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Abstract. Mining transaction databases for association rules usually generates a large number of rules, most
of which are unnecessary when used for subsequent prediction. In this paper we define a rule set for a given
transaction database that is much smaller than the association rule set but makes the same predictions as the
association rule set by the confidence priority. We call this rule set informative rule set. The informative rule
set is not constrained to particular target items; and it is smaller than the non-redundant association rule set. We
characterise relationships between the informative rule set and non-redundant association rule set. We present an
algorithm to directly generate the informative rule set without generating all frequent itemsets first that accesses the
database less frequently than other direct methods. We show experimentally that the informative rule set is much
smaller and can be generated more efficiently than both the association rule set and non-redundant association
rule set.
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1. Introduction

1.1. Introduction

The rapidly growing volume and complexity of modern databases makes the need for
technologies to describe and summarise the information they contain increasingly im-
portant. The general term for this process is data mining. Association rule mining is the
process of generating associations or, more specifically, association rules, in transaction
databases. Association rule mining is an important area of data mining and has wide ap-
plication in many fields. Two key problems in association rule mining are the high cost
for generating association rules and the large number of rules generated. Much work
has been done to address the first problem. Methods for reducing the number of rules
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generated depend on applications, because a rule may be useful in one application but not
another.

In this paper, we are particularly concerned with generating rules for prediction. For
example, given a set of association rules that describe the shopping behavior of the customers
in a store over time, and some purchases made by a particula customer, we wish to predict
what other purchases will be made by that customer.

The association rule set (Agrawal et al., 1993) can be used for prediction if the high
cost for finding and applying the rule set is not a concern. The constrained and optimality
association sets (Bayardo and Agrawal, 1999; Bayardo et al., 1999) can not be used for
this prediction because their rules do not have all possible items to be consequences. The
non-redundant association rule set (Zaki, 2000) may be used, but can be large in size. Our
task of this work is to find a more effective way for prediction.

The general method for generating association rules by first generating frequent itemsets
can be unnecessarily expensive, as many frequent itemsets do not result in useful association
rules. For the purpose of effective prediction, we define the informative (association) rule
set that is smaller than the association rule set and makes the same predictions by the
confidence priority, and present a direct method for generating the informative rule set that
does not involve generating frequent itemsets first. Unlike other algorithms that generate
rules directly, our method imposes no constraints on the consequences of generated rules
as did in Bayardo and Agrawal (1999) and Bayardo et al. (1999) and accesses the database
less frequently than other unconstrained methods (Webb, 2000).

1.2. Related work

Association rule mining was first studied in Agrawal et al. (1993). Most research work has
been done on how to mine frequent itemsets efficiently. Apriori (Agrawal and Srikant, 1994)
is a widely accepted approach, and there have been many enhancements to it (Holsheimer
et al., 1995; Houtsma and Swami, 1995; Mannila et al., 1994; Park et al., 1995; Savasere et al.,
1995). In addition, other approaches have been proposed (Han et al., 2000; Shenoy et al.,
1999; Zaki et al., 1997), mainly by using more memory to save time. For example, the
algorithm presented in Han et al. (2000) organizes a database into a condensed structure to
avoid repeated database accesses, and the algorithms in Shenoy et al. (1999) and Zaki et al.
(1997) use the vertical layout of databases to save counting time.

Some direct algorithms for generating association rules without generating frequent item-
sets first have also been proposed (Bayardo et al., 1999; Bayardo and Agrawal, 1999; Webb,
2000). Algorithms presented in Bayardo et al. (1999) and Bayardo and Agrawal (1999) fo-
cused only on one fixed consequence and hence is inefficient for mining all association
rules. The algorithm presented in Webb (2000) needs to scan a database as many times as
the number of all possible antecedents of rules. As the result, it may not be efficient when
a database is too large to be retained in the memory.

There are two types of algorithms to simplify the association rule set, namely direct
and indirect algorithms. Most indirect algorithms simplify the set by post-pruning and
reorganization, as in Toivonen et al. (1995), Liu et al. (1999) and Ng et al. (1998), which
can obtain an association rule set as simple as the user wishes but does not improve the
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efficiency of rule mining process. There have been some attempts to simplify the association
rule set directly. The algorithm for mining constraint rule sets is one such attempt (Bayardo
et al., 1999). It produces a small rule set and improves the mining efficiency by pruning
unwanted rules in the process of rule mining. However, a constraint rule set contains only
rules with some specific items as consequences, as do the optimality rule sets (Bayardo
and Agrawal, 1999). They are not suitable for association prediction where all items may
be consequences. The most significant work in this direction is to mine the non-redundant
rule set because it simplifies the association rule set and retains the information intact
(Zaki, 2000). However, the non-redundant rule set is still too large to be used effectively
for prediction.

1.3. Our contributions

The main contributions of this paper are listed as follows:
We define a new rule set, namely informative rule set, for a given transaction database,

which is the smallest rule set presenting the same prediction as the association rule set by
confidence priority. We characterise its relationships with the non-redundant association
rule set.

We present a direct algorithm to generate the informative rule set efficiently. The al-
gorithm generates rules at the same time when generating frequent itemsets. Unlike other
direct association rule mining algorithms, the proposed algorithm accesses the database less
frequently for generating rules on all possible items.

We compare the informative rule set with constrained and optimality association rule
sets, and characterise the relationships between the informative association rule set and
non-redundant association rule set.

We show experimentally on standard synthetic data that the informative rule set is much
smaller and can be generated more efficiently than both association rule set and non-
redundant rule set.

2. The informative rule set

2.1. Association rules and related definitions

Let I = {1, 2, . . . , m} be a set of items, and T ⊆ I be a transaction containing a set of items.
An itemset is defined to be a set of items, and a k-itemset is an itemset containing k items.
A database D is a collection of transactions. The support of an itemset (e.g. X), denoted by
sup(X ), is the ratio of the number of transactions containing the itemset to the number of all
transactions in a database. Given two itemsets X and Y where X ∩ Y = ∅, an association
rule is defined to be X ⇒ Y , where sup(X ∪ Y ) and sup(X ∪ Y )/sup(X ) are not less than
user specified thresholds respectively and sup(X ∪ Y )/sup(X ) is called the confidence of
the rule, denoted by conf (X ⇒ Y ). The two thresholds are called the minimum support and
the minimum confidence respectively. For convenience, we abbreviate X ∪ Y by XY and
use the terms rule and association rule interchangeably in the rest of this paper.
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Suppose that every transaction is given a unique identifier. A set of identifiers is called
a tidset. Let mapping t(X ) be the set of identifiers of transactions containing the itemset
X . It is clear that sup(X ) = |t(X )|/|D|. In the following, we list some basic relationships
between itemsets and tidsets.

1. X ⊆ Y ⇒ t(X ) ⊇ t(Y ),
2. t(X ) ⊆ t(Y ) ⇒ t(X Z ) ⊆ t(Y Z ) for any Z , and
3. t(XY ) = t(X ) ∩ t(Y ).

We say that rule X ⇒ Y is more general than rule X ′ ⇒ Y if X ⊂ X ′, and we denoted
this by X ⇒ Y ⊂ X ′ ⇒ Y . Conversely, X ′ ⇒ Y is more specific than X ⇒ Y . We
define the covered set of a rule to be the tidset of its antecedent. We say that rule X ⇒ Y
identifies transaction T if XY ⊂ T . We use Xz to represent X ∪ {z} and sup(X ¬ Z ) for
sup(X ) − sup(X Z ).

2.2. The informative rule set

Let us consider how a user uses the set of association rules to make predictions. Given an
input itemset and the association rule set, initiate the prediction set to be an emptyset. Select
a matching rule with the highest confidence from the rule set, and then put the consequence
of the rule into the prediction set. We say that a rule matches a transaction if its antecedent
is a subset of the transaction. To avoid repeatedly predicting on the same item(s), remove
those rules whose consequences are included in the prediction set. Repeatedly select the
next highest confidence matching rule from the remaining rule set until the user is satisfied
or there is no rule to select. The justification for choosing the confidence priority model
will be presented in the discussion section.

We have noticed that some rules in the association rule set will never be selected in the
above prediction procedure, so we will remove those rules from the association rule set
and form a new rule set. This new rule set has exactly the same prediction power, same
set of prediction items in the same order of generation as the association rule set. Here, we
consider the order because the user may stop selection at any time, and we will guarantee to
obtain the same prediction items in this case. In addition, the sequence reflects the priority
among items in the prediction itemset.

Formally, given an association rule set R and an itemset P , we say that the prediction of
P from R is a sequence of items Q. The sequence Q is generated by using the rules in R
in descending order of confidence. For each rule r that matches P (i.e., for each rule whose
antecedent is a subset of P), each consequence of r is added to Q. After having added a
consequence to Q, all rules with this consequence are removed from R.

To exclude those rules that have never been used in the prediction, we present the following
definition.

Definition 1. Let RA be an association rule set and R1
A the set of single-target rules in

RA. A set RI is informative over RA if (1) RI ⊂ R1
A; (2) ∀ r ∈ RI � ∃r ′ ∈ RI such that

r ′ ⊂ r and conf (r ′) ≥ conf (r ); and (3) ∀ r ′′ ∈ R1
A − RI , ∃r ∈ RI such that r ′′ ⊃ r and

conf (r ′′) ≤ conf (r ).
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The following result follows immediately.

Lemma 1. There exists a unique informative rule set for any given rule set.

Proof: Suppose that we have two informative rule sets R1 and R2 for the complete rule
set R. If R1 �= R2, we must have a rule r such that r ∈ R1 ∧ r /∈ R2. Since r is excluded by
R2, there must be another rule r ′ ∈ R2 such that r ′ ⊂ r and conf (r ′) ≥ conf (r ). Clearly, R1

cannot be informative by the definition, regardless whether it includes r ′ or not, resulting
in contradiction.

Consequently, there exists a unique informative rule set for a complete rule set. �

We give two examples to illustrate this definition.

Example 1. Consider the following small transaction database: {1 : {a, b, c}, 2 : {a, b, c},
3 : {a, b, c}, 4 : {a, b, d}, 5 : {a, c, d}, 6 : {b, c, d}}. Suppose the minimum support is
0.5 and the minimum confidence is 0.5. There are 12 association rules (that exceed the
support and confidence thresholds). They are {a ⇒ b(0.67, 0.8), a ⇒ c(0.67, 0.8), b ⇒
c(0.67, 0.8), b ⇒ a(0.67, 0.8), c ⇒ a(0.67, 0.8), c ⇒ b(0.67, 0.8), ab ⇒ c(0.50, 0.75),
ac ⇒ b(0.50, 0.75), bc ⇒ a(0.50, 0.75), a ⇒ bc(0.50, 0.60), b ⇒ ac(0.50, 0.60), c ⇒
ab(0.50, 0.60)}, where the numbers in parentheses are the support and confidence respec-
tively. Every transaction identified by the rule ab ⇒ c is also identified by rule a ⇒ c or
b ⇒ c with higher confidence. So ab ⇒ c can be omitted from the informative rule set
without losing predictive capability. This is achieved by using requirements (2) and (3) in
Definition 1. Rule a ⇒ b and a ⇒ c provide predictions b and c with higher confidence than
rule a ⇒ bc, so rule a ⇒ bc can be omitted from the informative rule set. This is achieved
by using requirement (1) in Definition 1. Other rules can be omitted similarly, leaving
the informative rule set containing the 6 rules {a ⇒ b(0.67, 0.8), a ⇒ c(0.67, 0.8), b ⇒
c(0.67, 0.8), b ⇒ a(0.67, 0.8), c ⇒ a(0.67, 0.8), c ⇒ b(0.67, 0.8)}.

Example 2. Consider the rule set {a ⇒ b(0.25, 1.0), a ⇒ c(0.2, 0.7), ab ⇒ c(0.2, 0.7),
b ⇒ d(0.3, 1.0), a ⇒ d(0.25, 1.0)}. Rule ab ⇒ c may be omitted from the informative
rule set as the more general rule a ⇒ c has an equal confidence. Rule a ⇒ d, must be
included in the informative rule set even though it can be derived by transitivity from rules
a ⇒ b and b ⇒ d. Otherwise, if it were omitted, item d could not be predicted from the
itemset {a}, as the definition of prediction does not provide for reasoning by transitivity.

Now we present the main property of informative rule set.

Theorem 1. Let RA be an association rule set. Then the informative rule set RI over RA

is the smallest subset of RA such that, for any itemset P, the prediction sequence of P from
RI equals the prediction sequence of P from RA.

Proof: We will prove this theorem from two aspects. Firstly, a rule omitted by RI does
not affect prediction from RA for any P . Secondly, a rule set omitting one rule from RI

cannot present the same prediction sequences as RA for any P .
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Firstly, we will prove that a rule omitted by RI does not affect prediction from RA for
any P .

For a single-target rule r ′ omitted by RI , there must be another rule r in RI such that
r ⊂ r ′ and conf (r ) ≥ conf (r ′). When r ′ matches P , so does r . If both rules have the same
confidence, omitting r ′ does not affect prediction from RA. If conf (r ) > conf (r ′), r ′ must
be automatically omitted from RA after r is selected and the consequence of r is included
in the prediction sequence. So, omitting r ′ does not affect prediction from RA.

For a multiple-target rule in RA, e.g. A ⇒ bc, there must be two rules A′ ⇒ b and
A′′ ⇒ c in RI for A′ ⊆ A and A′′ ⊆ A such that conf (A′ ⇒ b) ≥ conf (A ⇒ bc)
and conf (A′′ ⇒ c) ≥ conf (A ⇒ c). When rule A ⇒ bc matches P , A′ ⇒ b and
A′ ⇒ c do. It is clear that if conf (A′ ⇒ b) = conf (A′ ⇒ c) = conf (A ⇒ bc), then
omitting A ⇒ bc does not affect prediction from RA. If conf (A′ ⇒ b) > conf (A ⇒
bc) and conf (A′ ⇒ c) > conf (A ⇒ bc), rule A ⇒ bc must be automatically omitted
from RA after A′ ⇒ b and A′′ ⇒ c are selected and item b and c are included in the
prediction sequence. Similarly, we can prove that omitting A ⇒ bc from RA does not affect
prediction when conf (A′ ⇒ b) > conf (A′′ ⇒ c) = conf (A ⇒ bc) or conf (A′′ ⇒ c) >

conf (A′ ⇒ b) = conf (A ⇒ bc). So omitting A ⇒ bc from RA does affect prediction.
Similarly, we can conclude that a multiple-target rule in RA does not affect its prediction
sequence.

Thus a rule omitted by RI does not affect prediction from RA.
Secondly, we shall prove the minimum property. Suppose that we omit one rule X ⇒ c

from RI . Let P = X , there must be a position for c in the prediction sequence from RA

determined by X ⇒ c because there is no other rule X ′ ⇒ c such that X ′ ⊂ X and
conf (X ′ ⇒ c) ≥ conf (X ⇒ c). When X ⇒ c is omitted from RI , there may be two
possible results for the prediction sequence from RI . One is that item c does not occur in
the sequence. The other is that item c is in the sequence but its position is determined by
another rule X ′ ⇒ c for X ′ ⊂ X with smaller confidence than that for X ⇒ c. As the
result, the two prediction sequences can not be the same.

Hence, the informative rule set is the smallest subset of RA that provides the same
predictions for any itemset P . �

Finally, we describe a property that characterises some rules to be omitted from the
informative rule set.

We can divide the tidset of an itemset X into two parts on an itemset (consequence),
t(X ) = t(X Z )∪t(X ¬ Z ). The first part means a set of transactions containing both itemsets
X and Z , and the second part means a set of transactions containing itemset X but not Z .
If the second part is an empty set, then the rule X ⇒ Z has 100% confidence. Usually,
the smaller is |t(X ¬ Z )|, the higher is the confidence of the rule. Hence, |t(X ¬ Z )| is very
important in determining the confidence of a rule.

Lemma 2. If t(X ¬ Z ) ⊆ t(Y ¬ Z ), then rule XY ⇒ Z does not belong to the informative
rule set.

Proof: Let us consider two rules, XY ⇒ Z and X ⇒ Z .
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We know that conf (XY ⇒ Z ) = s1/(s1 + r1), where s1 = |t(XY Z )| and r1 =
|t(XY ¬ Z )|, and conf (X ⇒ Z ) = s2/(s2 + r2), where s2 = |t(X Z )| and r2 = |t(X ¬ Z )|.

r1 = |t(XY¬Z )| = |t(X¬Z ) ∩ t(Y¬Z )| = |t(X¬Z )| = r2.

s1 = |t(XY Z )| ≤ |t(X Z )| = s2.

As a result, conf (XY ⇒ Z ) ≤ conf (X ⇒ Z ). Hence rule XY ⇒ Z must be omitted by
the informative rule set. �

This is an important property of the informative rule set, since it enables us to predict
rules that cannot be included in the informative rule set in the early stage of association rule
mining. We will discuss this in detail in Section 4.

3. Comparison with the non-redundant association rule set

It is clear that the informative rule set is different from the constraint (Bayardo et al.,
1999) and optimality (Bayardo and Agrawal, 1999) rule sets, because they do not have
all possible items to be consequences and subsequently cannot make the same predictions
as the association rule set. The non-redundant rule set (Zaki, 2000) can make the same
prediction as the association rule set, but it is larger than the informative rule set. We now
discuss its relationship with the informative rule set.

To facilitate our discussion, we first restate non-redundant rules in a way that makes it
easy to compare with our informative rule set.

Generally, we say that a rule is derivable if its confidence and support can be derived
from other more general rules. More specifically, rule X ⇒ Y is derivable if there is a set
of rules R in which all rules are more general than rule X ⇒ Y , such that rule X ⇒ Y and
its support and confidence can be obtained from R. For example, rule ab ⇒ c(0.2, 0.7) can
be derived from two rules a ⇒ b(0.25, 1.0) and a ⇒ c(0.2, 0.7). The numbers in brackets
are the support and the confidence.

We give one type of derivable rules as follows.

Lemma 3. If t(X ) ⊆ t(Y ), then for any itemset Z rule XY ⇒ Z and Z ⇒ XY are
derivable.

Proof: Since t(X ) ⊆ t(Y ), rule X ⇒ Y is a 100% confidence rule and sup(X Z ) =
sup(XYZ). As a result, sup(XY ⇒ Z ) = sup(X ⇒ Z ) and conf (XY ⇒ Z ) = conf (X ⇒ Z ).
Consequently, rule XY ⇒ Z can be derived from rules X ⇒ Z and X ⇒ Y .

Similarly, rule Z ⇒ XY can be derived from rules Z ⇒ X and X ⇒ Y and its confidence
and support are the same as those of rule Z ⇒ X .

Consequently, XY ⇒ Z and Z ⇒ XY are derivable. �

The following lemma follows immediately:

Lemma 4. Redundant rules given in Zaki (2000) (Theorem 5 and Theorem 6) are derivable
rules.
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Proof: Detailed in Appendix. �

By comparison, the informative rule set excludes at least all derivable rules given in the
above lemma.

Firstly, all derivable rules given in Lemma 3 are omitted by the informative rule set. Since
the confidence of rule XY ⇒ Z is not greater than that of a more general rule X ⇒ Z , it
is omitted by the informative rule set. It is clear that rule Z ⇒ XY is omitted as well.

Secondly, the informative rule set excludes more rules than those derivable ones. For ex-
ample, given a small set of transactions: {{1 : X, c1}, {2 : X, c1}, {3 : Y, c1}, {4 : Y, c1}, {5 :
X, Y, c1}, {6 : X, Y, c1}, {7 : X, Y, c1}, {8 : X, Y, c1}, {9 : X, Y, c1}, {10 : X, Y, c2}}.
We have the following five rules: X ⇒ c1(conf = 0.88), Y ⇒ c1(conf = 0.88),
XY ⇒ c1(conf = 0.83), X ⇒ Y (conf = 0.75), and Y ⇒ X (conf = 0.75). Rule
XY ⇒ c1(conf = 0.83) is omitted by the informative rule set, but not by the non-redundant
rule set.

In fact, all derivable rules have something to do with 100% confidence rules, and these
rules are not very common in a rule set generated from a transaction database. So, the
non-redundant rule set cannot exclude many rules from the association rule set generated
from transaction databases.

There is another type of derivable rules, the transitivity rules. For example, if a ⇒ b is a
100% confidence association rule and so is b ⇒ c, then a ⇒ c must be a 100% confidence
rule and its support is the same as a ⇒ b. Hence, a ⇒ c is derivable. Further, if both
a ⇒ b and b ⇒ c are 100% confidence rules and c ⇒ b and b ⇒ a have confidence r and
s respectively, then rule c ⇒ a is derivable. This is because its confidence equals to s × t
and its support is the same as that of b ⇒ a.

The informative rule set does not exclude these transitive rules while the non-redundant
rule set excludes them. However these transitive rules are rare since two consecutive 100%
rules are involved. In a rule set generated from a transaction database, there are few tran-
sitive rules, so their effect on the size of a rule set can be ignored. For example, in our
experiments, there is no such transitive rule generated at all. Hence, in the general case
informative rule set is a subset of non-redundant association rule set.

4. The upward closure properties

Most association rule mining algorithms use the upward closure property of infrequent
itemsets: if an itemset is infrequent, so are all its super itemsets. Hence, many infrequent
itemsets are prevented from being generated in the mining process, and this is the essence
of Apriori. If similar properties are applied to the rules omitted by the informative rule set,
then we can prevent generation of many rules omitted by the informative rule set. As the
result, algorithms based on these properties will be more efficient.

First of all, we present a property that will facilitate our discussion. It is convenient to
compare the support of itemsets in order to find subset relationships among their tidsets.
This is because we always have support information when mining association rules. We
have the following lemma for this purpose.
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Lemma 5. t(X ) ⊆ t(Y ) if and only if sup(X ) = sup(XY ).

Proof: We firstly prove the necessary condition.
Since t(X ) ⊆ t(Y ), sup(XY ) = |t(XY )|/|D| = |t(X ) ∩ t(Y )|/|D| = |t(X )|/|D| =

sup(X ).
We then prove the sufficient condition.
Since sup(X ) = sup(XY), we have that |t(X )| = |t(X )∩t(Y )|. Hence, the only possibility

is t(X ) ⊆ t(Y ).
This completes the proof. �

We have two upward closure properties for mining the informative rule set. In the fol-
lowing two lemmas, we show they are easy to use in algorithm design but may not be very
good in terms of mathematical simplicity.

Lemma 6. If sup(X ) = sup(XY ), then for any Z , rule XY ⇒ Z and all more specific
rules do not occur in the informative rule set.

Proof: Since sup(X ) = sup(XY ), we have t(X ) ⊆ t(Y ). As the result, XY ⇒ Z is
derivable by Lemma 3, and hence is omitted by the informative rule set.

Furthermore, t(XX′) = t(XX′Y ) holds for any X ′. We have sup(XX′) = sup(XX′Y ).
Similarly, rule XX′Y ⇒ Z is omitted by the informative rule set.

Consequently, rule XY ⇒ Z and all other more specific rules are omitted by the infor-
mative rule set. �

It is clear that this lemma is for those derivable rules defined by Lemma 3.

Lemma 7. If sup(X ¬ Z ) = sup(XY ¬ Z ), then rule XY ⇒ Z and all more specific rules
do not occur in the informative rule set.

Proof: Since sup(X ¬ Z ) = sup(XY ¬ Z ) = sup(X ¬ ZY ¬ Z ), we have t(X ¬ Z ) ⊆
t(Y¬Z ). As the result, XY ⇒ Z cannot be included in the informative rule set by Lemma 2.

Furthermore, t(XX′ ¬ Z ) = t(XX′Y ¬ Z ) holds for any X ′. We have sup(XX′ ¬ Z ) =
sup(XX′Y ¬ Z ). Similarly, rule XX′Y ⇒ Z cannot be included in the informative rule set.

Consequently, rule XY ⇒ Z and all rules that are more specific must be omitted by the
informative rule set. �

Clearly, this lemma is for those rules defined by Lemma 2.
Finally, we discuss the relationship between the two lemmas. If sup(X ) = sup(Xz), then

sup(X ¬ Y ) = sup(Xz ¬ Y ) for all Y . However, the reverse relationship does not hold.
Hence, Lemma 7 is more general than Lemma 6 and we can omit more rules by Lemma 7
than by Lemma 6. Lemma 6 is actually for derivable rules, which are a part of rules omitted
by the informative rule set.

These two lemmas enable us to prune unwanted rules in a “forward” fashion before they
are actually generated. In fact we can prune a set of rules when we prune each rule not in
the informative rule set in the early stages of the computation. This allows us to construct
efficient algorithms to generate the informative rule set.
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5. Mining algorithm

5.1. Basic idea and storage structure

We propose a direct algorithm to mine the informative rule set. Instead of first finding all
frequent itemsets and then forming rules, the proposed algorithm generates informative rule
set directly. An advantage of doing so is that it avoids generating many frequent itemsets
that lead to rules omitted by the informative rule set.

The proposed algorithm is a level-wise algorithm, which searches for rules from an-
tecedent of 1-itemset to antecedent of l-itemset level by level. In each level, we select
qualified rules, which could be included in the informative rule set, and prune those unqual-
ified rules. The efficiency of the proposed algorithm is based on the fact that a number of
rules omitted by the informative rule set are prevented from being generated once a more
general rule is pruned by Lemma 6 or 7. Consequently, the searching space is reduced after
each level’s pruning. The number of phases of accessing a database is bounded by the length
of the longest rule in the informative rule set plus one.

In the proposed algorithm, we extend a set enumeration tree (Rymon, 1992) as the storage
structure, called candidate tree. A simplified candidate tree is illustrated in figure 1. The
tree in figure 1 is completely expanded, but in practice only a small part may need to be
expanded. We note that each set in the tree is unique and is used to identify the node, called
identity set. We also note that labels are locally distinct to each other under the same parent
node in a layer, and labels along a path from the root to the node form exactly the identity
set of the node. This is very convenient for retrieving the itemset and counting its frequency.
In our algorithm a node is used to store a set of rule candidates.

5.2. The algorithm

The set of all items is used to build a candidate tree. A node in the candidate tree stores
two sets {A, Z}, where A is an itemset, the identity set of the node, and Z is a subset of the

Figure 1. A fully expanded candidate tree over the set of items {1, 2, 3, 4}.
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identity itemset, called potential target set in which each item can be the consequence of
an association rule. For example, {{abc}, {ab}} is a set of candidates of two rules, namely,
bc ⇒ a and ac ⇒ b. It is clear that the potential target set is initialized by the itemset itself.
When there is a case satisfying Lemma 7, for example, sup(a ¬ c) = sup(ab ¬ c), then we
remove c from the potential target set, and accordingly all rules such as abX → c cannot
be generated afterwards.

We first illustrate how to generate a new candidate node. For example, we have two
sibling nodes {{abc}, {ab}} and {{abd}, {ad}}, then the new candidate is {{abcd}, {ad}},
where {ad} = ({ab} ∪ {d}) ∩ ({ad} ∪ {c}). Hence the only two candidate rules that could be
included in the informative rule set in this case are bcd ⇒ a and abc ⇒ d given that abcd
is frequent. Item c is omitted for the target set of {{abc}, {ab}}, and this means that ab ⇒ c
and all more specific rules, such as abd ⇒ c will not occur in the informative rule set. So
item c does not appear in the target set of {{abcd}, {ad}}. The same reason for omitting item
a. We use {ab}∪ {d} because d is new to set abc, and we do not want to miss rule abc ⇒ d,
and the same reason for using {ad} ∪ {c}.

We then show how to remove unqualified candidates. One way is by the frequency
requirement. For example, if sup(abcd) < σ , then we remove the node whose identity
set is abcd, called node abcd. Note that here a node in the candidate tree contains a set
of candidate rules. Another method is by the properties of the informative rule set, which
consists of two steps. First, for candidate node {Al , Z} and an item z ∈ Z , where Al stands
for an l-itemset, if there is sup((Al\z) ¬ z) = sup((Al−1\z) ¬ z) for (Al\z) ⊃ (Al−1\z),
then remove the z from Z by Lemma 7. Secondly, we say node {Al , Z} is restricted if there
is sup(Al) = sup(Al−1) for Al ⊃ Al−1. A restricted node does not extend its potential target
set and keeps it as that of node {Al−1, Z}. The reason is that all rules Al−1 X ⇒ c for any
X and c are omitted from the informative rule set by Lemma 6, so we need not generate
such candidates. This potential target set is removable by Lemma 7, and a restricted node
is dead when its potential target set is empty. All supersets of the itemset of a dead node
are unqualified candidates, so we need not generate them.

We give the top level of the informative rule mining algorithm as the following.

Algorithm: Informative rule set miner

Input: Database D, the minimum support σ and the minimum confidence ψ .
Output: The informative rule set R.

(1) Set the informative rule set R = ∅
(2) Count support of 1-itemsets
(3) Initialize candidate tree T
(4) Generate new candidates as leaves of T
(5) While (new candidate set is non-empty)
(6) Count support of the new candidates
(7) Prune the new candidate set
(8) Include qualified rules from T to R
(9) Generate new candidates as leaves of T
(10) Return rule set R
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The first 3 lines are general description that are self-explanatory. We will elaborate the
two functions, Candidate generator in line 4 and 9 and Pruning in line 6. They are listed as
follows.

First of all, we introduce some notations in the functions: ni is a candidate node in the
candidate tree, labeled by an item (vertex) ini , contains an identity itemset Ani and a poten-
tial target set Zni ; Tl is the l-th level of candidate tree; P l(A) is the set of all l-subsets of A;
n A is a node whose identity itemset is A. All items are in the lexicographic order.

Function Rule candidate generator

(1) for each node ni ∈ Tl

(2) for each sibling node n j (in j > ini )
(3) generate a new candidate node nk as a son of ni such that

//Combining
(4) Ank = Ani ∪ An j

(5) Znk = (Zni ∪ in j ) ∩ (Zn j ∪ ini )
//Pruning

(6) if ∃A ∈ P l(Ank ) but n A /∈ Tl then remove nk

(7) else if n A is restricted then mark nk restricted and let Znk = Zn A ∩ Znk

(8) else Znk = (Zn A ∪ (Ank \A)) ∩ Znk

(9) if nk is restricted and Znk = ∅, remove node nk

We generate the (l + 1)-layer candidates from the l layer nodes. Firstly, we combine a
pair of sibling nodes and insert their combination as a new node in the next layer. Secondly,
if any of its l-sub itemset cannot get enough support then we remove the node. If an item is
not qualified to be the target of a rule included in the informative rule set, then we remove
the target from the potential target set.

Note that in line 6, not only a superset of an infrequent itemset is removed, but also a
superset of a frequent itemset of a dead node is removed. The former is common in asso-
ciation rule mining, and the latter is unique for the informative rule mining. A dead node
is removed in line 9. As the result, informative rule mining doesn’t generate all frequent
itemsets.

Function Pruning

(1) for each ni ∈ Tl+1

(2) if sup(Ani ) < σ , remove node ni and return
(3) if ni is not restricted node, do
(4) if ∃n j ∈ Tl for An j ⊂ Ani such that sup(An j ) = sup(Ani )

then mark ni restricted and let Zni = Zni ∩ Zn j // Lemma 6
(5) for each z ∈ Zni

(6) if ∃n j ∈ Tl for (An j \z) ⊂ (Ani \z) such that
sup((An j \z) ∪ ¬z) = sup((Ani \z) ∪ ¬z)

then Zi = Zi \ z. // Lemma 7
(7) if ni is restricted and Zni = ∅, remove node ni
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We prune a rule candidate from two aspects, frequency requirement for association rules
and qualification requirement for the informative rule set. The method for pruning infrequent
rules is the same as that for association rule mining. As for the method for pruning unqualified
candidates for the informative rule set, we restrict the possible targets in the potential target
set of a node (a possible target is equivalent to a rule candidate) and remove a restricted
node when its potential target set is empty.

5.3. Correctness and efficiency

Lemma 8. The algorithm generates the informative rule set properly.

Proof: We will prove the claim from two aspects. One is that the candidate tree can
generate all single consequence association rules directly, and the other is that the pruned
rules are those which must be omitted by the informative rule set.

Basically a candidate tree can enumerate all subsets of the set of all items, and store every
itemset in a node of the tree as the identity set of the node. The itemset stored in a child node
is a superset of the itemset stored in its parent node, so a set of super itemsets are stored in
a branch of the tree. Once we have removed those infrequent branches, all remaining nodes
store frequent itemsets. Let the potential target set of an itemset be the itemset itself. We
can then obtain all single consequence association rules directly.

Now, we will prove that all pruned candidate rules are those which must be omitted by
the informative rule set from three aspects.

Firstly, in our algorithm, the potential target set is a subset of the itemset stored in
a node, Z ⊆ A, and some items are omitted from set Z by Lemma 7. Specifically, if
sup(A ¬ z) = sup(A′ ¬ z) for A′ ⊃ A then all rules A′′ ⇒ z for A′′ ⊇ A′ are omitted from
the informative rule set. Hence, we can remove all rule candidates A′′ ⇒ z, and equivalently,
remove z from every potential target set of every node in the subtree rooted by node n A′ in
the algorithm.

Secondly, for all restricted nodes, we do not extend their potential target sets while
expanding their itemsets. Since if sup(A) = sup(A′) for A′ ⊃ A then all rules A′′ ⇒ c for
A′′ ⊇ A′ and any c are omitted from the informative rule set by Lemma 6. Given a restricted
node A′′ where A′′ ⊃ A and sup(A′′) = sup(A), all rules A′′\z ⇒ z where z ∈ {A′′\A}
must be omitted from the informative set. The potential target set Z ′′ for node n A′′ must be
a subset of A, and hence Z ′′ doesn’t need to be extended.

Finally, we do not generate a candidate node that stores a superset of the identity set of
a dead node. We know that the potential target set of a restricted node A′ is only a subset
of A where A is the smallest subset of A′ such that sup(A) = sup(A′). If all items in Z are
not qualified consequences of A′, then A′ and all its supersets cannot contain rules to be
included in the informative rule set.

In summary, the algorithm generates informative rule set properly. �

It is very hard to give a closed form of efficiency of the algorithm. However, we expect
improvements over other association rule mining algorithms based on the following reasons.
Firstly, our algorithm does not generate all frequent itemsets, because some frequent itemsets
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cannot contain rules being included in the informative rule set. Secondly, our algorithm does
not test all possible rules in each generated frequent itemset because some items in an itemset
are not qualified as consequences for rules being included in the informative rule set.

The phases of accessing a database is bounded by the length of the longest rule in the
informative rule set plus one.

6. Discussion

In this section we will present some discussions on why we choose the confidence priority
model for prediction. Apparently, it extends a classification model by allowing a set of items
to be prediction output. Reasons for using confidence priority are listed as follows.

First, since confidence is the accuracy of a rule based on the data from which it is
generated, naturally we prefer the highest accuracy rules.

Secondly, confidence approximates to the true accuracy in a large database. Predictions
are usually made on the data that is different sample from the data where rules are generated.
We call the test data and training data respectively. Clearly, confidence is the training
accuracy, and the true accuracy is the test accuracy on a large-size sample. However, we
never know the true accuracy in the rule generation stage and have to estimate it. Here is
an estimation of the true accuracy (Mitchell, 1997).

acc(A ⇒ c) = conf (A ⇒ c) ± zN

√
conf (A ⇒ c)(1 − conf (A ⇒ c))

|cov(A ⇒ c)|

where zN is a constant related with a statistical confidence interval and |cov(A ⇒ c)| is
the number of transactions containing A. In a large database, |cov(A ⇒ c)| is usually big.
Hence confidence approximates to the true accuracy.

Thirdly, the predictions provided by the confidence priority will not be significantly
affected by the changing of minimum confidence. In the confidence priority model, each
prediction is made by a rule with the maximum confidence, and hence the distance to the
minimum confidence is also maximized. As a result, the change of the minimum confidence
would not significantly affect the prediction.

Alternatively, we may have a support priority model. The support priority model is the
one that selects the matching rule with maximum support to make prediction each time. It
reflects the emphasis on the popularity of a prediction.

Consider the prediction from the support priority model as a sequence of items. For any
input itemset, the prediction sequence from the informative association rule set is identical
to the prediction sequence from the association rule set. This is because all highest support
rules are contained in the informative association rule set. In fact, to generate the same
prediction sequence as the association rule set, the support priority model only needs a
subset of informative rule set. Though the rule set is small, it loses the highest confidence
information which is crucial in predictions.

Consequently, we choose to use the confidence priority model in this paper. The resulting
informative rule set contains highest confidence information as well as highest support
information, therefore it suits for various applications.
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7. Experimental results

In this section, we show that the informative rule set is much smaller than both the association
rule set and non-redundant association rule set. We further show that it can be generated
more efficiently with fewer interactions with a database. Finally, we show the efficiency
improvement gain from the fact that the proposed algorithm for the informative rule set
accesses the database fewer times and generates fewer candidates than Apriori for the
association rule set.

Since the informative rule set contains only single-target rules, for fair comparisons, we
assume that the association rule set and non-redundant rule set in this section contain only
single-target rules as well. The reason for the comparison with the non-redundant rule set
is that it can also make the same predictions as the association rule set.

The two test transaction databases, T10.I6.D100K.N2K and T20.I6.D100K.N2K, are
generated by the synthetic data generator from QUEST of IBM Almaden research center.
Both databases contain 1000 items and 100,000 transactions. We chose the minimum support
in the range such that 70% to 80% of all items are frequent, and fix the minimum confidence
to 0.5.

Sizes of different rule sets are listed in figure 2. It is clear that the informative rule
set is much smaller than both the association rule set and non-redundant rule set. The size
difference between informative rule set and association rule set becomes more evident when
the minimum support decreases, as does the size difference between informative rule set
and non-redundant rule set. This is because the length of rules becomes longer when the
minimum support decreases, and long rules are more likely to be omitted by the informative
rule set than short rules. From our discussion in Section 4, we know that all redundant rules
are connected with at least one 100% confidence rule. However, in these randomly generated
databases, there are not many 100% confidence rules. Hence there is little difference in size
between association rule set and non-redundant rule set. As the result, in the following
comparisons, we only compare the informative rule set with the association rule set.

Figure 2. Sizes of different rule sets.
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Figure 3. Generating time for different rule sets.

Next, we shall compare the efficiencies for generating informative rule set and association
rule set. We implemented Apriori on the same data structure as the proposed algorithm and
generated only single-target association rules. Our experiments were conducted on a Sun
server with two 200 MHz UltraSPARC CPUs.

The times for generating association rule set and informative rule set are listed in the
figure 3. We can see that the proposed algorithm for mining informative rule set is more
efficient than Apriori for mining single-target association rule set. This is because the
proposed algorithm does not generate all frequent itemsets, and does not test all items as
targets in a frequent itemset. The improvement of efficiency becomes more evident when
the minimum support decreases. This is consistent with the deduction of rules being omitted
from an association rule set as shown in figure 2.

Furthermore, the number of times of accessing database required by proposed algorithm
is smaller than Apriori, as showed in figure 4. This is because the proposed algorithm avoids

Figure 4. The number of times of accessing the database.
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Figure 5. The number of candidate nodes.

generating many long frequent itemsets that contain no rules included in an informative rule
set. From the results, we also know that long rules are easier to be omitted by informative
rule set than short rules. Clearly, this number is clearly much smaller than the number of
frequent itemsets which are needed to access a database in direct association rule generating
algorithms.

To better understand efficiency improvement of the proposed algorithm over Apriori, we
list the number of nodes in a candidate tree for both association and informative rule sets
in figure 5. The numbers are all frequent itemsets for Apriori to generate all association
rules and partial frequent itemsets for the proposed algorithm to generate an informative
association rule set. We can see that in mining informative rule set, the number of itemsets
searched is smaller than that of all frequent itemsets for forming all association rules. This
is the reason for efficiency improvement and reduction in the number of times to access
a database. This result also indicates that the proposed algorithm uses less memory space
than Apriori does.

The improvement is very significant since the proposed algorithm is faster and uses less
memory in comparison with Apriori. Especially, the noticeable improvement occurs at small
support, which is the bottleneck of association rule mining. In the worse case, e.g. when
support is big, the proposed algorithm accesses a database the same times as Apriori does.
Both Apriori and our proposed algorithm are level-wise (breadth first) algorithms, and they
access a database much less often than non-redundant rule set generation (Zaki, 2000) that
is a depth first algorithm.

8. Conclusion

We have defined a new rule set, informative rule set, that generates the same predic-
tion sequences as association rule set according to the confidence priority. The size of
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informative rule set is significantly smaller than association rule set, especially when the
minimum support is small. We have studied the relationships between informative rule set
and non-redundant association rule set, and revealed that informative rule set is a subset
of non-redundant association rule set. We have also studied the upward closure properties
of informative rule set for omission of unnecessary rules from the set, and presented a
direct algorithm to efficiently mine the informative rule set without generating all frequent
itemsets first. The experimental results have confirmed that our informative rule set is sig-
nificantly smaller and can be generated more efficiently than both association rule set and
non-redundant association rule set. The experimental results have also shown that this effi-
ciency improvement is resulted from the fact that generation of informative rule set needs
fewer candidates and database accesses than that of association rule set. The number of
database accesses of the proposed algorithm is much smaller than other direct methods for
generating association rules on all items.

We notice that a predictive rule set can be very small by incorporating some domain
knowledge, and the significance of this work is that such small predictive rule set can
be derived directly from the informative rule set instead of the association rule set. By
doing this, much time can be saved. This is because informative association rule set can be
generated more efficiently, and pruning on a smaller rule set is more efficient than pruning
on a larger rule set.

Although the informative rule set provides the same prediction sequence as the association
rule set, there may exist other definitions of “interestingness” in different applications. How
to further incorporate informative rule set generation with different criteria remains a subject
of future work.

Appendix

Before proving Lemma 4, we introduce some terms used in Zaki (2000). For tidset Y , let
mapping i(Y ) be the maximum itemset that is contained in all transactions in Y . Let cit (X )
denote the composition of two mappings i ◦t(X ) = i(t(X )), and cti (Y ) = t ◦i(X ) = t(i(Y )).
Itemset X is closed if X = cit (X ). The support of an itemset equals that of its closed itemset.

We first restate two theorems in paper (Zakik, 2000).

Theorem 5. Let Ri stand for a 100% confidence rule Xi ⇒ Y i , R = {R1, . . . , Rn} be a
set of rules such that I1 = cit (Xi ∪ Y i ), and I2 = cit (Y i ) for all rules Ri . Then all the rules
are equivalent to the 100% confidence rule I1 ⇒ I2. Further, all rules other than the most
general ones are redundant.

Theorem 6. Let Ri stand for a rule Xi ⇒ Y i with confidence less than 100%, and let
R = {R1, . . . , Rn} be a set of rules such that I1 = cit (Xi ), and I2 = cit (Xi ∪ Y i ) for all
rules Ri . Then all the rules are equivalent to rule I1 ⇒ I2. Further, all rules other than the
most general ones are redundant.

The following lemma needs to be proven:

Lemma 4. Redundant rules given in Theorems 5 and 6 (Zaki, 2000) are derivable rules.
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Proof: For convenience, we omit the upper script of X and Y . We notice that if I = cit (X )
then both I ⊇ X and t(I ) = t(X ) hold. We will use this relationship throughout the
proof.

First, let us look at Theorem 5. Suppose that X ⇒ Y is one of the most general rules in the
rule set R. Since X ⇒ Y is a 100% confidence rule, we have t(X ) ⊆ t(Y ). Let X Z ⇒ I2

be an equivalent rule of I1 ⇒ I2 and Z �= ∅. From the condition given in Theorem 5,
we have t(X Z ) = t(XY ) = t(X ) ∩ t(Y ) = t(X ). Hence we obtain t(X ) ⊆ t(Z ). As the
result, rule X Z ⇒ I2 is derivable by Lemma 3. Let I1 ⇒ Y Z ′ be another equivalent rule of
I1 ⇒ I2 and Z ′ �= ∅. Since t(Y Z ′) = t(Y ), we have t(Y ) ⊆ t(Z ′). As the result, I1 ⇒ Y Z ′

is derivable by Lemma 3. Hence, we can conclude that all equivalent rules of I1 ⇒ I2 other
than the most general ones given in Theorem 5 are derivable.

Next, let us look at Theorem 6. Suppose that X ⇒ Y is one of the most general rules
in the rule set R. Let X Z ⇒ I2 be an equivalent rule of I1 ⇒ I2 and Z �= ∅. Since
t(X Z ) = t(X ), we have t(X ) ⊆ t(Z ). Hence, rule X Z ⇒ I2 is derivable by Lemma 3.
Let I1 ⇒ XY Z ′ be another equivalent rule of I1 ⇒ I2 and Z ′ �= ∅. From the condition
given by Theorem 6, we have t(XY Z ′) = t(XY ). Hence, We obtain t(XY ) ⊆ t(Z ′). As
the result, rule I1 ⇒ XY is derivable by Lemma 3. Furthermore, I1 ⇒ XY can be derived
from X ⇒ XY , or equivalently from X ⇒ Y . Hence, we can conclude that all equivalent
rules of I1 ⇒ I2 other than the most general ones given in Theorem 6 are derivable. �
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