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Abstract

Rule-based classification systems have been widely
used in real world applications because of the easy
interpretability of rules. Many traditional rule-based
classifiers prefer small rule sets to large rule sets, but
small classifiers are sensitive to the missing values in
unseen test data. In this paper, we present a larger
classifier that is less sensitive to the missing values in
unseen test data. We experimentally show that it is
more accurate than some benchmark classifies when
unseen test data have missing values.

Keywords: data mining, association rule, classifica-
tion, robustness.

1 Introduction

Automatic classification has been a goal for machine
learning and data mining, and rule based methods are
widely accepted due to their easy understandability
and interpretability.

Rule discovery has been studied for more than
twenty years and a number of methods have been pro-
posed. They are typically classified into the following
categories.

1. Covering algorithm based methods: a covering
rule discovery algorithm employs the divide and
conquer approach and works in the following
manner. A “best” rule is found first from a
data set and then all records covered (or ex-
plained) by the rule is removed from the data
set. This procedure repeated until there is no
record left in the data set. The way to find
the “best” rule is usually by some heuristics,
e.g. entropy. Some typical methods in this cat-
egory are AQ15 (Michalski, Mozetic, Hong &
Lavrac 1986), CN2 (Clark & Niblett 1989, Clark
& Boswell 1991) and CPA (Yin & Han 2003).

2. Decision tree based methods: a decision tree is
also a typical divide and conquer approach. It
differs from a covering rule discovery algorithm
in that it divides the training data into disjoint
sub data sets by some attribute values simultane-
ously. Those sub data sets are simultaneously di-
vided by some other attribute values recursively
until each sub data set contains records of one
class, or nearly. The partitions are guided by
some heuristic measures, e.g. information gain
and information gain ratio (Quinlan 1993). Each
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path from the root to a leaf in the decision tree is
interpreted as a rule. C4.5rules (Quinlan 1993)
is a typical method in this category.

3. Association based methods: Association rules
are proposed for resolving market basket prob-
lems on transactional data. However, when all
rule targets are constrained by the class labels,
association rules become class (or constraint) as-
sociation rules and they can be used for classifi-
cation purpose. All association rule mining algo-
rithms, e.g. Apriori (Agrawal & Srikant 1994)
and FP-growth (Han, Pei & Yin 2000), can
be easily adapted to mining class association
rules. Some typical association based classifica-
tion methods are CBA (Liu, Hsu & Ma 1998)
and CMAR (Li, Han & Pei 2001).

4. Association based optimal methods: the main
characteristic of association rule mining is to use
the upwards closure property of the support to
confine the searching space. When the goal of
the rule mining is to find high confidence (or
accurate) rules as in classification applications.
The problem becomes the optimal rule set dis-
covery. The upwards closure property of confi-
dence further confines the search space, and min-
ing optimal class association rules is more effi-
cient than mining association rules. Some typ-
ical optimal class association rule mining algo-
rithms are PC optimality rule mining (Bayardo
& Agrawal 1999) and optimal class association
rule set mining (Li, Shen & Topor 2002).

In the above four types of methods, the first two
types of methods usually produce small rule sets be-
cause the overlapping of the covered record sets of
rules are minimised. In contrast, the latter two types
of methods usually generate large rule sets because
of the covered record sets of rules are highly over-
lapped. An association rule set is the largest. An op-
timal class association rule set is significantly smaller
than an association rule set but is still large. It is not
uncommon that an association rule set is 100 times
larger than an optimal class association rule set while
an optimal rule set is 100 times larger than a rule set
from C4.5rules.

Small rule sets are preferred in building the tra-
ditional rule based classifiers. Raw rules interpreted
from a decision tree significantly outnumbers rules in
the final rule set from C4.5rules. These raw rules
are pruned by Minimum Description Length Princi-
ple (MDLP) (Rissanen 1983). In the procedure of the
pruning, most low support rules are removed. (This
indirectly justifies the use of the minimum support
in class association rule mining.) Even in an typical
association rule based classifier, i.e. CBA, rules are
pruned by a covering algorithm based post processing
method. The classifiers from CBA is small too.



An argument for preferring small rule sets is that
they do not overfit the training data sets and result
higher accuracies in test data sets. (We will dispute
this brief in the discussion.) However, small classi-
fiers embed some problems. Before we discuss these
problems, we will have a look at classifiers.

Rule based classification usually involves two
stages, learning and test. Consider a relational data
set where each record is assigned a category (class),
called a training data set. In the learning stage, we
generate a rule set where each rule associates a pat-
tern with a class. Then in the test stage, we apply
this rule set to test data without class information,
and to predict the class that a record in the test data
set belongs to. If the predictive class is the class that
the record supposed to belong to, then the prediction
is correct. Otherwise, it is wrong. The proportion of
correct predictions from test data is accuracy.

Classifiers refer to a rule set and the mechanism
for its making predictions. Highly accurate classifiers
are generally preferred.

There are roughly two types of models for building
rule based classifiers.

1. Ordered rule based classifiers: rules are organ-
ised as a sequence, e.g. in the descending accu-
racy order. When classifying a coming record,
the first matching rule in the sequence makes
the prediction. This sequence is usually tailed
by a default class. When there is no rules in
the sequence matches the coming record, the
class of the record is predicted as the default
one. C4.5rules (Quinlan 1993) and CBA (Liu
et al. 1998) employ this model.

2. Unordered rule based classifiers: rules are not or-
ganised in a sequence and all (or most) matching
rules participate the determination of the class of
a coming record. A straightforward way is to ac-
cept the majority vote of rules like in CPAR (Yin
& Han 2003). A more complex method is to
compare the actual accuracies obtained from the
multiple rules for all possible classes. The one
getting the highest accuracy will be the final pre-
diction. Improved CN2 (Clark & Boswell 1991)
and CMAR (Li et al. 2001) employ this method.

We do not discuss committee prediction, e.g.
Bagging (Breiman 1996) and Boosting (Freund &
Schapire 1996, Freund & Schapire 1997), which use
multiple classifiers.

The first model is simple and effective whereas the
second model is not yet to be mature. The first model
makes a prediction based on the most likelihood. This
is because that rules with higher accuracies usually
precede rules with lower accuracies and the accuracy
approximates the conditional probability when data
set is large. However, an important concept for the
second model, independence of rules, is yet fully de-
veloped. Clark gave a practical definition (theoret-
ical justification was not provided) for the indepen-
dence and used the model in the improved CN2. In-
terestingly, a rule set from a covering algorithm based
method does not actually support the second model.
Each record is supposed to support only one rule in
the rule set and therefore it is rare that a prediction
makes use of multiple rules. CMAR makes use of
all class association rules that do support the second
model. However, it does not address the problem of
the independence of rules in an association rule set
where the majority of rules are correlated and their
covered record set is highly overlapped.

in contrast, ordered rule based classifiers are rela-
tively effective and stable. However, they have some
other problems.

Small classifiers do not tolerate missing values in
the unseen test data and hence are not robust. All
ordered rule based classifiers employ small rule sets.
Rule sets from C4.5rules are very small since MDLP
is used for post pruning. CBA makes use of large
association rule sets but prunes them to small rule
sets by a covering algorithm. The small rule sets are
too slim to tolerate the possible missing values in the
unseen test data. For example, two rules, “Test A =
high ⇒ diabetes” and “Test B = high and Symptom
= C ⇒ diabetes”, accounts for a group of patients.
Currently used small classifiers include only one rule,
say the first rule. Therefore, patients who do not take
Test A but take Test B and have symptom C will miss
the matching of the first rule, and may be classified
as normal by the default prediction.

Small classifiers rely significantly on the default
prediction, and the predictions based on the default
prediction may be misleading. For example, in data
set Hypothyroid, 95.2% records belong to class Nega-
tive and only 4.8 % records belong to class Hypothy-
roid. So, if we set the default prediction as Negative,
then a classifier that has no rule will give 95.2% accu-
racy. You can see that how accuracy is floated by the
default prediction. Further, this distribution knowl-
edge is too general to be useful. For example, a doctor
uses his patient data to build a rule based diagnosis
system. 95% patients coming to him are healthy, and
hence the system sets the default as healthy. Though
the default easily picks up 95% accuracy, this accu-
racy is meaningless for the doctor.

In this paper, we will make use of optimal class
association rules to build more robust classifiers. A
side product of this work is to limit the use of default
prediction in the prediction.

2 Robust rule based predictions

In practice, a rule set is generated from the history
data and is used to make predictions on future com-
ing data. Usually, the volume of the history data is
huge and hence partial typical history data are used
to generate the rule set. It is common that the fu-
ture coming data are not as complete as those typical
training data, e.g. some attribute values in a record
are missing. The goal of robust prediction is to find
a rule set to make reasonable highly accurate predic-
tions even when the test data set is not as complete
as the training data.

For example, in a medical application, the train-
ing data is the set of classified history data. They
are usually selected typical complete records. A test
record is the one for a coming patient. In many cases,
this record is not yet complete. It is desirable that a
rule set can make a certain reasonable prediction for
such incomplete record.

There is a common case for missing values in test
data. When some cases are under study, all sort of
information is collected. However, in practice, only
partial information is available. As a result, records
for general cases are less complete than that for the
typical cases.

Robustness has twofold meanings in terms of deal-
ing with missing values. The toleration of missing
data in training data is one, and the toleration of
missing data in test data is the other. There are
some research for handing missing data in training
data (Clark & Niblett 1989, Mingers 1989, Quinlan
1993, Batista & Monard 2003), but no research on
handling missing data in test data for rule based pre-
diction apart from our previous work (Li, Topor &
Shen 2002). In this paper, we focus on the later and
evaluate a robust optimal class association rule based
classifier.



This work is different from other existing meth-
ods for handling missing data. General methods for
handling missing values are to pre-process data by
substituting missing values by estimations using some
approaches, e.g. the nearest neighbours (Batista &
Monard 2003). In this paper, we do not estimate
and substitute any missing values, but to make use of
larger rule sets to make classifiers be “immune” from
the missing test data.

3 Ordered rule based classifier and optimal
rule sets

An intuitive solution for robustness is the redundancy.
We have a look at an example in the telecommunica-
tion. To ensure the data transfer has minimum errors
caused by missing or mistake bits. Some redundant
bits are used to make up.

In this paper, we also use the redundant rules to
make a rule based classifier more robust. When some
rules are paralysed by missing values, alternative rules
may make up partial predictions. For example, if a
classifier keeps both rules “Test A = high⇒ diabetes”
and “Test B = high and Symptom = C ⇒ diabetes”,
then it will not misclassify patients who do not take
test A.

The question is that which redundant rules we
should use to make a rule based classifier robust
from a huge number of rules. We had a theoreti-
cal framework for constructing robust predictive rule
sets in (Li, Topor & Shen 2002), and in this paper we
design and evaluate a practical robust rule based clas-
sifier. The rule base for this classifier is a 1-optimal
rule set discussed in the following.

3.1 Ordered rule based classifiers

We have a look at how ordered rule based classifiers
work. In the rest of this paper, “classifier” means
an ordered rule based classifier since we do not study
unordered rule based classifier in this paper.

We first present some useful definitions and nota-
tions we use in the paper. Let D be a relational data
set with n attributes, and T be a record containing
a set of attribute-value pairs. A pattern P is a sub-
set of T . The support of a pattern P is the ratio of
the number of records containing P to the number of
records in the data set, denoted by sup(P ). A rule
is in form of P ⇒ c, where c is a class. The support
of rule P ⇒ c is sup(Pc). where Pc is a short for
P ∪ c. The confidence of the rule is sup(Pc)/sup(P ),
denoted by conf(P ⇒ c). Rules we discussed in this
paper are strong rules e.g. their support and confi-
dence are above the minimum support and confidence
respectively.

In the practice of rule based classification, a set
of rules is usually sorted by decreasing accuracy, and
tailed by a default prediction. This ordered rule set
is called rule based classifier. In classifying an unseen
test record (an input record has no class information),
the first rule that matches the record classifies it. If
no rule matches the record, the default prediction is
used.

We do not know the accuracy of rules before they
are tested. However, we need to know their accuracy
before we test them since we have to order them in the
classifier. Therefore, we need to estimate the accuracy
of rules first.

There are a few methods in estimating rule accu-
racy. Laplace accuracy is a widely used estimation.
We rewrite the Laplace accuracy in terms of support
and cover set as follows.

acc(A ⇒ c) =
sup(A ⇒ c)× |D|+ 1
|cov(A ⇒ c)|+ |C|

where |C| is the number of all classes, sup(A ⇒ c)×
|D| is the number of correct predictions made by the
rule on training data and |cov(A ⇒ c)| is the number
of total predictions made by the rule when no other
rules are used.

An estimated accuracy of hypothesis is presented
in (Mitchell 1997). Quinlan used pessimistic error
rate in rule pruning (Quinlan 1993).

It is not our intention to argue which estimation
is best in this paper. Whatever estimation will not
change the main conclusions of this paper. We use
Laplace accuracy in the experiments.

3.2 From optimal rule sets to 1-optimal rule
sets

We note that all rules are sorted by their accuracies
in a classifier. Some rules are never used in the pre-
dictions. For example, given two rules a ⇒ z and
ab ⇒ z (we simplify the attribute and value pair as a
letter here.), Assume that the first rule is more accu-
rate than the second rule. The first rule will precede
the second rule in a classifier, and the second rule will
never be used since all records matching the second
rule will match the first rule too. In practice, you
never see the second rule in a classifier.

In general, only those more general and accurate
rules are possibly in a classifier. Here, we say a rule
is more general if it contains partial conditions of a
more specific rule. We call a set of those more general
and accurate rules as the optimal rule set (Li, Topor
& Shen 2002). All rules for building a classifier have
to be from the optimal rule set. The optimal rule set
is the source for choosing redundant rules.

It is possible to build an optimal classifier by using
all rules in the optimal rule set, and this optimal clas-
sifier is presumed to be the most robust rule set since
it includes all rules we can use. However, this rule set
is usually very large. We consider the following way
to simplify the optimal classifier.

The simplest optimal rule set will be a set of the
most accurate rules covering every record in the train-
ing data. We call it the min-optimal rule set. The
min-optimal rule set is usually bigger than a tra-
ditional classification rule set, e.g. a rule set from
C4.5rules (Quinlan 1993). C4.5rules uses Minimum
Description Length Principle (MDLP) (Rissanen
1983) method to further simplify a rule set from a de-
cision tree. Therefore, there are some redundant rules
in the min-optimal classifier, and the min-optimal
classifier should be more robust than a traditional
classifier.

We may go further to include more redundant rules
in a classifier. In the min-optimal rule set, we in-
clude only the most accurate rule for a record. We
may include the first two most accurate rules for a
record. The problem is that these two rules may
be highly overlapping, for example, rule ab ⇒ z and
rule bc ⇒ z. The missing value b will paralyse both
rules, and this is not good for the overall robustness.
Therefore, we require these two rules to be disjunc-
tive. However, a record may not support two disjunc-
tive rules. In this case, we will have to include more
rules to create disjunction. For example, given rules
ab ⇒ z, bc ⇒ z, and cd ⇒ z. no matter a, b, c, or d is
missing, one rule still works. Based on this idea, we
create 1-optimal rule set that includes at least two
rules for every record in the training data. The 1-
optimal rule set includes more redundant rules than
the min-optimal rule set, and hence is more robust.

The precise definitions for min-optimal, 1-optimal
and optimal rule sets and their robustness relation-
ships are given in (Li, Topor & Shen 2002). The
main conclusions are listed as follows. The optimal
rule set is more robust than the 1-optimal rule set and



both are more robust than the min-optimal rule set.
1-optimal rule set get a good tradeoff for rule size and
robustness.

4 Building optimal association classifiers
(OAC)

Optimal association classifiers are based on 1-optimal
rule sets. The key for obtaining 1-optimal association
rule is to obtain the optimal class association rule set.
There are three ways to obtain it.

1. Association rule mining approach, e.g. Apri-
ori (Agrawal & Srikant 1994) or FP-growth (Han
et al. 2000), plus post-pruning,

2. Constraint association rule mining ap-
proach (Bayardo, Agrawal & Gunopulos 2000),
and

3. optimal class association rule mining ap-
proach (Li, Shen & Topor 2002).

The first one is the most inefficient way among
the three approaches since an association rule set is
usually very large. In some cases, it is impossible
to generate all association rules when the minimum
support is set low in dense data sets.

The second one can be adapted to mine the op-
timal class association rule set when the minimum
confidence improvement is set as zero. A major short-
coming for the second method is that it assumes the
target is fixed for one class. Therefore, we need to dis-
cover optimal rule sets for every class first and then
union them as the optimal rule set. When the num-
ber of classes is large, this involves certain redundant
computation.

The third one is proposed for mining the optimal
class association rule set. It is significantly faster than
Apriori as shown in (Li, Shen & Topor 2002). It also
uses less memory than Apriori since it does not gener-
ate all class association rules. It generates the optimal
class association rule set with respect to all classes
once and does not involve redundant computation as
the second method. We employed the third method
in our experiment.

Assume that we have the optimal rule class asso-
ciation rule set already. We consider how to build
optimal association classifiers in the following.

Given a rule r, let Attr(r) be the set of attributes
whose values appear in the antecedent of r.

Algorithm 1 Build optimal association classifiers
(OAC)

Input: Data set D and optimal rule set Ro
Output: Optimal association classifier Co

// Select 1-optimal class association rule set
1 set R = ∅
2 for each record Ti in D
3 set Ri = ∅ and let R′i include all
rules covering Ti
4 select the most accurate rule r in R′i and
move it to Ri
5 let A = Attr(r)
6 while (A 6= ∅ AND R′i 6= ∅)
7 select the most accurate rule r′ in
R′i and move it to Ri

8 let A = A ∩Attr(r′)
9 let R = R

⋃
Ri

// Build optimal association classifiers
10 initiate Co be an empty sequence
11 while(D 6= ∅ AND R 6= ∅)

12 select rule r in R making smallest errors
on D
13 remove r from R and append it to Co
14 remove all records covered by r from D
15 sort rules in R by accuracy
16 append R to Co
17 return Co

There are two stages in the above algorithm.
The first stage is to select a 1-optimal class asso-

ciation rule set. Rules are selected record by record.
In line 3, all rules covering a record is put in rule set
R′i. Line 4 selects the most accurate rule and moves
it from R′i to Ri. Line 6 and 7 select other most
accurate rules in R′i to complement rules in Ri un-
til conditions of all rules are disjointed or there is no
rules left in R′i. You can see that for T with any one
missing value rules in Ri are still able to make predic-
tion on it. This is the name of 1-optimal comes from.
All 1-optimal rules for every record are put together
to form 1-optimal rule set.

The second stage is to build an optimal association
classifier (OAC). We construct OAC by selecting rules
in a 1-optimal rule set by the covering algorithm. We
recursively move a rule with the smallest misclassi-
fication rate to the classifier and remove its covered
records in the training data set. When there is no
record left, the remaining rules in the 1-optimal rule
set are appended to the classifier in the order of ac-
curacy. The default prediction is set as the majority
class in training data set.

The building OAC is very similar to that for
CBA (Liu et al. 1998) except the following two as-
pects. The input rule set for OAC is a 1-optimal
class association rule set whereas the input rule set for
CBA is an association rule set. After rules with the
smallest misclassification rate are selected to the clas-
sifier, all remaining rules are appended to the OAC
whereas they are discarded by CBA. Actually, these
rules make the OAC more robust.

The time complexity of the above algorithm is
O(l|R′i||D| + |R||D|) (we did not simplify it to keep
it clear), where l is the number of conditions of
the longest rules. Usually, l ≤ 10, |R′i| < 50 and
|R| < 500. Therefore, this procedure is very efficient.

5 Experimental results

The main idea for the robustness is to use a rule set
on a data set that is less complete than the data set
which the rule set is from. In other words, test data
has more missing values than training data.

Following the common practice, we employ 10 fold
cross validation to separate training data and test
data.

We generate a rule set from a normal training data
set and test it on a test data set with added missing
values. The missing values that we add to the test
data are on top of possible missing values in the test
data.

We use the following way to add more missing val-
ues to the test data. We randomly omitted some val-
ues in the test data sets to produce l-incomplete test
data sets. When generating l-incomplete data sets,
we control the total number of missing values, such
that every record in the test data has l missing values
on average.

To ensure that the accuracies from l-incomplete
test data sets are reliable, we test every rule set on
ten randomly generated incomplete test data sets and
report the average. Consider a test data set is a por-
tion in the 10 fold cross validation. A test accuracy
of a data set is the average of 100 tests.



To ensure the reliability of the results, we choose
28 widely used data sets from UCI ML Reposi-
tory (Blake & Merz 1998). They are: Anneal, Aus-
tralian, Auto, Breast, Cleve, Crx, Diabetes, Ger-
man, Glass, Heart, Hepatitis, Horse-colic, House-
vote, Hypo, Ionosphere, Iris, Labor, Led7, Lymph,
Mushrooms, Pima, Sick, Sonar, Tic-tac, Vehicle,
Waveform and WineZoo. A brief description of them
is in Table 1

Data set Size #Attr #Class Rule Size

C4.5rules CBA OAC

Anneal 898 38 5 21 35 78
Australian 690 14 2 8 159 510
Auto 205 25 7 27 61 105
Breast-cancer 699 10 2 10 47 83
Cleve 303 13 2 14 76 225
Crx 690 15 2 11 154 471
Diabetes 768 8 2 10 44 112
German 1000 20 2 35 293 994
Glass 214 9 7 11 31 41
Heart 270 13 2 10 43 157
Hepatitis 155 19 2 8 39 104
Horse-colic 368 22 2 6 115 302
House-vote 435 16 2 6 48 99
Hypo 3163 25 2 7 35 107
Ionosphere 351 34 2 12 52 123
Iris 150 4 3 3 5 9
Labor 57 16 2 5 17 26
Led7 3200 7 10 32 45 247
Lymph 148 18 4 9 43 72
Mushrooms 8124 22 2 16 37 94
Pima 768 8 2 10 44 112
Sick 2800 29 2 10 58 170
Sonar 208 60 2 10 51 160
Tic-tac 958 9 2 18 32 574
Vehicle 846 18 4 46 149 597
Waveform 5000 21 3 204 651 2843
Wine 178 13 3 8 11 23
Zoo 101 16 7 9 9 11
Average 21 85 302

Table 1: Data set and classifier size

The comparison targets are C4.5rules and CBA.
We choose them based on the following reasons.

Firstly, C4.5rules is a benchmark rule based clas-
sifier in machine learning community and CBA is a
benchmark rule based classifier in data mining com-
munity.

Secondly, they both use the ordered rule based
classifier. OAC is based on ordered rules too. The
ordered rule based classifier is simple and effective
and therefore is widely used.

Our evaluation objectives are listed as follows: to
demonstrate that OAC is more robust than C4.5rules
and CBA; to demonstrate that OAC relies less on the
default prediction than C4.5rules does.

To achieve our goals, we compare the accuracy of
different classifiers on test data with increasing miss-
ing value level.

In the experiments, we use local support of rule
A ⇒ c, which is sup(Ac)/sup(A), to avoid too many
rules in the large distributed classes and too few rules
in the small distributed class. For example, in data
set Hypothyroid, 95.2% records belong to class Nega-
tive and only 4.8 % records belong to class Hypothy-
roid. So, 5% (global) support is very small for class
Negative, but is too large for class Hypothyroid.

The parameters for the optimal rule set generation
are listed as follows. Local minimum support, 0.01,
minimum confidence, 0.5, and maximum length of
rules, 6. For both C4.5rules and CBA, we used their
default settings.

We first have a look at the overall results.
An optimal association classifier is 15 times larger

than a C4.5rules classifier and 4 times larger than a
CBA classifier on average, see Table 1. OAC makes
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Figure 1: The average accuracy of three classifiers
with the default on 28 data sets
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use of larger rule sets than C4.5rules and CBA do.
However, The rule sets used by OAC are at least 100
times smaller than association rule sets. Therefore,
how to select these smaller association rule sets for
prediction is not a trivial task.

The average accuracies of OAC, CBA and
C4.5rules for 28 data sets on increasing missing value
level are listed in Figure 1. The accuracy of OAC is
higher than both C4.5rules and CBA when the test
data is incomplete. Therefore, OAC is more robust
than CBA and C4.5rules.

To show how OAC does not rely significantly on
the default prediction. We drop the default predic-
tion in classifiers, and a record matching no rules will
be counted as an error. When there is no default
prediction, the test accuracy ranges from 0 to 100%.
In contrast, the test accuracy ranges from b to 100%
when there is the default. The b is determined by the
distribution of the default prediction. In some skewed
data sets, b can be very big.

The average accuracies of OAC and C4.5rules
without the default prediction for 28 data sets on in-
creasing missing value level are listed in Figure 2. We
did not compare with CBA since we could not drop
the default prediction for CBA. When there is no de-
fault prediction in the classifiers, OAC is significantly



more accurate than C4.5rules. By comparing Figure 2
and Figure 1, it is clear that OAC relies significantly
less on the default prediction than C4.5rules.

More detailed results are listed in Table 2, 3, 4, 5
and 6.

Let us have a look at the results on complete test
data set, Table 2. OAC nearly gains no accuracy im-
provement by using the default prediction. The func-
tion for the default prediction is largely replaced by
those redundant rules. On average, OAC is slightly
less accurate than C4.5rules and CBA with the de-
fault prediction. This means that those redundant
rules do not do a good job as the simple default pre-
diction does when the test data set is as complete as
the training data. We did obtain similar accuracy as
CBA when we kept classifiers as large as CBA (min-
optimal association classifiers in our terms).

However, redundant rules do excellent jobs when
the test data is not as complete as the training data as
shown in the following tables. Remember shortcom-
ings for the default prediction mentioned in Introduc-
tion. OAC without default prediction is a good choice
for its accuracy and robustness.

datasets C4.5rules CBA OAC
NoDefault Default Default NoDefault Default

Anneal 90.3 93.5 96.2 96.9 96.9
Australian 84.1 86.7 84.1 84.1 84.1
Auto 75.1 78.0 80.1 78.5 78.5
Breast-cancer 92.7 95.1 95.1 95.1 95.1
Cleve 77.3 80.5 80.2 81.9 81.9
Crx 83.8 86.4 85.5 83.5 83.5
Diabetes 71.1 76.7 75.9 75.9 75.9
German 66.6 73.8 73.0 73.0 73.0
Glass 63.6 72.5 76.3 73.5 73.9
Heart 80.0 83.0 81.1 81.1 81.1
Hepatitis 76.0 82.5 83.9 83.2 83.9
Horse-colic 79.6 83.4 81.3 83.1 83.1
House-votes 95.2 95.7 94.0 92.2 92.2
Hypo 99.2 99.3 98.8 98.6 98.6
Ionosphere 88.6 92.9 93.4 92.3 92.9
Iris 93.3 93.3 93.3 94.0 94.0
Labor 64.7 89.0 87.3 85.3 87.3
Led7 73.2 73.2 69.4 74.0 74.0
Lymph 73.1 78.4 86.5 81.8 81.8
Mushroom 99.9 99.9 100.0 100.0 100.0
Pima 71.3 78.0 76.2 78.1 78.1
Sick 97.5 97.9 97.2 97.3 97.3
Sonar 74.5 80.8 78.4 78.4 78.4
Tic-tac 97.3 99.5 98.1 98.2 98.2
vehicle 67.3 71.9 72.7 72.0 72.0
Waveform 72.8 75.7 82.0 81.7 81.7
Wine 94.9 97.7 97.1 96.5 97.1
Zoo 92.1 92.1 96.1 89.3 89.3
Average 82.0 86.0 86.2 85.7 85.8

Table 2: Accuracy for complete test data

6 Discussion

In this section, we will argue for a large rule set in
classification application.

The results of this work seem directly against the
bias for traditional classification rule learning. A sim-
ple rule set fitting the training data set is preferred in
traditional rule learning because a small fitting rule
set usually provides higher accurate predictions on
unseen test data than a large fitting rule set. A large
rule set overfits the training data.

Let us have a look at why overfitting problem hap-
pens. Consider the following two rules from a data set
when there is no the minimum support requirement.

1. If outlook is sunny, temperature is mild and the
wind is strong, then play tennis (1/14, 100%), and

2. If outlook is sunny, temperature is mild and the
wind is weak, then do not play tennis (1/14, 100%).
These rules link strong wind with playing and weak
wind with not playing. This is not a case by common

datasets C4.5rules CBA OAC
NoDefault Default Default NoDefault Default

Anneal 82.8 92.4 89.7 95.8 95.8
Australian 77.7 83.9 81.8 82.6 82.7
Auto 67.2 73.0 76.9 77.5 77.8
Breast-cancer 88.9 94.5 95.0 95.0 95.0
Cleve 69.5 77.9 77.9 81.9 81.9
Crx 77.1 84.0 82.2 82.7 82.8
Diabetes 57.7 73.9 71.9 73.8 73.8
German 60.3 71.7 71.0 72.4 72.8
Glass 48.1 62.7 65.8 66.9 70.0
Heart 69.9 79.0 77.9 80.7 80.7
Hepatitis 73.6 82.7 83.1 81.0 81.7
Horse-colic 76.0 81.7 79.8 82.1 82.1
House-votes 89.1 92.1 92.0 91.8 92.1
Hypo 97.9 98.9 98.4 98.4 98.4
Ionoshere 86.1 92.6 93.5 92.2 92.9
Iris 66.9 72.9 83.3 83.4 86.3
Labor 57.8 88.7 83.6 84.3 86.3
Led7 46.1 50.1 44.3 60.0 61.4
Lymph 68.5 77.0 84.7 81.5 81.5
Mushroom 93.3 96.7 99.0 99.5 99.9
Pima 57.1 74.3 71.9 76.6 76.6
Sick 95.5 97.6 96.3 97.0 97.0
Sonar 69.8 79.3 79.0 77.6 77.6
Tic-tac 69.4 83.3 89.7 87.9 89.9
vehicle 58.7 66.4 70.7 71.3 71.4
Waveform 69.6 73.9 81.2 81.0 81.0
Wine 85.9 91.0 91.3 95.8 96.4
Zoo 85.2 87.2 91.6 83.0 86.4
Average 73.0 81.4 82.3 83.3 84.0

Table 3: Accuracy for test data with one missing
value

sense. These two rules overfit the data since they only
explain themselves.

The overfitting is caused by rules fitting the noise
data. It is not a direct result of large rule sets. Setting
the minimum support is a way to avoid rules fitting
noisy data.

When rules have low support, the fitting rule set is
large. When rules have high support, the fitting rule
set is small. This is where the belief that a large rule
set overfits data comes from. If the minimum support
is suitable, a large rule set will not overfit a data set.
Surely, the determination of a best minimum support
is not easy. However, keeping a large rule set is not
the cause for decreasing accuracy on the test data.

We do observe that larger optimal rule sets pre-
dict less accurately than smaller min-optimal rule sets
do, such as in Wine and Zoo data sets. We also
observe the opposite phenomenon, such as in Labor
and Lymph data sets. All these data sets are small
data sets, and therefore we would rather say these are
caused by variations.

Another argument in favor of for simplicity is that
a simple rule set is more understandable. However,
understanding a rule set is not as important as un-
derstanding predictions the rule set makes. If a rule
set provides predictions with the most suitable rules,
then its predictions are understandable. As to the
rule set size, it does not matter whether it is large or
small because rules are manipulated by a computer.
In this sense, a large rule set is preferred since it in-
cludes more rules for variant situations.

7 Conclusions

In this paper, we discussed how to build robust rule
based classifiers to predict on the test data that is
not as complete as the training data. We make use
of 1-optimal class association rule sets and build op-
timal association classifiers (OAC) that are larger
than some conventional rule based classifiers. We
use extensive experiments to demonstrate OAC is
more robust than two benchmark rule based classi-
fiers, C4.5rules and CBA. The experimental results



datasets C4.5rules CBA OAC
NoDefault Default Default NoDefault Default

Anneal 74.2 90.5 83.1 94.5 94.7
Australian 70.3 80.6 79.6 80.6 81.2
Auto 61.8 69.3 73.1 76.0 76.3
Breast-cancer 81.5 92.4 94.3 94.7 94.8
Cleve 59.7 73.9 74.3 81.0 81.3
Crx 70.2 81.9 79.3 81.0 81.4
Diabetes 43.5 70.8 66.5 72.7 73.3
German 54.0 70.0 68.8 70.5 72.4
Glass 35.4 53.2 53.1 58.3 63.9
Heart 57.6 73.7 72.4 77.8 78.0
Hepatitis 70.4 81.7 82.1 78.7 79.6
Horse-colic 72.2 80.3 77.6 80.6 81.4
House-votes 82.6 89.4 89.1 91.3 92.1
Hypo 96.3 98.5 98.2 98.2 98.2
Ionoshere 83.2 92.1 93.6 92.2 93.0
Iris 41.7 54.5 69.6 68.0 74.7
Labor 48.9 85.9 86.0 78.5 83.7
Led7 24.9 31.8 27.1 45.1 48.3
Lymph 62.4 74.5 83.7 80.4 80.4
Mushroom 86.6 93.4 97.8 98.6 99.6
Pima 43.3 71.2 66.9 73.5 73.9
Sick 92.9 97.3 95.1 96.6 96.6
Sonar 64.8 77.0 78.4 76.7 77.4
Tic-tac 46.8 70.4 83.1 74.0 82.4
Vehicle 49.9 60.3 67.9 70.8 71.3
Waveform 65.3 71.6 80.1 80.6 80.7
Wine 76.2 83.8 86.2 93.3 94.2
Zoo 75.9 82.1 83.3 76.3 82.1
Average 64.0 76.9 78.2 80.0 81.7

Table 4: Accuracy for test data with two missing val-
ues

also show that OAC does not significantly rely on the
default prediction, and this makes predictions more
understandable. Given the frequent missing values
in real world data sets, OAC has great potential in
building robust classifiers in the future applications.
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IMAL 1986’, Université de Paris-Sud, Orsay.



datasets C4.5rules CBA OAC
NoDefault Default Default NoDefault Default

Anneal 59.4 88.2 66.5 89.1 91.3
Australian 56.1 74.9 69.6 72.7 77.6
Auto 51.1 62.4 64.0 71.1 72.3
Breast-cancer 61.6 87.7 89.9 92.2 93.1
Cleve 40.5 66.1 66.3 72.8 77.0
Crx 55.3 77.1 70.4 75.4 79.4
Diabetes 17.7 66.9 49.5 62.5 70.7
German 41.7 66.6 60.2 62.1 71.6
Glass 18.7 46.0 30.0 37.4 56.5
Heart 30.5 63.8 53.3 71.3 75.0
Hepatitis 61.4 81.3 77.9 75.8 81.8
Horse-colic 63.8 77.2 72.6 75.5 79.6
House-votes 68.3 82.8 82.9 87.9 90.3
Hypo 92.1 97.8 96.8 97.8 98.1
Ionoshere 77.3 91.0 93.1 91.8 93
Iris 0.0 21.3 38.7 0.0 24.7
Labor 33.2 80.5 79.4 67.3 80.5
Led7 3.9 13.5 12.1 15.4 22.1
Lymph 51.5 70.5 76.3 75.4 77.3
Mushroom 74.1 87.8 94.8 95.9 98.4
Pima 17.6 66.5 50.7 60.8 69.3
Sick 87.5 96.9 91.7 95.8 96.4
Sonar 53.5 74.8 75.6 75.2 77.7
Tic-tac 17.1 53.2 71.8 40.1 72.8
vehicle 36.1 51.4 61.9 65.6 67.5
Waveform 56.4 66.7 77.0 78.4 78.9
Wine 57.8 71.4 75.3 83.2 85.6
Zoo 61.0 72.1 72.5 64.6 76.5
Average 48.0 69.9 68.6 69.7 76.2

Table 6: Accuracy for test data with four missing
values

Mingers, J. (1989), ‘An empirical comparison of selec-
tion measures for decision tree induction’, Ma-
chine Learning 3, 319–342.

Mitchell, T. M. (1997), Machine Learning, McGraw-
Hill.

Quinlan, J. R. (1993), C4.5: Programs for Machine
Learning, Morgan Kaufmann, San Mateo, CA.

Rissanen, J. (1983), ‘A universal prior for the inte-
gers and estimation by MDL’, Ann. of Statistics
11(2), 416–431.

Yin, X. & Han, J. (2003), CPAR: Classification based
on predictive association rules, in ‘Proceedings
of 2003 SIAM International Conference on Data
Mining (SDM’03)’.


