Mining Optimal Class Association Rule Set

Jiuyong Li, Hong Shen and Rodney Topor

School of Computing and Information Technology
Griffith University
Nathan Qld 4111 Awustralia
Email: {jiuyong,hong,rwt}Qcit.gu.edu.au

Abstract. We define an optimal class association rule set to be the
minimum rule set with the same prediction power of the complete class
association rule set. Using this rule set instead of the complete class
association rule set we can avoid redundant computation that would
otherwise be required for mining predictive association rules and hence
improve the efficiency of the mining process significantly. We present an
efficient algorithm for mining the optimal class association rule set using
an upward closure property of pruning weak rules before they are actually
generated. We have implemented the algorithm and our experimental
results show that our algorithm generates the optimal class association
rule set, whose size is smaller than ﬁ of the complete class association
rule set on average, in significantly less time than generating the complete
class association rule set. Our proposed criterion has been shown very
effective for pruning weak rules in dense databases.

1 Introduction

1.1 Mining predictive association rules

The goal of association rule mining is to find all rules satisfying some basic
requirement, such as the minimum support and the minimum confidence. It
was initially proposed to solve market basket problem in transaction databases,
and has then been extended to solve many other problems such as classification
problem. A set of association rules for the purpose of classification is called
predictive association rule set. Usually, predictive association rules are based on
attribute value (relational) databases, where the consequences of rules are pre-
specified categories. Clearly, an attribute value database can be mapped to a
transaction database when an attribute and attribute value pair is considered
as an item. After having mapped an attribute value database into a transaction
database, a class association rule set is a subset of association rules with the
specified targets (classes) as their consequences. Generally, mining predictive
association rules undergoes the following two steps.

1. Find all class association rules from a database, and then
2. Prune and organize the found class association rules and return a sequence
of predictive association rules.



In this paper, we focus on the first step. There are two problems in finding
all class association rules.

— It may be hard to find the all class association rule set in dense databases due
to the huge number of class association rules. For example, many databases
support more than 80,000 class association rules as in [12].

— Too many class association rules will reduce the overall efficiency of mining
predictive association rule set. This is because the set of found class asso-
ciation rules is the input of the second step processing whose efficiency is
mainly determined by the number of input rules.

To avoid the above problems, it is therefore necessary to find a small subset
but with the same prediction accuracy of the complete class association rule
set, so that this subset can replace the complete class association rule set. Our
proposed optimal class association rule set is the smallest subset with the same
prediction power, which will be formally defined in Section 2, of the complete
class association rule set. We present an efficient algorithm to generate the op-
timal class association rule set that takes the advantage of an upward closure
property to prune those complex rules that have lower accuracy than their sim-
ple form rules have before they are actually generated in dense databases. Our
algorithm avoids redundant computation of mining the complete class associa-
tion rule set from dense databases and improves efficiency of the mining process
significantly.

1.2 Related work

Mining association rules [1] is a central task of data mining and has shown
applications in various areas [7,3,12]. Currently most algorithms for mining as-
sociation rules are based on Apriori [2], and used the so-calle “downward closure”
property which states that all subsets of a frequent itemset must be frequent.
Example of these algorithms can be found in [10, 14,17]. A symmetric expression
of downward closure property is upward closure property — all supersets of an
infrequent itemset must be infrequent. We will use this property throughout the
paper.

Finding classification rules has been an important research focus in the ma-
chine learning community [18, 8]. Mining classification rules can be viewed as a
special form of mining association rules, since a set of association rules with pre-
specified targets can be used for classification. Techniques for mining association
rules have already been applied to mining classification rules [3, 12]. Particularly,
results in [12] are very encouraging, since it can build more accurate classifiers
than those from C4.5 [18]. However, the algorithm in [12] is not very efficient
since it uses Apriori-like algorithm to generate the class association rules, which
may be very large when the minimum support is small. In this paper will show
that we can use a much smaller class association rule set to replace this set while
not losing accuracy (prediction power).

Generally speaking, class association rule set is a type of target-constraint
association rules. Constraint rule sets [5] and optimal rule sets [4] belong to this



type. Problems with these rule sets are that they either exclude some useful
predictive association rules, or contain many redundant rules that are of no use
for prediction. Moreover, algorithms for mining these rule sets handle only one
target at one time (building one enumeration tree), so they cannot be efficiently
used for mining class association rules that are on multiple targets, especially
when the number of targets is large. Our optimal class association rule set differs
from these rule sets at that it is minimal in size and keeps high prediction
accuracy. We propose an algorithm that finds this rule set with respect to all
targets at once.

In this paper we only address the first step of mining predictive association
rules. Related work on pruning and organizing the found class association rules
can be referred to [9,13,16].

1.3 Contributions
Contributions in this paper are the following.

1. We propose the concept of optimal class association rule set for predictive
association rule mining. It is the minimum subset of complete class associa-
tion rule set with the same prediction power as the complete class rule set,
and can be used as a substitute of the complete class association rule set.

2. We present an efficient algorithm for mining the optimal class association
rule set. This algorithm is different from Apriori at that 1) it uses an ad-
ditional upward closure property for forward pruning weak rules (pruning
before they are generated), and 2) it integrates frequent sets mining and rule
finding together.

Unlike the existing constraint and optimal rule mining algorithms, our algo-
rithm finds strong (optimal) rules with all possible targets at one time.

2 Optimal class association rule set

Given attribute-value database D with n attribute domains. A record of D is
a n-tuple. For the convenience of description, we consider a record as a set of
attribute and value pairs, denoted by T'. A pattern is a subset of a record. We say
a pattern is a k-pattern if it contains k attribute and value pairs. An implication
in database D is A = ¢, where A is a pattern, called antecedent, and ¢ is an
attribute value, named consequence. Exactly, the consequence is an attribute and
value pair, but in class association rule mining, the target attribute is usually
specified, so we can use its value directly without confusing. The support of
pattern A is defined to be the ratio of the number of records containing A to
the number of all records in D, denoted by sup(A). The support of implication
A = c is defined to be the ratio of the number of records containing both A
and ¢ to the number of all records in D, denoted by sup(A = ¢). The confidence
of the implication A = ¢ is defined to be the ratio of sup(A = ¢) to sup(A),
represented by conf(A = ¢).



A class association rule is defined to be an implication with a pre-specified
target (a value of target attribute) as its consequence and its support and con-
fidence are above given thresholds from a database respectively. Given a target
attribute, minimum support ¢ and minimum confidence v, a complete class as-
sociation rule set is a set of all class association rules, denoted by R.(c,).

Our goal in this section is to find the minimum subset of the complete class
association rule set that has the same prediction power as the complete class
association rule set.

To begin with, let us have a look at how a rule makes prediction. Given a rule
r, we use cond(r) to represent its antecedent (conditions), and cons(r) to denote
its consequence. Given a record T in a database D, we say rule r can make
prediction on T if cond(r) C t, denoted by 7(T) — cons(r). If cons(r) is the
category (target attribute value) of record T', then this is a correct prediction.
Otherwise, a wrong prediction.

Then we consider the accuracy of a prediction. We begin by defining the ac-
curacy of a rule. Confidence is not the accuracy of a rule, or more precisely, not
the prediction accuracy of a rule, but the sample accuracy, since it is obtained
from the sampling (training) data. Suppose that all instances in a database are
independent of one another. Statistical theory supports the following assertion

[15]: acey(r) = aces £ 2 @, where acc; is the true (prediction) accu-

racy, accs is the accuracy over sampling data, n is the number of sample data
(n > 30), and zy is a constant relating to confidence interval. For example,
zy = 1.96 if confidence interval is 95%. We use pessimistic estimation as the
conf(r)(1—conf(r))

lcov(r)] ’

where cov(r) is the covered set of rule r that is defined in the next section. If

sup(r)*|D|+1
[cov(r)[+p *

prediction accuracy of a rule. That is acc(r) = conf(r) — zN\/

n < 30, then we use Laplace accuracy instead [8], that is acc(r) =
where p is the number of target attribute values (classes).

After we have obtained the prediction accuracy of a rule, we can estimate
the accuracy of a prediction as follows: the accuracy of a prediction equals to the
prediction accuracy of the rule making such prediction, denoted by acc(r(T) —
c).

In the following part, we will discuss a prediction made by a rule set, and
how to compare the prediction power of two rule sets.

Given a rule set R and an input 7', there may be more than one rule in R
that can make prediction, such as, r1(T') = ¢1,72(T) — ¢2,.... We say that the
prediction made by R is the same as the prediction made by r if r is the rule
with the highest prediction accuracy of all r; where cond(r;) C t. The accuracy
of such prediction equals to the accuracy of rule r. In case if there are more than
one rule with the same highest prediction accuracy, we choose the one with the
highest support among them. When the predicting rules have the same accuracy
and support, then we choose the one with the shortest antecedent. If there is no
prediction made by R, then we say the rule set gives arbitrary prediction with
accuracy zero.

To compare prediction power of two rule sets, we define



Definition 1. Prediction power

Given rule sets R and Ry from database D, we say that Ro has at least the same
power as Ry iff, for all possible input, both Ry and Ry give the same prediction
and prediction accuracy of Ry is at least the same as that of R;.

It is clear that not all rule sets are comparable in their prediction power.
Suppose that rule set R, has more power than rule set R;. Then for all input
T, if there is rule r; € Ry giving prediction ¢ with accuracy &1, then there must
be another rule ro € Ry so that r2(T") — ¢ with accuracy k2 > ky.

We represent that rule set Ry has at least the same power as rule set R; by
Ry > R;. Tt is clear that Ry has the same power as Ry iff Rs > R; and Ry > R».

Now, we can define our optimal class association rule set.

Given two rules 1 and 72, we say that ry is stronger than ry iff ro C r1 A
acc(re) > acc(ry), denoted by ro > r1. Specifically, we mean cond(r2) C cond(r)
and cons(ry) = cons(r;) when we say ro C r1. Given a rule set R, we say a rule
in R is strong if there is no other rule in R that is stronger than it. Otherwise,
the rule is weak. Thus, we have the definition for optimal class association rule
set.

Definition 2. Optimal class association rule set
Rule set R, is optimal for class association over database D iff (1)Vr € R,, ' €
R, such thatr <r' and (2) Vr' € R. — R,, 3r € R, such that r > r'.

It is not hard to prove that the optimal class association rule set is unique at
given minimum support and minimum confidence from a database. Let R,(c,))
stand for the optimal class association rule set on database D at given minimum
support ¢ and minimum confidence ¢. Then R,(0,1)) contains all strong rules
from the complete class association rule set R.(o,).

Finally, we consider the prediction power of the optimal class association rule
set we are concerned with.

Theorem 1. The optimal class association rule set is the minimum subset of
rules with the same prediction power as the complete class association rule set.

Proof. For simplicity, let R, stand for R.(o,%) and R, for R,(o,).

First, from the previous definitions we have that R. > R, and R, > R,
so the optimal class association rule set has the same prediction power as the
complete class association rule set has.

Secondly, we prove the minimum property of optimal class association rule
set. Suppose that we leave out rule r from the optimal class association rule set
R,, R! = R, — r, and R/ has the same prediction power as R, has. From the
definition, we know that there is no rule being stronger than rule r, so R, > R!,
but R! 2 R,. As a result, R) cannot be the same prediction power as R, is,
leading to contradiction. Hence, R, is the minimum rule set with the property
of same prediction power as the complete class association rule set has.

The fact that the optimal class association rule set has the same prediction
power as the complete class association rule set is because it contains all strong



rules. Even though the class association rule set is usually much larger than
the optimal class association rule set, it contains many weak rules that cannot
provide more prediction power than their strong rules do. In other words, the
optimal class association rule set is totally equivalent to the complete class as-
sociation rule set in terms of prediction power. Thus, it is not necessary to keep
a rule set that is larger than the optimal class association rule set, and we can
find all predictive association rules from the optimal class association rule set.

In the next section, we will present an efficient algorithm to mine the optimal
class association rule set.

3 Mining algorithm

A straightforward method to obtain the optimal class association rule set R,
is to first generate the complete class association rule set R. and then prune
all weak rules from it. Clearly mining complete class association rule set R,
is very expensive and almost impossible when the minimum support is low. In
this section, we present an efficient algorithm that can find the optimal class
association rule set directly without generating R, first.

Most efficient association rule mining algorithms use the upward closure prop-
erty of infrequency of pattern: if a pattern is infrequent, so are all its super
patterns. If we can find a similar property for weak rules, then we can avoid
generating many weak rules, hence making the algorithm more efficient. In the
following we will discuss an upward closure property for pruning weak rules

Let us begin with some definitions. We say that r; is a general rule of 5 or
7y is a specific rule of ry if cond(ry) C cond(rs) Acons(ry) = cons(rz). We define
the covered set of rule r to be the set of records containing antecedent of the
rule, denoted by couv(r). Similarly, covered set of a pattern A is defined to be
the set of records containing the pattern, denoted by cov(A). It is clear that the
covered set of a specific rule is a subset of the covered set of its general rule.

Suppose that X and Y are two patterns in database D, and XY is the
abbreviation of X UY. We have the following two properties of covered set.

Property 1. cov(X) C cov(Y) iff sup(X) = sup(XY).
Property 2. cov(X) Ceov(Y) it Y C X.

Now we discuss an upward closure property for pruning weak rules. Given
database D and a target value ¢ in target attribute C, we have

Lemma 1. If cov(X—¢) C cov(Y-c), then XY = ¢ and all its specific rules
must be weak.

Proof. We rewrite the confidence of rule A = ¢ as m. We know
that function f(u) = 4% is monotonically increasing with  when v is a con-

stant. Noticing sup(Xec) > sup(XYe¢) and sup(X-c) = sup(XY -c), we have



conf(X = ¢) > conf(XY = ¢). Using relation |cov(X = ¢)| > |cov(XY = ¢)|,
we have ace(X = ¢) > ace(XY = ¢). Asaresult, X = ¢> XY = ¢

Since cov(X Z~-c) C cov(Y Z—c) for all Z, we have XZ = ¢ > XY Z = ¢ for
all Z.

Consequently, XY = ¢ and all its specific rules are weak.

We can perceive the lemma as follows: adding a pattern to the conditions of
a rule is to make the rule more precise (with less negative examples), and we
shall omit the pattern that fails to do so.

Corollary 1. If cov(X) C cov(Y), then XY = ¢ and all its specific rule must
be weak for all c € C.

We can understand the corollary in the following way: we cannot combine a
super concept with a sub concept as the antecedent of a rule to make the rule
more precise.

Lemma 1 and Corollary 1 are very helpful for searching strong rules, since
we can remove a set of weak rules as soon as we find that one satisfies the above
Lemma and Corollary. Hence, the searching space for strong rules is reduced.

To find those patterns satisfying Lemma 1 and Corollary 1 efficiently, we
need to use properties 1 and 2. Property 1 enables us to find subset relation
by comparing supports of two patterns. This is very convenient and easy to
implement since we always have support information. By Property 2, we can
always find that the covered set of a pattern (e.g. X) is a subset covered set of
its | X| — 1 cardinality subpattern. So, we only need to compare the support of
a k-pattern with that of its (k — 1)-subpatterns in order to decide whether the
k-pattern should be removed.

Since both Lemma and Corollary state upward closure property of weak rules,
we can have an efficient algorithm to prune them.

Basic idea of the proposed algorithm

We use a level-wise algorithm to mine the optimal class association rule set.
We search strong rules from antecedent of 1-pattern to antecedent of k-pattern
level by level. In each level, we select strong rules and prune weak rules. The
efficiency of the proposed algorithm is based on fact that a number of weak rules
are removed once satisfaction of the Lemma or the Corollary is found. Hence,
searching space is reduced after each level’s pruning. The number of phases of
reading a database is bounded by the length of the longest rule in the optimal
class association rule set.

Storage structure

A prefix tree, or enumerate tree [5] is used as the storage structure. A prefix
tree is an ordered and unbalanced tree, where each node is labeled by an element
in a sorted base set, B, representing a set S C B containing all labels from the
root to the node. Since set S is unique in a prefix tree, we can use it as the
identity of a node.



We use an extended prefix tree, named candidate tree in our algorithm. The
base set here contains all attribute and value pairs and they are sorted in the
order of their first references. A node in a candidate tree store a pattern A that
is the identity of the node, a potential target set Z, and a supset of possible
attribute and value pair sets Q. Pattern A is the antecedents of a possible rule.
The potential target set Z is a set of values of target attribute that may be
consequences of A. For each target (e.g. z;) in Z, there is a set of possible
attribute and value pairs which may be conjunct with A to form more accurate
rules, @; € Q.

Our algorithm is given as follows. One distinction between this algorithm and
other prefix tree based algorithms is that our algorithm finds all class association
rules with respect to all consequences from one candidate tree rather than many
candidate trees.

Algorithm: Optimal Class Association Rule Set Miner

Input: Database D with specified target attribute C', minimum support o
and minimum confidence 1.

Output: Optimal class association rule set R.

Set optimal class association rule set R =)
Count support of 1-patterns
Initiate candidate tree T
Select strong rules from T and include them in R
Generate new candidates as leaves of T'
While (new candidate set is non-empty)
Count support of the new candidates
Prune the new candidate set
Select strong rules from 7" and include them in R
Generate new candidates as leaves of T'
Return rule set R

In the following, we present and explain two unique functions in the proposed
algorithm.

Function: Candidate Generating

This function generates candidates for strong rules. Let n; denote a node of
the candidate tree, A; be the pattern of node n;, Z(A4;) be the potential target
set of A;, and Q4(A;) be a set of potential attribute value pairs of A; with re-
spect to target z,. We use PP(Ax) to denote the set of all p-subsets of Ay.

for each node n; at the p-th layer
for each sibling node n; and n; (n; is after n;)
generate a new candidate ny as a son of n; such that  // combining
Ap = A; U Aj
Z(Ar) = Z(Ai) N Z(4;)



Qq(Ar) = Qq(A4;) NQq4(A;) for all z;, € Z(Ay)
for each z € Z(Ag) // testing
if 34 € PP(Ay,) such that sup(AUz) <o
then Z(Ak) = Z(Ak) —z
if Z;, = () then remove node n;,

We generate the (p + 1)-layer candidates from the p layer in the candidate
tree. First, we combine a pair of sibling nodes and insert their combination as a
new node in the next layer. We initiate the new node with the union of the two
nodes. Next, if any of its p-subpatterns cannot get enough support with any of
the possible targets (consequences), then we remove the target from the target
set. When there is no possible target left, remove the new candidate.

Function: Pruning

This function prunes weak rules and infrequent candidates in the (p + 1)-th
layer of candidate tree. Let Tp41 be the (p + 1)-layer of the candidate tree.

for each n; € Tpy1
for each A € PP(A;) //A is a p-subpattern of A4;
if sup(A) = sup(A;) then remove node n; //Corollary 1
else for each z; € Z(A;)
if sup(A; U z;) < o then Z(4;) = Z(A;) — 2;
// minimum support requirement
else if sup(AU —z;) = sup(A; U —z;) then Z(A4;) = Z(4;) — z;
// Lemma 1
if Z(A) = 0 then remove node n;

This is the most important part of the algorithm, as it dominates the ef-
ficiency of the algorithm. We prune a leaf from two aspects, frequent rule re-
quirement and strong rule requirement. Let us consider a candidate n; in the
(p + 1)-th layer of tree. To examine satisfaction of Corollary 1, we test support
of pattern A; stored in the leaf with the support of its subpatterns by Property
1. There may be many such subpatterns when size of A; is large. However, we
only need to compare its p-subpatterns since upward closure property. Hence,
the number of such comparisons is bounded by p + 1. Once we find that the
support of A; equals to the support of any of its p subpattern A, we remove the
leaf from the candidate tree. So all its super patterns will not be generated in all
deeper layers. In this way, the number of removed weak rules may increase at an
exponential rate. Examination of satisfaction of Lemma 1 is in the similar way,
but it is with respect to a particular target. That is, we only remove a target
from the potential target set in the leaf. Pruning those infrequent patterns is the
same as that in other association rule mining algorithms. In our experiments,
we will show the efficiency of weak rule pruning in dense databases.



4 Experiment

We have implemented the proposed algorithms and evaluated them on 6 real
world databases from UCL ML Repository [6]. For those databases having con-
tinuous attributes, we use Discretizer in [11] to discretize them.

We have mined the complete class association rule sets and the optimal class
association rule set of all testing databases with the minimum confidence of 0.5
and the minimum support of 0.1. Here support is specified as local support that
is defined to be the ratio of the support of a rule to the support of the rule’s
consequence, since significance of a rule depends much on how much proportion
of occurrences of its consequence it accounts for. We generate the complete class
association rule set by the same algorithm without weak rule pruning and strong
rule selecting. We restrict the maximum layer of candidate trees to 4 because of
the observation that too specific rules (with many conditions) usually have very
limited prediction power in practice. In fact, the proposed algorithm performs
more efficiently when there is no such restriction, and this is clear from the
second part of our experiment. We do so in order to present competitive results,
since rule length constraint is an effective way to avoid combinatorial explosion.
Similar constraints have been used in practice, for example, [12] restricts the
maximum size of the found rule set.

The comparisons of rule set size and time to generate between the complete
class association rule set and optimal class association rule set are listed in Figure
1. It is easy to see that the size of a optimal class association rule set is much
smaller than that of the corresponding complete rule set, on the average less than
11—7 of that. Because the optimal class association rule set has the same prediction
power as the complete class association rule set has, so this rule set size reduction
is very impressive. Similarly, the time for generating rules is much shorter as well.
We have obtained more than 3 reduction of mining time on average. Moreover,
using a smaller optimal class association rule set instead of a lager complete class
association rule set as the input for finding predictive association rules, we will
have more efficiency improvement for other data mining tasks too.

The core of our proposed algorithm is to prune weak rules. To demonstrate
the efficiency of pruning stated in Lemma 1 and Corollary 1 on dense databases,
we have illustrated the number of nodes in each layer of the candidate trees of
two databases in Figure 2. In this experiment, we lift the restriction of maximum
number of layers. We can see that the tree nodes explode at a sharp exponential
rate without weak rule pruning. In contrast, tree nodes increase slowly with
weak rule pruning, reach a low maximum quickly, and then decrease gradually.
When a pruning tree (weak rule pruning) stops growing, its corresponding un-
pruned tree just passes its maximum. In the deep tree level, after 4 in our case,
the nodes being pruned are more than 99%. This shows how much redundancy
we have eliminated. In our experiment, more than 95% time is used for such
redundant computing when there is no maximum layer restriction. Considering
that how much time it will take if we compute strong rules after obtaining all
class association rules, we can see how effective our proposed weak rule pruning
criterion is. Besides, from this detailed illustration of candidate tree growing
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without length restriction, we can understand that the proposed algorithm will
perform more efficiently when there is no maximum layer number restriction in
comparison with mining the complete class association sets.
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5 Conclusion

In the paper, we studied an important problem of efficiently mining predictive
association rules. We defined the optimal class association rule set, which pre-
serves all prediction power of the complete class association rule set and hence
can be used as a replacement of the complete class association rule set for finding
predictive association rules. We developed a criterion to prune weak rules before
they are actually generated, and presented an efficient algorithm to mine the
optimal class association rule set. Our algorithm avoids redundant computation



required in mining the complete class association rule set, and hence improves
efficiency of the mining process significantly. We implemented the proposed algo-
rithm and evaluated it on some real world databases. Our experimental results
show that the optimal class association rule set has a much smaller size and
requires much less time to generate than the complete class association rule set.
It was also shown that the proposed criterion is very effective for pruning weak
rules in dense databases.
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