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Abstract

An association rule generation algorithm usually gener-
ates too many rules including a lot of uninteresting ones.
Many interestingness criteria are proposed to prune those
uninteresting rules. However, they work in post-pruning
process and hence do not improve the rule generation ef-
ficiency. In this paper, we discuss properties of informative
rule set and conclude that the informative rule set includes
all interesting rules measured by many commonly used in-
terestingness criteria, and that rules excluded by the infor-
mative rule set are forwardly prunable, i.e. they can be re-
moved in the rule generation process instead of post prun-
ing. Based on these properties, we propose a Direct Inter-
esting rule Generation algorithm, DIG, to directly generate
interesting rules defined by any of 12 interestingness crite-
ria discussed in this paper. We further show experimentally
that DIG is faster and uses less memory than Apriori.

1 Introduction

Data mining is a growing research area due to the in-
creasing popularity of dealing with a large number of data
in various fields. We can obtain benefits when understand-
ing data in a meaningful form rather than a collection of
tedious alphanumeric symbols.

Association rule discovery has been a central issue in
data mining, because of the simplicity of the problem state-
ment and the efficiency of pruning by support. However,
an association rule generation algorithm may generate too
many rules and selecting interesting rules is a big task.

Many interesting criteria are proposed to select user-
interesting rules. However, they are usually used in the post
pruning process hence do not improve the efficiency of rule
generation.

In this paper, we prove that the informative rule set in-
cludes all interesting rules according to 12 interestingness
criteria. We further propose a direct algorithm to generate

interesting rules, and show experimentally that the proposed
algorithm is faster and uses less memory than Apriori. DIG
improves interesting rule discovery efficiency without more
memory consumption and works on both transactional and
relational data sets.

2 Informative rule set and its properties

An association rule set [1] is defined by the minimum
support and the minimum confidence constraints. A lot of
rules satisfying these constraints are not interesting. One
major reason is that many rules are redundant. For exam-
ple, a ⇒ z, ab ⇒ z andabc ⇒ z carry the similar mes-
sage. Why do we need those complex ones having long
antecedents? A complex rule covers a subset of instances
covered by its simple form rules, so it has to provide some-
thing more than the simple form rules to be interesting. This
extra provided by the complex rules is to be measured by an
interestingness criterion. In the context of classic associa-
tion rules, we expect that they have higher confidence than
their simple form rules. Based on these observations, we
define the informative rule set as follows.

Given a set of itemsI = {i1, i2, . . . , im}, and a col-
lection of transactionsD = {T1, T2, . . . , Tn}, whereTi ⊂
I|i≤n. D is called a transactional data set. An itemset is a
subset ofI, and is called al-itemset if it containsl items.
The support for itemsetS is its occurrence probability inD,
denoted byP (S). S ⇒ q is called a rule ifP (Sq) > σ 1

andP (q|S) > P (q), whereσ is called the minimum sup-
port andP (q|S) = P (Sq)

P (S) is called the confidence of the
rule. Given two rulesS → iq andV → iq whereS ⊂ V ,
we say the latter is more specific than the former or the for-
mer is more general than the latter.

1For simplicity, in the rest of this paper we use upper case letters, e.g.
S, V, Z, to stand for itemsets, and lower case letters, e.g.a, b, c, p, q, to
stand for items. We abbreviateS ∪ q asSq.



Definition 1 We call a rule set the informative rule set if
it satisfies the following two conditions: 1) it contains all
rules that satisfy the minimum support; and 2) it excludes
all more specific rules with no greater confidence than one
of its more general form rule.

In the above definition, we did not specify the minimum
confidence constraint. We suppose that a user may impose
another minimum interestingness threshold since the dis-
cussion in this paper is to generate general interesting rules.

The informative rule set was defined in our previous
work, and we concluded that it is the smallest subset of an
association rule set having the same predictive power as the
association rule set based on a confidence priority predictive
model [12, 14]. In this paper, we reveal its general practical
implication.

Theorem 1 Rules excluded by the informative rule set are
uninteresting measured by many interestingness criteria,
namely odd ratio, lift (interest or strength), gain, added-
value, Klosgen, conviction, p-s, Laplace, estimate accuracy,
cosine, certainty factor and Jaccard.

Proof In this proof, we useAX ⇒ c to stand for a more
specific form rule ofA ⇒ c. AX ⇒ c is excluded by the
informative rule set because ofP (c|AX) ≤ P (c|A). We
will prove that by all criteria listed above, ruleAX ⇒ c
is ranked lower than ruleA ⇒ c and hence is uninterest-
ing. When two rules have the same value by an interesting
metric, the shorter rule is ranked higher. We also know that
P (A) ≥ P (AX).

Odds ratio is a classic statistical metric to measure
the association between events. odd-ratio (A ⇒ c) =
P (Ac)P (¬A¬c)

P ((¬A)c)P (A¬c) (the definition of¬c can be referred to the
paragraph before Lemma 1 in this section). We rewrite the
odd ratio by support and confidence as follow: odd-ratio
(A ⇒ c) = P (c|A)

1−P (c|A)/
P (c|¬A)

1−P (c|¬A) .

SinceP (c|A) ≥ P (c|AX), P (c|A)
1−P (c|A) ≥ P (c|AX)

1−P (c|AX) .

Now we need to prove thatP (c|¬A)
1−P (c|¬A) ≤ P (c|¬(AX))

1−P (c|¬(AX)) to
get odd-ratio(A ⇒ c) ≥ odd-ratio(AX ⇒ c). To reach this
goal, we need to prove thatP (c|¬A) ≤ P (c|¬(AX)) given
P (c|A) ≥ P (c|AX).

P (c|¬A) = P ((¬A)c)
P (¬A) = P (c)−P (Ac)

1−P (A) =
P (c)/P (A)−P (c|A)

1/P (A)−1 ≤ P (c)/P (A)−P (c|AX)
1/P (A)−1 . Consider

functionf(x) = αx−β
x−1 (β is a constant) monotonically in-

creases withx whenβ > α. We know that 1
P (A) ≤ 1

P (AX)

and P (c|AX) > P (c), so P (c)/P (A)−P (c|AX)
1/P (A)−1 ≤

P (c)/P (AX)−P (c|AX)
1/P (AX)−1 = P (c|¬(AX)). As a result,

P (c|¬A) ≤ P (c|¬(AX)).
Hence, odd-ratio(A ⇒ c) ≥ odd-ratio(AX ⇒ c), and

rule A ⇒ c is ranked higher than ruleAX ⇒ c by odds

ratio.

Lift [22], also known as interest [6] or strength [9], is a
widely used metric to rank the interestingness of association
rules. It has been used in IBM Intelligent Miner. lift(A ⇒
c) = P (Ac)

P (A)P (c) = P (c|A)
P (c) . ConsiderP (c|AX) ≤ P (c|A).

We have lift(A ⇒ c) = P (c|A)
P (c) ≥ P (c|AX)

P (c) = lift(AX ⇒ c).
Hence, ruleA ⇒ c is ranked higher than ruleAX ⇒ c by
the lift.

Gain [10] is an alternative for confidence. gain (A ⇒ c)
= P (Ac) − θ × P (A) whereθ is a fractional constant be-
tween 0 and 1, and only rules obtaining positive gain are
interesting. We rewrite gain as the following: gain(A ⇒ c)
= P (A)(P (c|A) − θ). ConsiderP (A) ≥ P (AX) and
P (c|A) ≥ P (c|AX) ≥ θ (otherwise both rules are un-
interesting or answer is clear). We have gain(A ⇒ c) ≥
gain(AX ⇒ c). Hence, ruleA ⇒ c is ranked higher than
ruleAX ⇒ c by gain.

Two other similar metrics of gain are added-value and
Klosgen. added-value (A ⇒ c) = P (c|A) − P (c). Klos-
gen (A ⇒ c) =

√
P (Ac)(P (c|A) − P (c)). We go through

the similar proof procedure and draw the same conclusion.
RuleA ⇒ c is ranked higher than ruleAX ⇒ c by added
value and Klosgen metrics.

Conviction [6] is used to measure deviations from the
independence by considering outside negation. conviction
(A ⇒ c) = P (A)P (¬c)

P (A¬c) . We simplify the conviction as

(A ⇒ c) = 1−P (c)
1−P (c|A) . ConsiderP (c|A) ≥ P (c|AX). We

have conviction(A ⇒ c) ≥ conviction(AX ⇒ c). Hence,
rule A ⇒ c is ranked higher than ruleAX ⇒ c by the
conviction.

P-s metric [18] is a classic interesting criterion for rules
and is proposed by Piatesky-Shaprio. p-s(A ⇒ c) =
P (Ac) − P (A)P (c). We rewrite it as the following: p-
s(A ⇒ c) = P (A)(P (c|A) − P (c)). ConsiderP (c|A) ≥
P (c|AX) andP (A) ≥ P (AX). We have p-s(A ⇒ c) ≥
p-s(AX ⇒ c). Hence, ruleA ⇒ c is ranked higher than
ruleAX ⇒ c by the p-s metric.

Laplace [7, 21] accuracy is a metric for classification
rules. Strictly speaking, it is not an interestingness met-
ric for association rules. However, association rules have
been used to solve classification problems. So we con-
sider it still. Laplace(A ⇒ c) = P (Ac)|D|+1

P (A)|D|+k , where|D|
is the number of transactions inD and k is the number
of classes. We rewrite it as follows: Laplace(A ⇒ c) =
P (c|A)|D|+1/P (A)

|D|+k/P (A) . ConsiderP (c|A) ≥ P (c|AX). We

have Laplace(A ⇒ c) ≥ P (c|AX)|D|+1/P (A)
|D|+k/P (A) . Function

f(x) = α|D|+x
|D|+kx (α is a constant) monotonically decreases

with x whenα × k > 1. Usually, for classification rules
the minimum confidence is set to be greater than 0.5 and
k ≥ 2. Henceα × k > 1 is satisfied. Consider 1

P (A) ≤



1
P (AX) . We have Laplace(A ⇒ c) ≥ P (c|AX)|D|+1/P (A)

|D|+k/P (A) ≥
P (c|AX)|D|+1/P (AX)

|D|+k/P (AX) = Laplace(AX ⇒ c). Hence, rule
A ⇒ c is ranked higher than ruleAX ⇒ c by laplace accu-
racy.

Estimate true accuracy [16] is used in [13] to suppress
rules with a slight confidence improvement but a big sup-
port loss over their simple form rules. Accuracy (A ⇒ c) =

P (c|A) − zN

√
P (c|A)(1−P (c|A))

P (Ac)|D| , where|D| is the number
of transactions inD andzN is a constant related with a sta-
tistical confidence interval. In classification, the minimum
confidence of a rule is usually set to be greater than 0.5. In
this case, accuracy(A ⇒ c) ≥ accuracy(AX ⇒ c) given
P (c|A) ≥ P (c|AX) andP (A) ≥ P (AX). Hence, rule
A ⇒ c is ranked higher than ruleAX ⇒ c by the estimate
accuracy.

We consider some other metrics discussed in [20].
Cosine(A ⇒ c) = P (Ac)√

P (A)P (c)
. We rewrite it as

cosine(A ⇒ c) =
√

P (A)P (c|A)√
P (c)

. Consider thatP (AX) ≤
P (A) andP (c|AX) ≤ P (c|A). We have cosine(A ⇒ c) ≥
cosine(AX ⇒ c). Hence, ruleA ⇒ c is ranked higher than
ruleAX ⇒ c by cosine.

Certainty-factor (A ⇒ c) = P (c|A)−P (c)
1−P (c) . Consider

P (c|A) ≥ P (c|AX). We have certainty-factor(A ⇒ c)
≥ certainty-factor(AX ⇒ c). Hence, ruleA ⇒ c is ranked
higher than ruleAX ⇒ c by certainty factor.

Jaccard(A ⇒ c) = P (Ac)
P (A)+P (c)−P (Ac) . We rewrite it as

Jaccard(A ⇒ c) = P (c|A)
1+P (c)/P (A)−P (c|A) . ConsiderP (A) ≥

P (AX). Jaccard(A ⇒ c) ≥ P (c|A)
1+P (c)/P (AX)−P (c|A) . Func-

tion f(x) = x
α−x (α is a constant.) monotonically in-

creases withx whenα > 0. ConsiderP (c|A) ≥ P (c|AX)
and 1 + P (c)/P (AX) > 0. We have Jaccard(A ⇒
c) ≥ P (c|A)

1+P (c)/P (AX)−P (c|A) ≥ P (c|AX)
1+P (c)/P (AX)−P (c|AX) =

Jaccard(AX ⇒ c). Hence, ruleA ⇒ c is ranked higher
than ruleAX ⇒ c by Jaccard.

The theorem is proved.2

Now we will present two properties of informative rule
set to facilitate the design of an efficient rule generation al-
gorithm. We do not provide proofs here, and please refer to
[14] for details.

We introduce a special item¬q, which appears in all
transactions whereq does not occur. Itemset¬(ab) means
both a and b do not occur in a transaction, and hence
¬(ab) = ¬a¬b. One obvious usefulness of this special item
is to separate the support of an itemset into two parts, e.g.
P (S) = P (S¬q) + P (Sq) andP (S¬q) = P (S)−P (Sq),
orP (q) = P (¬Sq)+P (Sq) andP (¬Sq) = P (q)−P (Sq).

In the following lemma, we useSp ⇒ q to denote a more
specific form rule ofS ⇒ q. All more specific form rule of
Sp ⇒ q is SZp ⇒ q for Z 6= ∅, p, q /∈ Z andS 6= Z.

Lemma 1 If P (S¬q) = P (Sp¬q), then for any itemq rule
Sp ⇒ q and all its more specific form rules do not occur in
the informative rule set.

The meaning of this lemma is very clear. If a more spe-
cific rule r does not reduce negative instances from one
of its more general form rule, then all more specific rules
of r will not reduce negative instance from at least one of
its more general form rules. Hence they are all excluded
from the informative rule set. For example, ifP (a¬q) =
P (ab¬q), thenP (q|ab) ≤ P (q|a), further we also have
P (q|abX) ≤ P (q|aX). abX ⇒ q will not occur in the
informative rule set becauseaX ⇒ q is more general.

We have a look why this property is similar to the one
that support has. Given itemsetS is infrequent.SZ is in-
frequent because of upwards closure property of infrequent
itemsets. This enables us to totally ignore all super item-
sets ofS in rule generation process. GivenSZq is frequent.
We usually have to test all rules fromS ⇒ q to SZ ⇒ q
whereZ can be any itemset. However, if we observe that
P (S¬q) = P (V ¬q) whereV is a (|S| − 1)-itemset and
V ⊂ S, then to generate interesting rules we need not to
test all rules fromS ⇒ q to SZ ⇒ q according to the
lemma.

Now we have a look at a useful corollary.

Corollary 1 If P (S) = P (Sp), then ruleSp ⇒ q for any
q and all its more specific form rules do not occur in the
informative rule set.

Both lemma and corollary are very useful for efficient
algorithm design.

3 Direct interesting rule generation

An association rule generation algorithm prunes infre-
quent itemsets forwardly. An itemset is frequent if its sup-
port is greater than the minimum support. An itemset is
potentially frequent only if all its subsets are frequent, and
this property is used to limit the number of itemsets to be
searched. This is calledupwards closureproperty of infre-
quent itemset and is useful for forward pruning.

In the process of the association rule generation, con-
fidence plays no role for the efficiency. It only controls
the number of rules. It is well-known that an association
rule generation algorithm produces too many uninteresting
rules. According to the previous analysis, we know that
those rules excluded by the informative rule set are uninter-
esting. In addition, we have upwards closure properties to
forwardly prune those uninteresting rules. These enable us
to design efficient algorithm to directly generate interesting
rules.



3.1 Candidate representation

To facilitate the implementation of forward pruning by
the lemma and the corollary, we define a rule candidate as a
pair of (itemset, target-set), denoted by(S, C). The target-
set C is a set of items that are possible consequences of
rules. Initially, we setS = C. We call (S1, C1) as a sub
candidate of(S2, C2) if S1 ⊂ S2. Equivalently,(S2, C2) is
a super candidate of(S1, C1).

Target-setC is a sub or equal set ofS and a candidate
represents a number of potential rules. For example, can-
didate (abc, abc) indicates three potential rulesab ⇒ c,
ac ⇒ b andbc ⇒ a, and candidate(abc, ab) indicates two
potential rulesac ⇒ b andbc ⇒ a. Please note that we
generate interesting single target rules as defined in the pre-
vious section.

The removal of items from target-setC is determined by
the lemma, and we will show this in Subsection 3.3.

Usually, candidate(S, ∅) is a legal candidate. We build a
super candidate from its sub candidates. Though there is no
potential rule for candidate(abc, ∅), but there may be rule
abc ⇒ d. Constructing candidate(abcd, d) needs candidate
(abc, ∅).

Candidate(S, ∅) is useless when no non-empty target-set
super candidate can be built from it. Formally, given a set of
itemsI = {i1, i2, . . . , im}, itemsetS andV whereV 6= S.
The target-set of candidate(S, ∅) is permanently empty if
there is no possibility to form ruleSV ⇒ p, for all p and
V wherep ∈ I ∧ p /∈ SV , to be in the informative rule set.
This means that itemsetS and all its super itemsets could
not be the antecedent of an interesting rule.

The existence of a candidate depends on two conditions:
(1) itemsetS is frequent, and (2) target-setC is not perma-
nently empty.

The determination of frequentS is straightforward, and
hence we discuss how to determine of a permanently empty
target-set.

The first criterion follows the corollary.

Criterion 1 If P (Sp) = P (S), then the target-set of can-
didate(SZp, ∅) is permanently empty.

We know that ruleSp ⇒ q and all its more general form
rules do not occur in the informative rule set according to
the corollary. We note thatq can be any item, so we need
not to test rules from supersets ofSp.

This criterion is associated with a 100% confidence rule.
If P (Sp) = P (S), thenP (p|S) = 1. When we knowS
always impliesp, it is redundant to haveSZp ⇒ q since
SZ ⇒ q is more general.

For example, candidate(abc, ∅) means ruleab ⇒ c,
ac ⇒ b, bc ⇒ a and their more specific rules are not in
the informative rule set. For more details please refer to
Subsection 3.3. However, for anyq /∈ {abc} rule abc ⇒ q

and its more specific form rules may still be in the informa-
tive rule set and this is the reason for us to keep this candi-
date. If we knowsup(abc) = sup(ab), then according to
the corollary ruleabc ⇒ q and all its more specific form
rules are not in the informative rule set. Hence(abc, ∅) is
permanently empty.

We will present another criterion after presenting the
candidate generation function.

3.2 Candidate generator

For easy understanding and comparison, we present
Candidate-generator for the informative rule set discovery
in the similar way of Apriori-gen. We call a candidatel-
candidate if its itemset is al-itemset. Al-candidate set in-
cludes alll-candidates. In the following discussions, we
assume all items in an itemset are in the alphabetic order.

Function Candidate-generator
// Combining

1) for each pair of candidates(Sl−1p, Cp) and(Sl−1q, Cq)
in l-candidate set

2) insert candidate(Sl+1, C)
whereSl+1 = Sl−1pq andC = (Cpq)∩(Cqp)
in the(l + 1)-candidate set

// Pruning
3) for all Sl ⊂ Sl+1

4) let r = Sl+1\Sl

5) if candidate(Sl, Cl) does not exist
6) then remove candidate(Sl+1, C) and return
7) elseC = C ∩ (Clr)
8) If the target-set of(Sl+1, C) is permanently empty
9) then remove the candidate

We first explain lines 1 and 2. Suppose that we have two
candidates(abc, a) and(abd, ad). When we extend itemset
{abc} to itemset{abcd}, we should add itemd to the target-
set of candidate(abc, a) because it is new to itemset(abc).
For the same reason, we add itemc to the target-set of candi-
date(abd, ad). We then intersect two extended target-sets,
{ad} and{acd}, and put the intersection as the target-set of
the new candidate. The new candidate is(abcd, ad). The
intersection of target-sets here and in line 7 is to ensure that
removed items from the target-set of a candidate never ap-
pear in the target-set of its super candidates. The correctness
is guaranteed by the lemma since any item removal in the
target-set is determined by the lemma as shown in Subsec-
tion 3.3.

Then we explain line 3 to 9. Suppose that we have
new candidate(abcd, ad). It is the combination of(abc, a)
and (abd, ad). We need to check if candidates identified
by itemsets{acd} and {bcd} exist. Suppose that they
do exist and are(acd, cd) and (bcd, b). Because itema



could not be the consequence of a rule including item-
set{acd}, and itemd could not be the consequence of a
rule including itemset{bcd}, the new candidate looks like
(abcd, ∅). This is achieved by line 7, e.g. whenSl = {acd},
C = {ad} ∩ ({cd} ∪ {b}) = {d}, and whenS1 = {bcd},
C = {d} ∩ ({b} ∪ {a}) = ∅.

Last, we need to determine if a target-set is permanently
empty. We presented Criterion 1 before, and here present
another criterion.

Criterion 2 Consider candidate(Sp, ∅). If for every can-
didate (Sq, Cq) there is q /∈ Cq, then the target-set of
(Sp, ∅) is permanently empty.

We first examine the next level candidate. Based on
line 2 in Candidate-generator, the new candidate must be
(Spq, ∅). We note “for all” condition in the criterion. We
can obtain(SZp, ∅) in a recursive way. Hence the target-set
of (Sp, ∅) is permanently empty.

Here is an example to show how Criterion 2 works. Sup-
pose that there are only three candidates(abc, ∅), (abd, a)
and(abe, a) beginning with{ab} in 3-candidate set. Since
itemd is not in the target-set of(abd, a) and iteme is not in
the target-set of(abe, a), (abc, ∅) has a permanently empty
target-set according to Criterion 2 and hence is removed.
Consequently, all its super candidates will not be generated.

3.3 More pruning

We have a pruning process in candidate generation, and
will have another pruning process after counting the support
of candidates. This is a key issue to make use of the confi-
dence for pruning and to have an efficient algorithm. In the
following algorithm,σ is the minimum support, and{S\c}
means setS less{c}.

Function Prune(l + 1)
// l + 1 is the new level where candidates are counted.
1) for each candidate(S, C) in (l + 1)-candidate set
2) if P (S) ≤ σ then remove candidate(S, C)
3) else for eachc ∈ C

// test the satisfaction of the lemma
4) if there is a sub candidate(S′, C ′)

in l-candidate set such that
c ∈ C ′ andP ({S\c}¬c) = P ({S′\c}¬c)

5) then removec from C
6) if C is permanently empty then remove(S, C)

We prune a rule candidate from two aspects, the infre-
quency of the itemset and the permanently empty set of the
target-set. In line 2 a candidate with infrequent itemset is
removed. From line 3 to 6, we limit possible targets in the
target-set of a candidate (a possible target is equivalent to a

potential rule) by the lemma. In line 7 we consider remov-
ing a candidate when its target-set is empty.

For example, consider a candidate(abc, abc) in 3-
candidate set. It includes three potential rulesab ⇒ c,
ac ⇒ b andbc ⇒ a. How can we omit some items from the
target-set? The removal of an item in the target-set means
that a potential rule and all its more specific rules are per-
manently removed. We do this according to the lemma. If
we observeP (ab¬c) = P (a¬c), then by the lemma rule
ab ⇒ c and all its more specific form rules are not in the
informative rule set. As a result we remove itemc from
the target-set. The candidate should look like(abc, ab), and
includes two potential rules,bc ⇒ a and ac ⇒ b. The
Candidate-generator ensures that itemc never appears in
target-sets of all super candidates of(abc, ab).

The determination of a permanently empty target-set has
been introduced in the previous subsection, and hence we
do not repeat them here. In our implementation, for con-
venience of applying Criterion 1, we call a candidate as
restricted candidate if the support of its itemset equals to
that of one of its sub itemsets. This restricted status is in-
heritable becauseP (Sp) = P (S) =⇒ P (SZp) = P (SZ).
A super candidate inherits this status from any sub candi-
dates. According to criterion 1, the target-set of a restricted
candidate is permanently empty if it is empty. In addition, a
restricted candidate also inherits the target-set from its sub
candidate. According to the corollary we could not form
any rules to be in the informative rule set if their righthand
side items are not in the target-set of the candidate where
the restricted status is from. Therefore, there is no need to
extend the target-set of a restricted candidate.

3.4 DIG algorithm

Now we are able to present our algorithm for the infor-
mative rule set generation.

Algorithm DIG: Direct Interesting rule Generation
Input: data setD, the minimum supportσ and the minimum
interestingness thresholdθ.
Output: an interesting rule setR

1) SetR = ∅
2) Count support of 1-itemsets and 2-itemsets by arrays
3) build 1 and 2-candidate sets
4) Prune 1 and 2- candidate sets
5) Select interesting rules toR
6) Generate 3-candidate set
7) While new candidate set is not empty
8) Count support of itemsets for new candidates
9) Prune candidates in the new candidate set
10) Select interesting rules toR
11) Generate next level candidate set
12) Return rule setR



The minimum interestingness thresholdθ can be set by
any of 12 interestingness criteria discussed in Section 2.
Two main functions are discussed in the previous subsec-
tions.

In the above algorithm, we use rule∅ ⇒ c to prune 1-
candidates. For example, if 80% customers buy bread when
they shop in a supermarket, then rule, egg⇒ bread, with
75% confidence states nothing new. Hence the rule is un-
interesting. Rule∅ ⇒ bread can prune those uninteresting
rules. One may argue that that rule egg⇒ bread is inter-
esting if it has very low confidence, say 20%. In this case,
we may formulate the rule as egg⇒ ¬ bread, and call the
rule as a negative rule. Interestingness of negative rules is
beyond the discussions of this paper.

The correctness of this algorithm is guaranteed by the
completeness of enumerating all itemsets by the first two
lines of Candidate-generator and accurate forward pruning
uninteresting rules by Lemma 1 and Corollary 1. Its time
complexity is determined by the number of candidates, and
so is its memory usage.

Please note line 9 in function Candidate-generator and
line 6 in function Prune, not only are all super candidates of
a candidate with the infrequent itemset removed, but also all
super candidates of a candidate with a permanently empty
target-set. Accordingly, DIG does not generate all frequent
itemsets.

DIG is more efficiency than an association rule genera-
tion algorithm and its memory usage is smaller because it
uses confidence to prune uninteresting rules in addition to
the support pruning.

4 Experimental results

In this section, we show the efficiency of DIG in the
comparison with a well-known association rule generation
algorithm, Apriori [1]. Though some association rules al-
gorithms [11, 19, 24] are faster than Apriori, they usually
use more memory to trade for faster speed. We note that in
most applications, an association rule generation algorithm
fails because it runs out of the computer memory. So we
stick with Apriori, and will compare memory usage with
Apriori.

Two test transactional data sets, T10.I6.D100K.N2K and
T20.I6.D100K.N2K, are generated by the synthetic data
generator from QUEST of IBM Almaden research center.
Two data sets contain 1000 items and 100,000 transactions
each. Our experiments were conducted on a Dell computer
with 2G memory and a 2.4GHZ Intel processor running Red
Hat Linux 7.3. Apriori is implemented with the storage
structure of prefix tree and so is DIG.

We first examine the time efficiency of DIG. It was com-
pared against Apriori. The rule generation time of DIG and
Apriori are listed in Figure 1. We can see that DIG is faster
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Figure 1. The comparison of time efficiency

than Apriori and the efficiency improvement is more signif-
icant when the support is low.

To demonstrate DIG improve efficiency without any ad-
ditional memory consumption, we list the number of total
candidates for different rule sets in Figure 2. We can see
that DIG uses less memory than Apriori does. We also note
that the time efficiency improvement is consistent with the
candidate reduction. DIG searches less candidates for inter-
esting rues. This is a major reason for efficiency improve-
ment.

When we apply DIG to relational data sets, the efficiency
improvement is much more significant than to transactional
data sets. This is because a relational data set is denser
than a transactional data set and the lemma and corollary
are more efficient in forward pruning. Importantly, DIG en-
ables us to generate interesting rules in relational data with
lower support than Apriori does.
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Figure 2. The comparison of memory effi-
ciency

5 Related work

Association mining [1] has been studied for many years.
Most research work has been on how to mine frequent item-
sets efficiently since it is the base for association rule form-
ing. Apriori [2] is a widely accepted approach. There are
many other, like [17, 11, 19, 24]. Most of them use more
memory to trade for faster speed. A comparison research
was conducted in [25].

Many association rule generation algorithms undergo
two stages. They first generate all frequent itemsets and
then form rules among them. At the second stage, a large
amount of rules are generated, and many of them are un-
interesting. Much research focuses on how to select inter-
esting rules, and many interestingness criteria are proposed,
such as lift [22] (interest [6] or strength [9]), gain [10], con-
viction [6], p-s [18], and Laplace [7, 21]. A recent study on
interestingness criteria is reported in [20]. Actually, all in-
terestingness criteria only decrease the number of rules but

do not increase the efficiency of rule mining.

Direct interesting rule generation algorithms, which do
not generate all frequent itemsets first, can improve ef-
ficiency of association rule mining. A direct algorithm
usually utilizes additional forward pruning besides support
pruning. Closed itemset property, Chi-square and confi-
dence (or laplace accuracy) have been used for such prun-
ing.

Non-redundant association rule set generation [23], pre-
sented by M. Zaki, utilizes closed itemset properties for for-
ward pruning. This pruning alone is not very efficient for
rule generation on transactional data. Its effect is similar to
the corollary in this paper, and we characterized the rela-
tionship between the non-redundant association rule set and
the informative rule set in [14].

Upward closure property of chi-square was used to gen-
erate correlated association rule set [5] by S. Brin et al. This
rule set is very meaningful and reveals correlation betweens
items. However, both complexity and inaccuracy of chi-
square test increase when the number of cells in a contin-
gency table grows. In [8], a simplified chi-squared criterion
is used, but generated rules are restricted to those with 1-
itemset antecedents.

Confidence based pruning is used by R. Bayardo et al
for generating constraint rule set [4] and optimality rule
sets [3]. However, practical implication of these rule sets
needs further clarification. Further, the presented rule gen-
eration algorithms are unsuitable for applications without
constraint targets or with a large number of targets since
they focus only on one fixed consequence at one time.

OPUS algorithms proposed by G. Webb to systemati-
cally search for rule sets also utilize a variant confidence,
Laplace accuracy, for pruning[21]. These “optimal rule
sets” are quite different from association rule based optimal
rule sets since rules in an OPUS based rule set are generated
in a AQ-like covering algorithm [15]. An OPUS algorithm
scans a data set at least as many times as the number of
rules. A modified OPUS algorithm [22] to generate associ-
ation rules scans a data set as many times as the number of
different antecedents in the generated rule set. As a result,
it may not be efficient when a data set cannot be retained in
the main memory.

This work is very similar to the above two studies in
terms of confidence based pruning. However, the well-
defined informative rule set has clear practical implication.
The presented algorithm generates all rules with respect to
all possible consequences once, and scans a data set only as
many times as the length of the longest rule in the gener-
ated rule set. The algorithm presented in this paper works
on both transactional and relational data sets, whereas al-
gorithms of above two studies handle only relational data
sets.



6 Conclusions

In this paper, we discussed properties of the informative
rule set. We proved that all rules excluded by the informa-
tive rule set are uninteresting by 12 interestingness criteria
and that excluded rules are forwardly prunable. These prop-
erties enabled us to design an efficient algorithm, DIG, to
directly generate interesting rules. We showed experimen-
tally that DIG is faster and uses less memory than Apriori.
DIG avoids time consuming post pruning that an algorithm
to generate interesting rules through an association rule set
has to undergo.
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