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Abstract

Functional and inclusion dependency discovery is important to knowl-
edge discovery, database semantics analysis, database design, and data
quality assessment. Motivated by the importance of dependency dis-
covery, this paper reviews the methods for functional dependency, con-
ditional functional dependency, approximate functional dependency
and inclusion dependency discovery in relational databases and a method
for discovering XML functional dependencies.

Keyword: integrity constraint, functional dependencies, inclusion de-
pendencies, conditional functional dependencies, XML, knowledge discovery,
data quality

1 Introduction

Dependencies play very important roles in database design, data quality
management and knowledge representation. Their uses in database design
and data quality management are presented in most database textbooks.
Dependencies in this case are extracted from the application requirements
and are used in the database normalization and are implemented in the
designed database to warrant data quality. In contrast, dependencies in
knowledge discovery are extracted from the existing data of the database.

1



The extraction process is called dependency discovery which aims to find all
dependencies satisfied by existing data.

Dependency discovery has attracted a lot of research interests from the
communities of database design, machine learning and knowledge discovery
since early 1980s [36, 18, 25, 5, 16, 21, 27, 40, 41, 3]. Two typical types
of dependencies are often involved in the discovery, functional dependencies
(FDs) and inclusion dependencies (INDs). FDs represent value consisten-
cies between two sets of attributes while INDs represent value reference
relationships between two sets of attributes. In recent years, the discov-
ery of conditional functional dependencies (CFDs) has also seen some work
[14, 8].

The aim of dependency discovery is to find important dependencies hold-
ing on the data of the database. These discovered dependencies represent
domain knowledge and can be used to verify database design and assess data
quality.

For example, by checking the data of a medical database which has
two columns Disease and Symptom, if pneumonia is a value of Disease and
fever is a value of Symptom, and if every pneumonia patient has a fever,
then fever is said associated with pneumonia. If such association happens
to every pair of Symptom and Disease values, then Disease functionally
determines Symptom and this is a functional dependency. If this were new
knowledge, it would help diagnose the disease more efficiently. In modern
health science, finding such associations and dependencies between DNA
segments and disease becomes very important to the development of medical
science.

Besides knowledge discovery, the dependencies discovered from existing
data can be used to verify if the dependencies defined on the database are
correct and complete [4, 22] and to check the semantics of data of an existing
database [30].

A further use of discovered dependencies is to assess the quality of data.
The fundamental role of dependency implementation in a database is to war-
rant the data quality of the database. Thus by analyzing the discovered de-
pendencies and the missed dependencies that should hold among attributes
of data, errors may be identified and inconsistencies among attributes may
be located. As a result, the data quality is assessed.

In recent years, the demand for improved data quality in databases has
been increasing and a lot of research effort in this area has been given to
dependency discovery [41, 3, 40, 14]. However as the research on dependency
discovery started at the very beginning of 1980s, some methods like the
partition-based methods and the negative cover-based methods have evolved
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in many versions in the literature [16, 19]. This imposes the need for a review
of all the methods proposed in the past and motivates the work of this paper.

In this paper, we review the methods developed in the literature for
discovering FDs, approximate FDs (AFDs), conditional FDs (CFDs), and
inclusion dependencies (INDs) in relational and XML databases, and other
topics relating to the discovery of the dependencies such as the discovery of
multivalued dependencies [12] and roll-up dependencies [7].

The paper is organized as the following, which is also shown in Figure
1. Section 2 reviews the methods used in FD discovery. This section also
includes a short description of multivalued dependency, roll-up dependency
and key discovery. Section 3 is a review of AFD discovery. Section 4 reviews
the discovery of CFDs. In Section 5, we review the definition of INDs and
the methods used in discovering INDs. In Section 6, a definition of XML
functional dependencies (XFDs) is introduced and a method of discovering
XFDs is reviewed. The section 7 concludes the paper.

FD discovery

AFD discovery

CFD discovery

IND discovery

XFD discovery

Top-down methods

Bottom-up methods

Performances of algorithms

Related topics

Candidate FDs

Partition (algo: TANE, FD_Miner)

Free-set (algo: FUN)

Negative Cover

Difference-set (algo: Dep_Mine, FastFDs)

Sampling

Maintain discovered FDs

Discover embedded FDs

Discover multivalued dependencies

Discover roll-up depedencies

Discover keys

Amstrong relations

Sampling

(algo: MIND, FIND, Zigzag)

(algo: level-wise, heuristic,

CTANE, CFDMiner, FastCFD)

Figure 1: Outline of methods reviewed

2 Discovery of functional dependencies

In this section, we give the definition of FDs and review the methods used
in FD discovery.

2.1 Definitions

Let R = {A1, ..., Am} be a database table schema and r be a set of tuples
from dom(A1) × · · · × dom(Am) where dom(A) represents the domain of
attribute A. The projection of a tuple t of r to a subset X ⊆ R is denoted
by t[X]. Similarly r[X] represents the projection of r to X. The number
of tuples in the projection, called the cardinality, is denoted by |r[X]|. For
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simplicity, we often omit braces when the context is clear. If X and Y are
sets and A is an attribute, XA means X ∪ {A} and XY means X ∪ Y .

Definition 2.1. A functional dependency (FD) is a statement X → Y
requiring that X functionally determines Y where X,Y ⊆ R. The depen-
dency is satisfied by a database instance r if for any two tuples t1, t2 ∈ r, if
t1[X] = t2[X] then t1[Y ] = t2[Y ]. X is called the left-hand side (lhs) or the
determinant and Y is called the right-hand side (rhs) or the dependent.

FDs defined in this way are called exact FDs because every pair of tu-
ples in r has to satisfy the condition. The term exact FD will be used to
distinguish other types of FD definitions shown later.

If relation r satisfies the dependency f , f is said supported by r, or valid
or holding on r. Otherwise, f is said violated by r or invalid on r.

Table 1: An example

ID Name Bdate Wage Supvsr
(I) (N) (B) (W) (S)

t1 e1 Bob d1 1 e5

t2 e2 John d1 1 e1

t3 e3 John d1 2 e1

t4 e4 Peter d3 2 e2

Example 2.1. Consider Table 1 and FDs N → B and B → S. The FD
N → B, meaning that Name functionally determines birthdate, is satisfied
by the table as we can not find a pair of tuples ti and tj such that ti[N ] =
tj [N ]∧ ti[B] ̸= tj [B]. In contrast, the FD B → S is violated because we can
find t1 and t2 such that t1[B] = t2[B] = d1 but t1[S] = e5 ̸= t2[S] = e1.

A FD is minimal if removing an attribute from its lhs makes it invalid.
Given a set Σ of FDs and a FD f , f is implied by Σ, denoted by Σ |= f ,

if any relation r satisfying Σ also satisfies f . Armstrong gives the following
sound and complete axiom of implication for FDs.
(i) If Y ⊆ X, then X → Y .
(ii) If X → Z, then XY → Z.
(iii) If X → Z and Z → W , then X → W .

Given a set Σ of FDs on R and a set X of attributes in R, the closure of
X, denoted by X+, is the set of all attributes that are directly or indirectly
dependent on X (including X itself) following Amstrong rules above. For
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example, if U → Z and Z → W and X = UY , then X+ = UY ZW . For
every attribute A ∈ X+, X → A holds.

Given a set Σ of all FDs defined on the database schema R, a cover σ of
Σ is a subset of Σ such that any FD in Σ is either in σ or is implied by σ,
denoted by σ |= Σ. A cover σ is minimal if removing any FD from σ causes
some FDs in Σ not implied, i.e., causes σ ̸|= Σ.

We note that minimal cover and minimal FD are two different concepts.
The former means that the set of FDs is minimal while the latter means
that the lhs of an individual FD is minimal.

In the context of this paper, we are interested in only the FDs with one
attribute on the rhs. We are so because it can be proved, from Armstrong
rules, that any relation satisfying X → A1A2 also satisfies X → A1 and
X → A2 or vice versa. We consider only the FDs with X ∩ Y = ϕ, i.e., we
are not interested in trivial FDs.

2.2 Methods of FD discovery

In this subsection, we review the methods proposed in the literature on FD
discovery. Based on [35], these methods are either top-down or bottom-up.
The top-down methods start with generating candidate FDs level-by-level,
from short lhs to long lhs, and then check the satisfaction of the candidate
FDs for satisfaction against the relation or its partitions. The bottom-up
methods, on the other hand, start with comparing tuples to get agree-sets
or difference-sets, then generate candidate FDs and check them against the
agree-sets or difference-sets for satisfaction. At the end of the subsection,
we show some performance comparison results.

2.2.1 Top-down methods

Top-down methods start with candidate FD generation. These methods
generate candidate FDs following an attribute lattice, test their satisfaction
and then use the satisfied FDs to prune candidate FDs at lower levels of the
lattice to reduce the search space. In the subsection, we first present can-
didate FD generation and pruning. We then present two specific methods:
the partition method (algorithms include TANE [16] and FD Mine [40]) and
the free-set method which uses the cardinality of projected relations to test
satisfaction (algorithm: FUN [33]).

Candidate FDs and pruning Candidate FDs (canFDs) are FD expres-
sions that are syntactically possible in a relation schema. Their satisfaction
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against the relation instance has not been tested.
Given schema R = {A1, · · · , Am}, canFDs are calculated using all pos-

sible attribute combinations of R as lhs. As we are only interested in min-
imal FDs with single attribute on the rhs, the number of attributes for
the lhs of a canFD contains at most (m − 1) attributes. For example,
the canFDs with zero attributes in their lhs are ϕ → A1, · · ·, ϕ → Am.
The canFDs with one attribute in their lhs can be A1 → A2, A1 → A3,
Am → Am−1 etc.. The canFDs with two attributes in lhs can be A1A2 → A3,
A1A2 → A4, Am−1Am → A1 etc.. The canFDs with (m− 1) attributes are
A1 · · ·Am−1 → Am, · · ·, A2 · · ·Am → A1. The lhs can be shown graphically
in an attribute lattice [16, 33, 19, 40].

An attribute lattice is a directed graph with the root node (said at
Level-0) contains no attribute and represented by ϕ. The children of the
root node are Level-1 nodes and each Level-1 node contains one attribute.

Totally Level-1 has

(
m
1

)
=m nodes 1. Each node at Level-2 contains a

combination of two attributes and thus there are

(
m
2

)
nodes at Level-2.

Other levels follow the same rule. Level-m is the final level and contains all
attributes. We use nij to mean the j-th node at Level-i. The same symbol
is also used to mean the attributes on the node. A directed edge is drawn
between the j-th node at Level-i and the k-th node at Level-(i+ 1) if nij ⊂
n(i+1)k. In this way, each edge represents the canFD nij → (n(i+1)k − nij).
Figure 2 shows a lattice of R = {A,B,C,D} where the edge between the first
node from left at Level-2 and the first node from left at Level-3 represent
the canFD AB → C. Node ABC is called the end of the canFD and Node
AB is called the parent node of ABC, and the edge “AB −ABC” is called
the parent edge of ABC.

By Pascal Triangle in mathematics, the total number of nodes in the
lattice is(

m
0

)
+

(
m
1

)
+

(
m
2

)
+

(
m
3

)
+ · · ·+

(
m
m− 1

)
= 2m

Because

(
m
h

)
=

(
m
m− h

)
, the lattice is symmetric to the middle

level if m is even or the middle two levels if m is odd. For example in Figure

1

(
m
h

)
means the number of combinations of h attributes out of m attributes. When

h = 0, it equals to 1.
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Figure 2: Attribute lattice

2, every Level-1 node has 3 edges to 3 Level-2 nodes and every Level-3 node
also has 3 edges to 3 Level-2 nodes. The total number of canFDs (edges) is(

m
0

)
×m+

(
m
1

)
×(m−1)+

(
m
2

)
×(m−2)+· · ·+

(
m
m− 1

)
×1 ≤ m

2
2m

where the equality holds when m is odd.
Let |r| represent the number of tuples in the database instance r. By

average, each FD involves m
2 attributes. Then the complexity of using nested

loop to test all canFDs shown in the lattice against r is O(|r|2(m2 )(
m
2 )2

m).
This complexity is also the worst complexity of all proposed methods in the
literature.

Because the number of canFDs is exponential to the number of at-
tributes, pruning implied FDs from the lattice becomes important to many
of the proposed methods. FD pruning is to remove the canFDs (edges) in
the lattice implied by the discovered FDs so that we do not check them
against r. For example in Figure 2, if A → C is supported, then AB → C
is implied based on Armstrong rules and therefore does not need checking.

The following essential pruning rules, which can be proved following
Amstrong rules in Section 2.1, are used in the literature [16, 34, 40]. Let Σ
be a set of found FDs, X,Y be two subsets of R and A,B be two attributes
in R, X ∩ Y = ϕ, A,B ̸∈ X and A,B ̸∈ Y and A ̸= B.
(1) If X → A ∈ Σ, XZ → A is implied and no checking is needed;
(2) If X → A ∈ Σ and if XAY → B is a candidate FD, instead of

checking XAY → B, we should check XY → B. With top-down
level-wise checking, XY → B must have been checked at the previous
level, and thus no checking is needed.

(3) If X is a key, any node containing X is removed.
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The pruning rules are of two categories: Rules (1) and (2) prune edges
while Rule (3) prunes nodes.

Besides these essential rules, a few other rules are also proposed. FD Mine
[40] uses symmetric FDs (e.g., X → Y and Y → X are symmetric) to re-
move attribute set (e.g., Y ) from R to reduce the size of the lattice. FUN
[34] prunes non-free-sets to reduce the size of the lattice with the closure
calculation to cover the lost canFDs. FastFDs [39], a bottom-up method
though, uses difference-sets to prune lattice nodes to compute satisfied FDs.

The above essential rules can be unified to the following level-wise al-
gorithm which computes a cover of all FDs holding on r and which is a
variation of the algorithms proposed in [16, 34, 40].

The algorithm checks FD satisfaction by following the attribute lattice
from left to right and from top to bottom. The reason for the top-down
traversal is that the FDs at top levels have less attributes on the lhs. If a
FD like A → C is discovered, other candidate FDs like AX → C can be
pruned (Rule (1) above). This is more efficient than the bottom-up traversal
of the lattice where if AX → C is supported, we still have to check FDs
with less attributes such as A → C and X → C.

In Algorithm 1, Line 7 implements pruning rule (3). Line 11 implements
pruning rules (1) and (2). In Line 12, supp(f, r) checks canFD f against
relation r, if f is supported, the function returns true. Otherwise, it returns
false.

Lemma 2.1. Algorithm 1 gives minimal FDs.

Proof. As the algorithm traverses the lattice level-wise, we need to prove
that for anyX → A in Σ (discovered FDs), if no other FDs like f = XY → A
are added to Σ, the FDs in Σ are minimal. Actually the condition “∃X →
A ∈ Σ s.t. X ⊂ q and XA ⊂ c” in Line 11 detects this situation. If the
candidate FD is f = XY → A, then q = XY and c = XY A. This makes
the condition true, f is pruned and will not add f to Σ. 2

We now use an example to show FD pruning with the Algorithm. In
Figure 2(b), we assume that A → C is in Σ. Then FDs represented by
the dotted lines will be pruned by Rule (1) and the FDs represented by the
dashed lines will be pruned by Rule (2).

From the example, we see that when FDs with a single attribute on the
rhs are discovered, they become very important to pruning large number
of edges and to reducing the complexity of the calculation. Such FDs of-
ten exist in databases. For example the email address of people, the tax
file number of people, the identification number of students, bar code of
products, registration number of vehicle and so on.
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Algorithm 1: Candidate FD and pruning

Input: A relation schema R and its instance r
Output: A set Σ of FDs discovered from r

1 begin
2 let Σ store found FDs and K store found keys;
3 for each level l = 2 to |R| − 1 do
4 for each node p at Level-(l − 1) do
5 generate all child nodes C at Level-l of p;
6 for each node c ∈ C do
7 if c contains a key then delete c, next loop;
8 if c is a key, add c to K then ;
9 for each parent node q at Level-(l − 1) of c do

10 let f be the FD q → (c− q);
11 if ∃X → A ∈ Σ s.t. X ⊂ q and XA ⊂ c then f is

implied by X → A and is pruned.;
12 else if supp(f, r) == true then f is supported, add f

to Σ;
13 else f is not supported by r and is ignored;

The worst case performance of the algorithm is exponential as analyzed
before. This happens when the lhs of all FDs contain almost all attributes of
the relation. In this case, all edges of the lattice needs to be tested against
the database.

Lemma 2.2. Algorithm 1 gives a cover of all FDs supported by r.

Proof. All candidate FDs are in the lattice. The pruning process (Line 11)
deletes implied FDs. Line 13 ignores unsupported FDs. Line 12 adds all
other FDs to Σ. No other parts of the algorithm delete FDs. Thus the FDs
in Σ form a cover of all supported FDs. 2

We note that Algorithm 1 gives a cover, but this cover may not be
minimal. The reason is that the calculation does not use the transitivity
rule of FD implication and can add implied FDs to Σ. For example, it can
add in order A1 → A2, A1 → A3 and A2 → A3 to Σ and here A1 → A3 is
implied by the other two.

In summary, we presented an algorithm that can prune candidate FDs
and nodes of the lattice after a set of FDs and a set of keys are discovered.
The next main problem is how a candidate FD can be tested efficiently
against the relation r, i.e., how supp(f, r) in Algorithm 1 can be calculated
efficiently. The methods will be presented next.
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The partition method
The partition semantics of relations is proposed in [10]. The semantics is
used in [16, 19, 40] to check the satisfaction of candidate FDs. We call
the methods using the partition semantics the partition methods. The al-
gorithms implementing the method include TANE [16] and FD Mine [40].
Both TANE and FD Mine use the essential pruning rules on Page 7, but
FD Mine uses symmetric FDs too.

We note that, although we use the term ‘partition method’ to mean a
category of algorithms, the concept ‘partition’ is also used in the algorithms
of other categories, such as the free-set method and the bottom-up methods,
to optimize performance.

Given a relation r on R and a set X of attributes in R, the partition of r
by X, denoted by PX , is a set of non-empty disjoint subsets and each subset
contains the identifiers of all tuples in r having the same X value. Each
subset of a partition is called an equivalent class. A stripped partition is a
partition where subsets containing only one tuple identifier are removed.

Example 2.2. Consider the relation in Table 1. Then PI = {{t1}, {t2}, {t3}, {t4}},
PNB = {{t1}, {t2, t3}, {t4}}, PN = {{t1}, {t2, t3}, {t4}} and PW = {{t1, t2}, {t3, t4}}.
{t1, t2} is an equivalent class of PW .

Given two partitions PX and PY , PX is a refinement of PY , denoted by
PX ≼ PY , if for every subset u ∈ PX , there exists a subset v ∈ PY such
that u ⊆ v. PX = PY iff PX ≼ PY and PY ≼ PX .

Example 2.3. In Example 2.2, PI ≼ PNB = PN and PI ≼ PW .

Theorem 2.1. [19] The FD X → A holds on r if PX ≼ PA

Based on Example 2.3, I → NB (and therefore I → N and I → B),
NB → N , N → NB, and I → W .

The following theorem is an extension of Theorem 2.1. It is very use-
ful for testing FD satisfaction as its attribute combinations, X and XA,
correspond to the two nodes connected by an edge in the attribute lattice.

Theorem 2.2. [16, 19] The FD X → A holds on r iff one of the follows is
true:
(1) PX = PXA or (2) |PX | = |PXA|.

As an example in Table 1, PN = {{t1}, {t2, t3}, {t4}}, PNB = {{t1}, {t2, t3}, {t4}}.
So N → B.
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The product of two partitions PX and PY is defined [10] to be

PX × PY = {pij | pij = qi ∩ wj ∧ pij ̸= ϕ ∧ qi ∈ PX ∧ wj ∈ PY }

Example 2.4. In Table 1, PN = {{t1}, {t2, t3}, {t4}} and PB = {{t1, t2, t3}, {t4}}.
So PN × PB = {{t1}, {t2, t3}, {t4}}.

Theorem 2.3. [10] PXY = PX × PY = PY × PX .

By comparing PN × PB in Examples 2.4 and PNB in Example 2.2, we
see that PN × PB = PNB and the theorem is true.

Now we present how partitions are used with the attribute lattice of R.
Firstly the database instance r is scanned to obtain the partition for each
attribute of R and the partition is stored on the corresponding Level-1 node
of the lattice. We note that the partitions are much smaller in bytes than the
actual database. The partitions of multiple attributes are then calculated
in the partitions of single attributes and r is not accessed any more. That
is, the partition for each node at Level-i is calculated in the partitions of
two parent nodes at Level-(i − 1). For example in Figure 2, to calculate
the partition PABC for node ’ABC’, we use the partition PAB for node ’AB’
and the partition PAC for node ’AC’. If PAB = PABC , then by Theorem 2.2,
AB → C is true.

We analyze the complexity of the partition method. Let m = |R|. The
time complexity for computing the partitions of single attributes is O(m|r|2)
2. The time complexity for a partition product is O(|r|2). So the time com-
plexity for the partition method is O(m|r|2 + |r|2m2 2

m) where m
2 2

m is the
total number of possible candidate FDs. In comparison to the time com-
plexity of nested loop approach on Page 7, the partition method is m

2 times
faster than the nested loop method. By using hash to compute attribute par-
titions and a linear algorithm proposed in TANE [16] to compute partition
products, this complexity can be reduced to O(m|r|+ |r|m2 2

m).
To store partitions, the partition methods need to allocate space to each

node at two levels: Level-(i − 1) and Level-(i). Thus the algorithm has
extra space cost in comparison to the nested loop approach. The extra cost
is formulated as O(|r|(2m/sqr(m))) where 2m/sqr(m) is the maximal width
of the attribute lattice in the number of nodes [16].

2If quick-sort is used, the complexity is O(|r| × log|r|). However, as |r| becomes large,
quick-sort runs out of memory.
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Free-set
The free-set approach is proposed in [34, 33] and the algorithm implementing
the approach is called FUN. FUN uses the cardinality of projection r[X] to
test FD satisfaction: |r[X]| = |r[XA]| iff X → A. We note that |r[X]| is the
same as the number of equivalent classes in the partition of X.

A free set is a minimal set X of attributes in schema R such that for
any subset Y of X, |r[Y ]| < |r[X]|. Thus, every single attribute is a free set
because they do not have a subset. If X is a free set, A ∈ (R − X), and
|X| < |XA| and |A| < |XA|, then XA is another free set. The lhs of any
minimal FD is necessarily a free set. The free set of relation r, denoted by
Fr(r), is a set of all free sets on r. A non-free-set is a set whose cardinality
equals to the cardinality of some of its subsets. A superset of a non-free-set
is also a non-free-set.

To calculate the FDs supported by r, two more concepts are needed:
attribute closure X+ and quasi-attribute closure X⋄.

The closure of set X is calculated using cardinality as X+ = X+{A|A ∈
(R −X) ∧ |r[X]| = |r[XA]|}. That is, X+ contains attribute A on a node
at the next level if X → A.

The quasi-closure of X is X⋄ = X +(X −A1)
++ · · ·+(X −Ak)

+ where
X = A1 · · ·Ak. In fact X⋄ contains the attributes on all the parent nodes
of X and all the dependent nodes of the parent nodes.

The FDs are constructed using members of Fr(r) and the two closures:
FD = {X → A|X ∈ Fr(r) ∧A ∈ (X+ −X⋄)}.

The pruning rule of the free-set method is to prune non-fee-sets X (a
node). The method then covers the FDs ending at X by calculating the
closure of the parent free-set nodes Y of X with the cardinality of the free-
sets and without accessing the partitions. The essential pruning rules on
Page 7 are also used in the method.

The algorithm traverses the attribute lattice level-wise. At Level-1, the
cardinality of all single attributes are computed. Quasi-closure of each at-
tribute at Level-1 is set to itself. At Level-2, the combinations of two at-
tributes are computed from non-key attributes at Level-1. Then the car-
dinality for 2-attribute combinations is calculated. If the cardinality of a
2-attribute combination X is the same as the cardinality of its parent P at
the previous level: card(X) = card(P ), (1) P+ = P++X; (2) P → (X−P );
and (3) X is a non-free set and does not participate future node generation.
After the closure of every attribute set P at the previous level is calculated,
the quasi-closure of every attribute set X at the current level is calculated.
Then the algorithm moves to node generation at Level-3.

For example, consider the relation in Table 1. Let X : n represent
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the attribute set X and its cardinality. Then at Level-1: the nodes are
I : 4, N : 3, B : 2, W : 2, S : 3. I is a key and does not participate new
node generation at the next level. At Level-2: the nodes are NB : 3, NW :
4, NS : 3, BW : 3, BS : 3, WS : 4. WS and NW are keys. From Level-
2 cardinalities, we find card(NB) = card(N) and card(NS) = card(N),
so N → B and N → S, NB and NS are non-free-sets. N+ = NBS.
The closure of Level-1 attributes: N+ = NBS, B+ = B, W+ = W , and
S+ = NBS. As an example, the quasi-closure of NB is NB⋄ = NBS.

The complexity of this approach includes the cost of computing free
sets and the cost of computing FDs. Let h = |Fr(r)| and m = |R|. The
complexity of computing Fr(r) is O(h|r|m/2) where by average a free set
has m/2 attributes. The cost of computing X+, X⋄ and FDs is exponential
to m in the worst case as the calculation follows the attribute lattice.

2.2.2 Bottom-up methods

Different from the top-down methods above, bottom-up methods compare
the tuples of the relation to find agree-sets or difference-sets. These sets
are then used to derive FDs satisfied by the relation. The feature of these
methods is that they do not check candidate FDs against the relation for
satisfaction, but check candidate FDs against the computed agree-sets or
difference-sets. The seminal work for this type of methods is [24].

Negative cover
A negative cover [35, 22] is a cover of all FDs violated by the relation 3.
Negative cover is calculated using agree-sets of tuples of the relation [22].

The agree-set of two tuples t1 and t2, denoted by ag(t1, t2), is the maximal
set X of attributes such that t1[X] = t2[X]. The set of all agree-sets on
relation r is denoted by ag(r).

Example 2.5. For example in Table 1, ag(t1, t2) = BW , ag(t1, t3) = B,
ag(t1, t4) = ϕ, ag(t2, t3) = NBS, ag(t2, t4) = ϕ, ag(t3, t4) = W . ag(r) is a
set containing all these sets as subsets: ag(r) = {BW,B,NBS,W}.

Agree-sets can be calculated from attribute partitions. Given the parti-
tion PA of attribute A and two tuples t1 and t2, A is in ag(t1, t2) if there
exists a subset c in PA such that t1 and t2 are contained in c. For efficiency
reasons, stripped partitions are often used in the calculation [22].

3The term violated FD is the same as the terms of excluded FD [15] and functional
independency [5]
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The property of agree sets is that if ag(t1, t2) = X, then for any A ∈
(R − X) (t1[A] ̸= t2[A]). In other words, X → A is violated by t1 and t2.
This is the basic principle of the negative cover approach.

The max-set of an attribute A, denoted by max(A), contains maximal
agree-sets that do not include A:

max(A) = {X|X ∈ ag(r) ∧A ̸∈ X∧ ̸ ∃ Y ∈ ag(r)(X ⊂ Y )}

Because X does not include A, X → A is violated by at least one pair of
tuples. Because ̸ ∃ Y ∈ ag(r)(X ⊂ Y ), so X is a maximal set. The reason
for selecting maximal set X from ag(r) is that if XY → A is violated by
a pair of tuples, then X → A and Y → A are also violated by the same
pair. For efficiency reasons, we just need to consider the maximal set, not
all agree-sets.

The max-sets of all attributes form a cover of the negative closure [35]
which contains all FDs that are violated by the relation.

Example 2.6. From example 2.5, max(I) = {BW,NBS}, max(N) =
{BW}, max(B) = {W}, max(W ) = {NBS}, max(S) = {BW}.

The max-sets are then used to derive FDs supported by r. The FDs
with the rhs A, denoted by FD(A), are formulated in two steps [15].

FD1(A) = {X → A|X ∈ (R−A)∧ ̸ ∃ Y ∈ max(A)(X ⊆ Y )}

FD(A) = {f |f ∈ FD1(A)∧ ̸ ∃ g ∈ FD1(A)(lhs(g) ⊆ lhs(f))}

The derivation is based on the observation that for any Y ∈ max(A),
Y → A is violated by at least a pair of tuples of r; if some attributes V are
added to Y such that Y V is not in max(A), then Y V → A is satisfied. As
a result, as X is not a subset of any of such Y , X → A must be satisfied.
The second formula says that FD(A) contains only minimal FDs.

Guided by the formula, FD(A) can be derived as follows [23]. Let L
be the set of all attributes in max(A). We first check every single attribute
B ∈ L, if B is not contained in any set ofmax(A), we add B → A to FD(A).
We next check combinations of two attributes from L. If a combination, say
BC, is not contained in any subset of max(A) and does not contain the lhs
of any FD in FD(A), we add BC → A to FD(A). This process continues
until combinations of three, four, · · ·, all attribute combinations of R not
containing A are checked. The pruning rule (1) on Page 7 is used to reduce
the number of combinations to be checked.
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Example 2.7. From example 2.6, max(I) = {BW,NBS}. As all single
attributes other than I are contained in an element of max(I), no sin-
gle attributes determine I. We next consider the combinations of two at-
tributes: NB, NW, NS, BW, BS, WS. Among these, NW and WS are
not contained in any element of max(I). Thus NW → I and WS → I are
added to FD(I). We then consider the combinations of three attributes:
NBW, NBS, NWS, BWS. Among these, NBS is in max(I), NBW ,
NWS and BWS contain the lhs of a FD in FD(I). As a result, there is
not FD derived from the combinations of three attributes. Neither from the
combination of four. Finally, FD(I) = {NW → I,WS → I}. 2

The complexity of the negative cover approach is exponential to the num-
ber of attributes in R as in the worst case. To compute the agree set ag(r),
m|r|2 comparisons are needed where m = |R|. Computing max(A), for all
A in R, takes m|ag(r)|2 comparisons. Finally deriving FDs from max(A),

for all A, takes m|max(A)| |L|2 2|L| where |L|
2 2|L| is the number of candidate

FDs (see Section 2.2.1) and L contains all attributes in max(A). The total

complexity of the approach is O(m|r|2+m|ag(r)|2+m|max(A)| |L|2 2|L|). The
worst case is L = R.

Different variations of the negative cover approach are proposed in [12].
Different from using max-set to derive satisfied FDs directly, the work

in [22] uses the complement of maximal agree sets to compute satisfied FDs.
This approach is reviewed together with the difference-set approach below.

Difference-sets
The term difference-set is same as necessary-set [24] and the complement of
max-set [22]. The method difference-set employs an opposite thinking from
negative cover. The different-set of an attribute A, denoted by dif(A), is
a set containing subsets of attributes such that whenever attribute A has
different values on two tuples, a subset in dif(A) has different values on the
same two tuples too [39].

Once dif(A) is obtained, the lhs of satisfied FDs should contain an at-
tribute from each subset of dif(A).

Although the principle of deriving the lhs of satisfied FDs is simple,
the search space of satisfied FD calculation is exponential to the number
of all attributes in dif(A). An algorithm called Dep-Miner is proposed in
[22] for this purpose. Let R′ contain all attributes appearing in any subset
of dif(A). Dep-Miner essentially considers all possible combinations of R′

level-by-level following the attribute lattice of R′. The lhs of a satisfied FD
is a combination in the lattice that intersects with all subsets of dif(A).
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The complexity of this level-wise approach would be similar to that of the
negative cover.

To reduce the complexity, an algorithm called FastFDs is proposed in
[39]. The algorithm constructs a lattice using the elements of a difference-set
following a depth-first manner. The construction process ends with a cover
of all FDs satisfied. Theoretically the number of the nodes in the constructed
lattice is exponential to the number of attributes in the difference-set. The
algorithm uses the subsets of the difference-set to reduce the size of the
lattice.

We give some details of FastFDs. Each node of the constructed lattice
contains a difference-set and an attribute set. The difference-set on the root
node is dif(A) and the attribute set is Rp containing all attributes of dif(A).
The attribute set is ordered descendingly by the number of subsets in dif(A)
that they cover and, if there is a tie, by their alphabetics. A node has |Rp|
child nodes and the edge ei to the i-th child node ci is labeled by the i-th
attribute ai of Rp. The difference-set Dci of the child node ci contains all
the subsets of dif(A) not containing the label ai; and the attribute set Rci

of ci contains all attributes of Dci that are on the rhs of ai in Rp and is
ordered based on Dci. A leaf node of the lattice is of two cases: (1) it has
an empty difference-set and an empty attribute set. In this case, the labels
on the edges leading to the leaf node (EtoLN) form the lhs of a satisfied
FD; the minimality of lhs needs to be checked when new lhs is added to the
discovered set; (2) it has a non-empty difference-set, but an empty attribute
set. This case means that the labels on the EtoLN do not constitute the lhs
of a satisfied FD.

As an example, consider Table 1. After redundant sets, equal to the
union of some other subsets, are removed, dif(I) = {NS,W,NBS}. The
lattice for the different set is given in Figure 3 where ’{ }’ contains a
difference-set and ’[ ]’ the attribute set of the difference-set.

{NS,W,NBS}[NSBW]

{W}[W]

N

{}[]

W

NW®I

{}[]

SW®I

{W}[W]

S

{}[]

W

{}[]

{NS,W}[W]

B

W

{NS}[]

{NS,NBS}[]

W

Case(2)

Case(2)

Figure 3: Lattice for a difference-set
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2.3 Related topics to FD discovery

In this section, we briefly discuss the topics relating to FD discovery.

Sampling When a relation r is large, the cost of checking a candidate FD
against r can be very high. To reduce the time for checking a candidate FD
against r, sampling is a method proposed in the literature for this purpose.

Let f be a candidate FD, s be a small sample of relation r, δ ∈ [0, 1] a
small confidence parameter. The principle of sampling is that if f is satisfied
by tuples in s, f is satisfied by r with the confidence (1− δ); if f is violated
by tuples in s, f is violated by r firmly [20]. Using this principle, candidate
FDs not holding on r can be pruned efficiently. As sampling is often used
together with other methods, we will review details as we proceed.

Maintenance of discovered FDs [5] In this section, we assume that a
relation r is given and all FDs supported by r have been discovered and are
stored in Σ. We investigate how Σ is to change when a tuple is inserted or
deleted from r.

Intuitively the insertion of a new tuple t may cause some FDs in Σ to
be violated but no new FDs will be added. That is, insertion causes valid
FDs to become less. In contrast, the deletion of a tuple from r may cause
some invalid FDs to become valid, but no FDs in Σ will be removed. That
is, deletion may cause new FDs added to Σ.

When a tuple t is inserted to r, the FDs can be maintained in the fol-
lowing way [5]. For each FD X → A in Σ, let X+ be the attribute closure
[2] computed from Σ. After the insertion operation, compute

q = SELECT X+ FROM r WHERE X = t[X]

If |q| = 1, the insertion does not effect Σ. If |q| > 1, there must exist B in
X+ that has different values in q[X+]. Find Z → B in Σ such that Z ⊆ X+

and delete Z → B from Σ.
When a tuple t is deleted from r, the FDs holding on r shall still hold

on (r − t). However new FDs may be added to Σ as the deletion may
remove violating tuples of some FDs. Unfortunately there is no simple way
to calculate new FDs to be added, but to re-apply FD discovery algorithms
to (r − t) [5] because there is no easy way to know if the deleted tuple was
the only tuple violating the to-be-added FDs.

Embedded FDs [34] defines embedded FDs (EFDs) to be the FDs sat-
isfied by a projected relation. That is, if R′ ⊂ R and r′ = r[R′], EFDs are
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all FDs satisfied by r and r′. [34] claims that EFDs can not be obtained by
deleting the FDs with some attributes in (R−R′). Instead, EFDs are calcu-
lated using the free-set method reviewed in a previous section. Firstly the
embedded free-set Fr(r′) is calculated: Fr(r′) = {X ′|X ′ ∈ Fr(r)∧X ′ ⊂ R′}.
Then the EFDs are calculated by accessing r′ to calculate the closure and
the quasi-closure of the embedded free-set: EFDs(r′) = {X ′ → A|X ′ ∈
Fr(r′) ∧A ∈ ((X ′+

r′ −X ′⋄
r′ ) ∩R′)}.

Embedded FDs have uses in materialized views. If materialized views
are projected from some source relations and we know the FDs holding on
the source relations, using the above approach, we can calculate the FDs
holding on the views more efficiently.

Discover multivalued dependencies Amultivalued dependency (MVD)
[2] represents the requirement that the existence of some tuples is determined
by values of some other tuples. MVDs are important constraints in database
normalization.

The work in [12] uses three variations of an induction algorithm to dis-
cover MVDs from data. These algorithms are specialized from the same
general algorithms from which FD discovery algorithms are generated.

Discover roll-up dependencies The concept of roll-up dependency (RUD)
[7] is proposed to be used in data warehouses to determine roll-up granularity
along hierarchical dimensions of data. As an example, assume that the re-
lation schema R(station, T ime, Temperature) describes thermometer read-
ings of weather stations. The RUD {(Time,HOUR), (Station,REGION)} →
(Temperature, INTEGER) indicates that when the temperature readings,
converted to the nearest integer, should be the same for stations in the same
region in the same hour.

The work in [7] shows that given a relation r over schema R, a gen-
eralization schema H, a support threshold and a confidence threshold, the
problem of finding RUDs is exponential to |R| and polynomial to |r|. An
algorithm is also proposed in the paper.

Discover keys Key discovery is a special case of FD discovery. The fol-
lowing theorem tests if a set of attributes form a key for relation r.

Theorem 2.4.
(1) [34, 19] Let X be a subset of R and r be a relation. X is a key of
r iff |r[X]| = |r|.
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(2) An attribute A ∈ R is a key iff A is not in any of the agree sets of
relation r.

With regard to (1), the main concern of the theorem is cardinality cal-
culation. The cardinality |r| can be obtained from the metadata of r. The
cardinality of |r[X]| is calculated in two cases. If X contains one attribute,
the |r[X]| can also be obtained from the metadata of r like |r| [17]. If X
contains multiple attributes, the partition method presented in a previous
section can be used to determine |r[X]| [34]. As the partition method follows
the attribute lattice breadth-first, if |r[X]| = |r|, X is a minimal key.

The work in [4] shows that given a set of FDs, the problem of deciding
whether there is a key of at most k attributes is NP-Complete.

Armstrong relations An Armstrong relation [4] over a setR of attributes
and a set Σ of FDs is a relation over R that satisfies every FD in Σ. The
importance of the relation is that by populating such a relation, a database
designer can verify if a FD in Σ is incorrectly defined and can realize, by
reading the example data, if any FD is missed from Σ. Based on [4], the num-

ber of tuples of a minimal Armstrong relations is between

(
m

⌊m/2⌋

)
/m2

and

(
m

⌊m/2⌋

)
(1 + (c/m1/2)) where c is a constant and m is the number

of attributes in R, and the time complexity of populating an Armstrong
relation is exponential to m.

The work in [30] defines an Armstrong database for an existing database
and proves the bound for the Armstrong database. The constraints of the
Armstrong database is discovered from the existing database.

3 Discovery of approximate FDs

The term approximate functional dependency [20] (AFD) is about the ap-
proximate satisfaction of a normal FD f : X → Y . An AFD requires the
normal FD to be satisfied by most tuples of relation r. In other words, the
AFD f holding on r still allows a very small portion of tuples of r to violate
f . Obviously AFDs include exact FDs.

To define the word approximate more accurately, violating tuples are
used to calculate a satisfaction error g(f, r). If g(f, r) is less than or equal
to the satisfaction threshold ϵ, f is said approximately satisfied by r or is
ϵ-good. Otherwise, f is approximately violated by r or is ϵ-bad.
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A number of methods have been proposed to calculate the satisfaction
error. These methods are summarized and compared in [13]. In this paper,
we review a method proposed in [20] that calculates the satisfaction error
using the percentage of the tuples to be deleted to make a relation exactly
satisfy the dependency:

g3(X → A, r) = 1− max{|s| | s ⊆ r, s |= X → A}
|r|

To check AFDs against r, the methods reviewed previously for checking
exact FD satisfaction can be adapted by adding satisfaction error calcu-
lation. One such example is the work in [23] which proposes the nega-
tive cover method (on Page 13). The idea of negative cover is that, for
any set Z ∈ max(A), Z → A is violated by relation r. However with
AFD discovery, if Z → A is not violated by majority of tuples, i.e., if
g3(Z → A, r) ≤ threshold, Z → A is an AFD discovered. The paper pro-
poses an SQL query to calculate error.

The sampling method proposed in [20] is another approach to AFD
discovery. As sampling uses a small portion of tuples to decide if an AFD
f holds on the whole relation r, it puts extra conceptual complexity to the
problem. Let s be a random sample of relation r. There are two cases if we
test f against s. If f is satisfied or approximately satisfied by s, it may be
violated by tuples in r− s. If f is violated by a small portion of tuples in s,
it may be satisfied by r because the tuples in r − s can be all satisfying.

To describe the probabilistic situations between the satisfaction by s and
approximate satisfaction by r, a confidence parameter δ is introduced. With
this parameter, if f is satisfied by s, we then claim that f is satisfied by r
with the probability of (1− δ).

Following the same reasoning, a cover of AFDs holding on s becomes a
probabilistic cover holding on r.

The size of the random sample affects the accuracy of the cover although
it does not fully determine the accuracy. A larger sample may not contain
any violating tuples of r, but a smaller sample may contain most violating
tuples. Therefore determining the size of the sample becomes very impor-
tant. [20] proposes the bounds to decide |s| in terms of δ, ϵ, and the size of
r.

|s| ≥ max

{
8

ϵ
ln

2

δ
,

2

ϵ

⌈
log(2/δ)

log(4/3)

⌉ ⌈
(2|r|ln2)1/2 + 1

⌉}
We comment that there is a difference between using sampling to test

exact FDs and to test approximate FDs. In case of exact FDs, sampling
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is used to efficiently remove invalid FDs. The principle is that if an FD
is violated exactly by a sample s of relation r, it is also violated exactly
by r. With this principle, candidate FDs not satisfied by s are efficiently
removed. The remaining candidate FDs satisfied by s, denoted by dep(s),
need further testing because some FDs in dep(s) may not be satisfied by r.
Thus we check each FD f ∈ dep(s) against r, if f is satisfied by r, we put f
in dep(r). In the end, dep(r) contains all dependencies exactly satisfied by
r and is an exact cover of all FDs satisfied by r.

In contrast, in the context of approximate FDs, a cover of AFDs discov-
ered from a sample is a probabilistic cover on r.

An alternative name to AFD is soft FD proposed in [17] although [17]
studies FDs with single attribute on the lhs only. [17] proposes a sample
based approach that uses the system catalog to retrieve the number of dis-
tinct values of a column. Let s be a sample of relation r. The principle of this
approach is that if s has a reasonable size and |s[A]| > (1− ϵ)|s[AB]|, then
the soft FD A → B holds on r with the probability of more than (1 − ϵ).
This principle has the same origin as |r[X]| = |r[XA]| used the partition
method reviewed in a previous section. Attribute correlations are calcu-
lated based on a measure called mean-square contingency which coincides
with χ2 distribution and from which probabilistic properties of discovered
FDs are studied.

[19] uses the error measure of super keys to determine the approximate
satisfaction of FDs and shows that X → A iff g3(X) = g3(XA) where
g3(Z) = 1 − |r[Z]|/|r| is the minimum fraction of rows that need to be
removed from r for Z to be a super key.

[16] extends its partition method to compute approximate satisfaction
by using the error measure g3(X → A).

4 Discovery of conditional FDs

Conditional FDs (CFDs) are a new type of constraints that extend the
traditional functional dependencies for data cleaning purpose [6]. Although
CFDs are new to the database community, the work on CFD discovery has
started [14, 11]. This section reviews the definition of CFDs and the work
on CFD discovery.

Definition 4.1. Given two subsetsX and Y of attributes of R, a conditional
FD (CFD) is a statement (X → Y, S) where S is a pattern tableau on XY .
A tuple t in a relation r on R satisfies a pattern tuple p in S, denoted by
t[X] ≍ p[X], if for every A ∈ X (p[A] =′-′ or p[A] = t[A]). A CFD is satisfied
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by relation r over R iff for any two tuples t1, t2 ∈ r and for each pattern
tuple p in S, if t1[X] = t2[X] ≍ p[X] then t1[Y ] = t2[Y ] ≍ p[X]. 2

In the definition, X → Y is called the embedded FD. This statement is
same as the statement of a normal FD. We like to point out that the term
embedded FD here is different from the same term on Page 17.

For example consider Table 1. Let (NB → S, S1) be the CFD defining
that people born on the date d1 with the name John must have the super-
visor e1 where tableau S1 is given in Table 2. The tuples matching the lhs
of the pattern tuple are t2 and t3 of Table 1. Because t2[NB] = t3[NB] =
< John, d1 > ≍ p[NB], and t2[S] = t3[S] = < e1 > ≍ p[S], the CFD is
satisfied.

In contrast, we consider the CFD (NB → S, S2) which again has the
same statement as in the previous example but the pattern tableau S2 (Table
2) contains the wildcard ’-’. The tuples matching the lhs of the pattern tuple
are the first three tuples of Table 1. Because t1[S] = < e5 > ̸≍ p[S], the
CFD is violated.

Table 2: CFD tableaus

S1

N B S

John d1 e1

S2

N B S

- d1 e1

Now we give the differences between the terms of exact FDs, approximate
FDs and conditional FDs. Exact FDs (Definition 2.1) and Approximate FDs
(Section 3) are all about the same statement X → Y . The difference is on
the degree of satisfaction. Exact FDs require X → Y to be satisfied by all
tuples of a relation while AFDs allows a small portion of tuples to violate the
FD statement. Conditional FDs use a different statement (X → Y, S) and
the satisfaction is tested against only the tuples that match the tableau. A
CFD is equivalent to an exact FD if the tableau contains a sole pattern tuple
with only ’-’ values. Like FDs, CFDs can also be satisfied approximately [9],
meaning that the checking allows a small portion of match tuples to violate
the CFD conditions.

4.1 CFD discovery

On the discovery of CFDs, challenges are from two areas. Like in normal
FDs, the number of candidate embedded FDs for possible CFDs is exponen-
tial. At the same time, the discovery of the optimal tableau for an embedded
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FD is NP-Complete [14]. By optimal, it means that the tableau should con-
tain patterns that maximize the number of tuples matching the FD while
not allowing any violations.

A level-wise algorithm is proposed in [8] to discover CFDs. Candi-
date FDs are derived from the attribute lattice. The principle used in this
algorithm is based on the properties of attribute partitions. All the tuples
in an equivalent class of partition P (Y ) have the same value on Y . If an
equivalent class c in P (XA) equals to an equivalent class in P (X), the tuples
of c have the same value on A.

Given a candidate FD X → A, the lhs X is divided into to subsets
Q and W , Q is called the condition set and W is called the variable set.
The algorithm assumes the partitions of P (Q), P (X) and P (XA). It then
calculates a set UX to contain all equivalent classes in P (X) that have at leat
l tuples (the support) and equal to or are contained in an equivalent class
in P (XA). Finally a pattern tuple for the tableau of the CFD is discovered
if there exists an equivalent class z in P (Q) such that the tuples of z are
contained in UX . The pattern tuple is < z[Q],−|− > if z is not an equivalent
class in P (XA); otherwise, the pattern tuple is < z[Q],−|z[A] >.

Consider Table 2 and a candidate FD NB → S where X = NB and
A = S. We let Q = N and l ≥ 2. Then P (N) = P (NB) = P (NBS) =
{{t1}, {t2, t3}, {t4}} and UX = {{t2, t3}}. Consider the second equivalent
class z = {t2, t3} in P (N), as the tuples of z are in UX and z is in P (NBS),
the pattern tuple < john,− | e1 > is produced.

A greedy approximation algorithm is proposed in [14] to compute
a close-to-optimal tableau for a CFD when the embedded FD is given. The
closeness of the discovered tableau to the optimal tableau is controlled by
two parameters namely the support and the confidence. Given an embedded
FD X → Y and for each tuple t in a relation r, the algorithm computes
candidate patterns by considering all possible combinations of values in t[X]
and this results in an exponential number of candidate patterns in |X|:
|r[X]|2|X|. Then for each candidate pattern, the algorithm computes support
and confidence. Further it iteratively chooses patterns with highest support
over the support threshold to be included in the tableau. The algorithm is
claimed to have time complexity of |r|2|X|.

While a normal tableau, called a hold tableau, contains patterns to be
satisfied, a fail tableau contains patterns that are violated by some tuples of
data [14]. It is interesting that a fail tableau may reveal some interesting
events [14]. The algorithm used for discovering hold tableaus is adapted to
find fail tableaus [14].

The work in [11] proposes three algorithms called CFDMiner, CTANE
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and FastCFD. These algorithms correspond to their relational counterparts
FD Miner, TANE, and FastFD respectively. CFDMiner aims to discover
constant CFDs whose patterns have no wildcard, while CTANE and FastCFD
discover general CFDs. CFDMiner has the best performance in constant
CFD discovery and FastCFD is well scalable to the number of attributes in
general CFD discovery.

5 Discovery of inclusion dependencies

Given two relations rR on schema R and rS on schema S, an inclusion
dependency (IND) is a statement Y b X where X ⊆ R and Y ⊆ S and
|X| = |Y |, requiring that rS [Y ] ⊆ rR[X]. X is called the target and Y
is called the reference. An IND can be defined on the same table. In
this case S = R and rR = rS , X ∩ Y = ϕ, |X| = |Y | ≤ ⌊|R|/2⌋. We
denote the maximum size of X by maxk, then maxk = ⌊|R|/2⌋ if R = S or
maxk = min{|R|, |S|} if R ̸= S.

Consider Table 1 and IND S b I which requires that supervisor ID
values are taken from the ID column . Then S b I is violated because
t1[S] = e5 is a reference not in the target, column I. If t1[S] were changed
to any of e1, e2, e3, e4, the IND would be satisfied.

Like in FD discovery, generating candidate INDs is critical in IND dis-
covery. With INDs, because A1A2 b A3A4 does not mean A1A2 b A4A3,
the order of the attributes matters. Given R = S = A1 · · ·Am, to choose k

(k <= maxk) attributes for the reference Y , there are

(
m
k

)
possibilities.

Once the reference is chosen, we need to choose k attributes for the target
X from the remaining (m− k) attributes of R. There are P(m− k, k) pos-
sibilities where P(m − k, k) is the permutation of k from m − k. We note
that we did not use permutation for Y because if r satisfies AB b CD, then
r satisfies BA b DC [27]. As k can vary from 1 to maxk, the total number
of candidate INDs on R is(

m
1

)
∗P(m− 1, 1) + · · ·+

(
m

maxk

)
∗P(m−maxk,maxk)

The complexity of candidate INDs is higher than that of FDs on the

same schema R. With FDs,

(
m
k

)
is the number of nodes at level k of

the attribute lattice, while with INDs,

(
m
k

)
is amplified by P(m − k, k)
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which is much larger than 2. 4

Like in FDs, pruning candidate INDs becomes the most important task
in IND discovery. The following pruning rules are proposed in the literature
[27, 3, 21]. In the rules, XS = Ai1 · · ·Aik , YS = Bi1 · · ·Bik , XL = A1 · · ·Am,
YL = B1 · · ·Bm and i1, · · · , ik ∈ [1, · · · ,m]. That is, XS and YS are smaller
attribute sets contained in the larger setsXL and YL respectively with proper
attribute positions.
(1) If XL b YL is satisfied by r, XS b YS is satisfied by r.
(2) If XS b YS is violated by r, XL b YL is also violated by r.
(3) If exists i such that type(Ai) ̸= type(Bi), then XL ̸b YL and YL ̸b XL.
(4) If max(A) > max(B) or min(A) < min(B), then A ̸b B.
Rule (1) is used to find valid INDs. It starts with large candidate INDs

- INDs with large number of attributes in the reference and the target. If
large candidate INDs are not satisfied, it checks candidate INDs with one
less attributes. The largest INDs have maxk attributes and the number of

largest INDs very large:

(
m

maxk

)
∗P(m−maxk,maxk). If R contains 9

attributes, then there are 126*240 candidate 4-attribute INDs to be checked.
In contrast, Rule (2) is used to find invalid INDs and the checking starts
with single attribute (called unary) INDs. The attributes of all unary INDs
not satisfied by r will not be considered when two-attribute (called binary)
candidate INDs are generated. Again if R contains 9 attributes, then the
number of unary IND to be checked is 9*8. Rule (3) works at the schema
level. It checks violation using metadata without having to access data of
the table. The combination of Rules (3) and (2) gives efficiency. Rule (4)
uses database statistics to find invalid INDs.

In summary, it is more efficient to start IND discovery by checking unary
IND satisfaction to find a set of INDs holding on r. Then candidate FDs are
generated following the attribute lattice and the pruning rules are applied
before the new candidates are checked by accessing the database.

5.1 Unary INDs

The conventional algorithm of checking whether the unary IND A b B is
satisfied by r is to compute r[A] and r[B] to get two sets, and then verify
the set containment r[A] ⊆ r[B]. This can be done in SQL or by programs
[3].

4Note that the attribute lattice is symmetric in the number of nodes to the middle
level.

25



[27, 28] proposes an algorithm called MIND that acts differently from
the conventional approach. It pre-computes an extraction table xt(d) for
each domain d of the tables t and s and thus domain types are considered
by the algorithm. xt(d) contains two columns V and U . Column V contains
distinct values v of d appearing in t and s. Column U contains all attribute
names of t and s such that the columns of these attributes contain v. The
principle of the algorithm is that, given unary IND P b Q, r |= P b Q
iff for each domain d, Q ∈ ∩{πUσP∈U (xt(d))}, that is, Q is in some tuples
containing P .

For example in Table 3(c), ∩{πUσA∈U (xt(int))} = ABD∩ABD = ABD,
so we have A b B and A b D. Similarly ∩{πUσB∈U (xt(int))} = ABD ∩
ABD ∩BD = BD, so we have B b A and B b D. There is not other IND
on the int domain.

Table 3: Example of IND discovery

(a) r

A B C

1 1 a

2 2 a

2 3 b

(b) s

D E

1 a

2 b

3 c

4 d

(c) xt(int)

V U

1 ABD

2 ABD

3 BD

4 D

The time complexity of computing xt(d) is |r|∗|R|. The time complexity
for unary IND discovery is O(|R| ∗ (|xt(int)| + |xt(str)| + |xt(float)|)/3) if
the domains are int, float, and str only.

The work in [3] compares the efficiencies between two different ways of
implementing the discovery of unary attribute INDs. The first way is to use
SQL Join, Minus and ’Not In’ queries to check the satisfaction of an IND on
the SQL server. The other is to use a java program to check the satisfaction
on the client computer by respectively scanning the database once for each
candidate IND and scanning the database once for all INDs together. The
results show that the Join query performed better than other SQL queries,
but not better than any of the client program. Among the client programs,
the program scanning the database for each candidate IND performed best.
The Java programs performed better because the user has better control
and order can be used in checking.
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5.2 N-ary INDs and cover

To compute a cover of all INDs, algorithm MIND [27, 28] takes a level-wise
approach to generate candidate INDs. It is based on the view that A b B
and C b D are necessary conditions for AC b BD to be satisfied. That
is, if A ̸b B or C ̸b D, then it is impossible that AC b BD. In this case,
AC b BD is pruned and no testing of its satisfaction is necessary. On the
contrary, if A b B and C b D, then AC b BD has a chance to be satisfied
by the relation and becomes a candidate of size 2. This candidate FD is
then tested for satisfaction. After all candidate INDs of size 2 are generated
and tested, the algorithm generates and tests candidate INDs of size 3.

The algorithm, called FIND, in [21] also uses the same principle that
A b B and C b D are necessary conditions for AC b BD to be satisfied.
Unlike [28], FIND generates candidate INDs by converting satisfied INDs
of sizes 1 and 2, discovered exhaustively, into a hypergraph and computing
cliques of the graph. A 3-clique of the hypergraph corresponds to a candidate
ternary IND. The candidate INDs are checked for satisfaction and if they are
not satisfied by the relations, they are removed from the graph. A 4-clique
is further computed from the 3-cliques to have candidate INDs of size 4.

A recent algorithm called Zigzag proposed in [26] uses the borders of the-
ories to compute the cover of INDs holding on a database. The cover equals
to the positive border which contains all INDs not implied by others. The
algorithm finds the negative border containing the shortest (in the number
of attributes) unsatisfied INDs. It then guesses the positive border using the
negative border. The guess enables candidate IND generation to jump to
longer (in the number of attributes) candidate INDs directly without having
to go through candidate INDs level-by-level. The experiments showed that
the performance of the algorithm is better than the MIND algorithm [27].

5.3 Approximate satisfaction

Like in FD discovery, an IND is approximately satisfied if most tuples of the
database satisfy the IND. [28] proposes an error measure for approximate
satisfaction for the extraction table approach reviewed in second paragraph
of subsection 5.1. The error measure is defined by the number of tuples to be
deleted to make the database satisfy the IND exactly. If a database satisfies
an IND X b Y with the error measure less than a given threshold ϵ ∈ [0, 1],
the satisfaction is denoted by r |=ϵ X b Y . With the error measure, the
satisfaction checking becomes the calculation of the error. For an unary IND
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A b B, r |=ϵ A b B iff

(1− Σv∈V
|{t ∈ xt(d)|v = t[V ] ∧A ∈ t[U ] ∧B ∈ t[U ]}

|{t ∈ xt(d)|v = t[V ] ∧A ∈ t[U ]}
) ≤ ϵ

The calculation needs to access xt(d) only once. The cover of all approx-
imate INDs is calculated using a similar pruning rule to that of exact INDs:
Let I1, I2 be 2 candidate INDs such that I1 is subsumed by I2. If r ̸|=ϵ I1,
then r ̸|=ϵ I2.

The work in [29] conducts a study on how to compute an approximate
set of approximately satisfied INDs.

6 Discovery of XML functional dependencies

Functional dependencies in XML (XFDs) are defined differently in several
proposals [1, 31, 38]. In this review, we present the XFDs defined in [42],
called generalized tree tuple XFDs, as the work done on XFD discovery is
based on this definition.

We start with some terms. A set element is an element that can oc-
cur multiple times under a parent element in a document. A generalized
tree tuple (tree tuple for short) under a pivot node v in a document T is a
subtree, denoted by tt(v), such that tt(v) contains all descendant nodes of
v, all ancestor nodes a of v, and all descendants d of a such that the path
between a and d does not contain a set element, and the edges among all
these nodes. In our notation we use e[i] to mean a tree node labeled by e and
with the identifier i. Consider Figure 4, where C, S, L,B,Bn,A,N, F, T, P
stand for Company, Store, Location, Book, BookNumber, Author,
Name,Affiliation, T itle, Price respectively and where S, B and A are
set elements. We use A∗ to mean A is a set element. Let the pivot node
be B[4]. Then the tree tuple for the pivot is given in Part (b) where S[1]
and C[0] are ancestor nodes of B[4], and L[3] is a descendant of S[1] and
the path between L[3] and S[1] does not involve a set element. The path p
between the root node of T and v is called the pivot path. tt(v) is called a
tuple of p.

Given a pivot path p, a set Q of relative paths to p and a tree
tuple tt(v) of p, the projection of tt(v) on Q, denoted by tt(v)[Q],
is a subtree of tt(v) by removing the branches of tt(v) that are
not labeled by any path in Q. For example let tt(B[4]) be the
tuple in Figure 4 (b). With the pivot path p = C/S/B, the pro-
jection of tt(v) to the set of paths {Bn,A} is tt(B[4])[{Bn,A}] =
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 C[0]

 

(a) (b)

S[1] S[2]

L[3]

l1

B[4] B[5] B[7]L[6]

l2

Bn[10]

b1

A[11] A[12] T[13]

DB

N[31]

n1

F[32]

f1

N[33]

n2

F[34]

f1

Bn[17]

b2

A[18] T[19]

Java

N[41]

n1

F[42]

f1

P[14]

10

P[20]

11
Bn[21]

b1

A[22] A[23] T[24]

DB

N[51]

n2
F[52]

f1

N[53]

n1

F[54]

f1

P[25]

12

B[4]

Bn[10]

b1

A[11] A[12] T[13]

DB

N[31]

n1

F[32]

f1

N[33]

n2

F[34]

f1

S[1]

C[0]F[54]

f1

--- node labeled by F and with

identifer 54 and value ‘f1’

L[3]

l1

P[14]

10

Figure 4: (a) An XML document (b) a tree tuple with pivot B[4] for paths
Bn,A∗, T

(C[0](S[1](B[4](Bn[10]) (A[11](N [31])(F [32])) (A[12](N [33])(F [34])))))
where the root node is C[0], parallel brackets mean siblings and nested
brackets mean children.

Two trees are equal if they have exact same paths, labels, and text values
when order between sibling nodes are not considered. All null values are
distinct and a null value is different from any of the non-null values in the
tree.

An XFD is defined by an expression (pv, {p1, ..., pm} → pm+1) where pv
is the pivot path, {p1, ..., pm} (denoted by P ) is the lhs, and pm+1 is the
rhs. The XFD is satisfied if for any two tuples tt(v1) and tt(v2) where v1
and v2 are pivot nodes of pv, if tt(v1)[P ] = tt(v2)[P ], then tt(v1)[pm+1] =
tt(v2)[pm+1].

Figure 4 (a) satisfies the XFDs (C/S/B,Bn → A∗) and
(C/S/B, {A∗, T} → Bn), (C/S,B/A∗ → L). It violates (C/S/B,A∗ →
Bn).

XFDs are related to relational FDs and MVDs. XFDs can be mapped
from relational FDs via the nest operation if the order of the child nodes
under a parent node in XML does not matter [37]. Relational MVDs can be
represented in the same way in XML as they are in nested relations because
XML and nested relations share many similarities [32, 42]. However MVDs
cannot capturer all XML redundancies involving set elements on both sides
of a MVD and the notation of XFD is necessary [42].

The problem of discovering XFDs from a given XML document is to
firstly find candidate XFDs and then to check the candidate XFDs against
the document. The candidate XFDs that are satisfied by the document are
included in the result of the discovery.
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The approach proposed in [42] converts the input XML document into
a set of foreign key connected relational tables. Thus each table contains
attributes which are leaf elements (those that do not contain other elements
as children) and the parent node identifier. The approach then finds out in
each table the XFDs that are satisfied by the attributes (elements) in the
table without considering the paths. It further takes the XFDs found in
each table into multiple tables.

To translate a document to tables, a table is created for a set-typed or
record-typed element and the name of the table is the name of the element.
The attributes of the table include the element of the set type or the leaf
elements of the record type, plus two attributes, nid - the identifer of the
node that the tuple is for, and pid - the identifier of the parent node. With
these rules, the document in Figure 4(a) is translated into the tables in Table
4.

Table 4: Tables for Figure 4(a)

C

nid pid

0 ⊥

S

nid pid L

1 0 l1

2 0 l2

B

nid pid Bn T P

4 1 b1 DB 10

5 1 b2 Java 11

7 2 b1 DB 12

A

nid pid N F

11 4 n1 f1

12 4 n2 f1

18 5 n1 f1

22 7 n2 f1

23 7 n2 f1

The first step of XFD discovery is to find relational FDs holding on each
table by not considering nid and pid. The partitioning method reviewed
in Section 2.2.1 is used for this purpose. A discovered relational FD f
corresponds to the XFD x. The pivot path of x is the path reaching the table
name and the lhs and the rhs of x are the lhs and the rhs of f respectively.
For example in Table A of Table 4, the relational FD discovered is N → F .
The corresponding XFD is (C/S/B/A,N → F ).

The next step is to consider the relationships among the tables. This
starts from the table having no child tables. Two pruning rules are used.
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(1) If in a child table, A → B is violated by two tuple t1 and t2 while
t1[pid] = t2[pid], then adding any attributes from ancestor tables will not
make it satisfied because t1 and t2 have the same parent and other attributes
at a higher level will not distinguish them. For example, F → A is violated
by t11 and t12 in Table A. Adding Bn, or T , or L will not change the
satisfaction status because the two tuples share whatever values added. (2)
If a child table satisfies A → B, then adding any attribute from an ancestor
table will produce an implied XFD. For example, (C/S/B/A,N → F ) is
satisfied by Table A. Then (C/S/B/A, {N, ../Bn} → F ) is implied.

Thus if an FD A → B is violated by a pair of tuples ti and tj having
different parents in a child table, the algorithm goes to check the parent
table. Let t′i and t′j be tuples in the parent table referenced by ti and tj
respectively. The algorithm checks whether any attribute C satisfies t′i[C] ̸=
t′j [C]. If yes, we have {A, ../C} → B; otherwise, if t′i and t′j have the same
parent, A → B does not hold; else the search goes toward the parent table
of the parent.

For example (C/S/B, T → P ) is violated by tuples t4 and t7 which have
different parents t1 and t2. In the parent table S, there is an attribute L
such that t1 ̸= t2. Therefore (C/S/B, {T, ../L} → P ) is an XFD discovered.
We note that here table B has only one pair of violating tuples. Generally,
all pairs of tuple needs to be checked.

The complexity of this algorithm is exponential. For each relation r
and its schema R, the complexity for computing XFDs from its descendant
tables is O(|r| ∗ |R| ∗ 2|R| + |r| ∗ |Rd| ∗ 2|R|+|Rd|) where Rd is a set containing
attributes of all descendant relations.

7 Conclusion

In this paper, we reviewed the methods for discovering FDs, AFDs, CFDs,
and INDs in relational databases and XFDs in XML databases. The depen-
dency discovery problem has an exponential search space to the number of
attributes involved in the data. Fortunately, most data contains FDs and
INDs with single or a few attributes on the lhs. Some efficient algorithms
have been proposed.

With FD discovery, the direction of computation starts with FDs having
fewer attributes in lhs. The discovered FDs are then used to prune other
candidate FDs in the attribute lattice so that the search space of the com-
putation is reduced. The most commonly proposed and cited method in
the literature is the partition method and the negative cover method. The
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partition method is also used in XFD discovery.
In discovering AFDs, the sampling method is used to find FDs that are

approximately satisfied.
With regard to the IND discovery, the direction of computation starts

with small INDs too. The invalid INDs discovered are then used to prune
candidate INDs to reduce the complexity of computation.

In the area of CFD discovery, although some algorithms for FD discovery
can be adapted for CFD discovery purpose, the discovery of an optimal
tableau is NP-Complete and the discover of a good tableau seems not an
easy task. More simple but effective and efficient algorithms are still needed.

The work in discovering XML functional dependencies has just started.
The only work done on XFD discovery converts XML data into relational
data and then applies the partition method to the converted relational data.
No work on XML IND discovery has been seen in the literature.
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