ent levels of suppression. The mutual information is association with the joint distri-
bution of an attribute and the class attribute. Normalized mutual information changes
are inconsistent with normalized Kullback-Leibler divergences. The largest changes
are from attributes Marital Status and WorkClass. The differences between attributes
are not as large as those of normalized Kullback-Leibler divergence. Since normalized
Kullback-Leibler divergence and normalized mutual information depict different sta-
tistical properties of a data set, both are necessary for measuring the quality of data set
after suppression.

We now assess the quality of models built on anonymized data sets by comparing
the classification accuracy of various models on anonymized data sets with the ac-
curacy of models on the original data set and the anonymized data sets by InfoGain
Mondrian [11], which is a benchmark utility-aware anonymization algorithm.

Four classification model constructing methods are used in the experiment, and
they are J48 decision tree (an implementation of C4.5 [17] in Weka [22]), logistic
regression, LibSVM and naive Bayes. The implementation of the four classification
methods are obtained from Weka APIs [22]. The classification accuracy is obtained by
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Decision trees Logistic regression

Naive Bayesian classifier Support vector machines

Figure 4: Accuracies: IACk versus InfoGain Mondrian bench marked by models on original data (eight
attributes as the quasi-identifier). k = 1 is for the accuracy on the generalized data set.

10 cross-validation based on stratified sampling. A test data set is independent from
its corresponding training data set. Generalization levels are determined by a training
data sets solely and then mapped to test data set.

Figure 4 shows the accuracy of various models on k-anonymized data sets by IACk
and InfoGain Mondrian in comparison against the accuracy of models on the original
data set. Accuracy on the generalized data is very close to the accuracy on the origi-
nal data in decision tree models and naive Bayes model and slightly lower in logistic
regression and SVMs modules. This indicates that mutual information works well for
preserving classification capability. On k-anonymized data sets, the accuracy decreases
with the increase of k as expected. IACk is better than InfoGain Mondrian in the accu-
racy of models built on anonymized data sets with the exception of decision tree with
k > 122. One reason for this exception is that InfoGain Mondrian makes use of a
heuristic that is good for decision trees, and hence generalization has fitted decision
trees. Another reason is that the current IACk can be further optimized. IACk sup-
presses values in all equivalence classes whose size is smaller than k. When k is large,
this may cause much information loss. For example, instead of all suppression, these
tuples can be further generalized by a k-anonymization algorithm, and then inconsis-
tent values are subsequently suppressed. As a result, more values will be preserved and
this will be helpful for classification.

Figure 5 shows running time of IACk and InfoGain Mondrian on the data sets with
different k on the same PC computer. IACk is faster than Mandrian.

19



Figure 5: Running time of IACk and InfoGain Mondrian.

In the previous experiment, the set of other attributes is empty and classifica-
tion models are built on the quasi-identifier only. In real world situations, the quasi-
identifier is only a small portion of all attributes and there are many other attributes.
Classification models are built on both quasi-identifier attributes and other attributes.
To simulate real world situations, we do another experiment where four attributes, Age,
Sex, Race and Native Country, are chosen as quasi-identifier attributes and remaining
attributes are other attributes that do not need anonymization. Models will be built on
both quasi-identifier attributes and other attributes.

Figure 6 shows the accuracy of various models on k-anonymized data sets of com-
bined quasi-identifier attributes and other attributes by IACk and InfoGain Mondrian in
comparison with the accuracy of models on the original data sets. Note that the range
of y axis in Figure 6 is a third of that in Figure 4. Current accuracies are significantly
higher than accuracies in the previous experiment where all eight attributes are used as
quasi-identifier attributes. This is because that values in a half of attributes have not
been generalized and suppressed. Accuracies of models built on data sets anonymized
by IACk are very close to accuracies of models built on the orginal data set except for
Naive Bayes with k > 147. IACk is consistently better than InfoGain Mondrian in all
models. Results support our argument that it is not necessary to optimize the general-
ization of multiple attributes since quasi-identifier attributes are very likely to be used
conjunctly with other attributes in model building.

7. Conclusion

In this paper, we have proposed two classification-aware data anonymization meth-
ods which combine global attribute generalization and local value suppression. The
attribute generalization is determined by the data distribution, instead of by privacy
requirement as other data anonymization methods do. Generalization levels are opti-
mized based on the normalized mutual information for preserving classification ca-
pability. Value suppression is then determined by a privacy requirement k (IACk)
or some data distributional constraints (IACc). Experiments show that the proposed
method IACk anonymizes data that supports better classification models than the data
anonymized by a benchmark utility-aware data anonymization method, and is faster. In
the data simulating real world application scenario, the proposed method IACk is even
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Decision trees Logistic regression

Naive Bayesian classifier Support vector machines

Figure 6: Accuracies: IACk versus InfoGain Mondrian bench marked by models on original data (four quasi-
identifier attributes and four other attributes). k = 1 is for the accuracy on the generalized data set. Note
that the range of y axis is one third of that in Figure 4

better and the generalized data supports models that are nearly as good as models from
the original data.
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