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ABSTRACT
We study the problem of computing classification rule sets
from relational databases so that accurate predictions can
be made on test data with missing attribute values. Tra-
ditional classifiers perform badly when test data are not as
complete as the training data because they tailor a training
database too much. We introduce the concept of one rule set
being more robust than another, that is, able to make more
accurate predictions on test data with missing attribute val-
ues. We show that the optimal class association rule set is
as robust as the complete class association rule set. We then
introduce the k-optimal rule set, which provides predictions
exactly the same as the optimal class association rule set on
test data with up to k missing attribute values. This leads
to a hierarchy of k-optimal rule sets in which decreasing size
corresponds to decreasing robustness, and they all more ro-
bust than a traditional classification rule set. We introduce
two methods to find k-optimal rule sets, i.e. an optimal as-
sociation rule mining approach and a heuristic approximate
approach. We show experimentally that a k-optimal rule set
generated by the optimal association rule mining approach
performs better than that by the heuristic approximate ap-
proach and both rule sets perform significantly better than
a typical classification rule set (C4.5Rules) on incomplete
test data.
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1. INTRODUCTION

1.1 Motivation
Automatic classification has been a goal for machine learn-

ing and data mining, and rule based methods are widely ac-
cepted due to their understandability and explanatory. Rule
based classification usually involves two stages, learning and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD ’02 Edmonton, Alberta, Canada
Copyright 2002 ACM 1-58113-567-X/02/0007 ...$5.00.

testing. Consider a relational database where each record is
assigned a category (class), called a training database. In
the learning stage, we generate a rule set where each rule
associates a pattern with a class. Then in the test stage, we
apply this rule set to test data without class information,
and to predict the class that a record in the test database
belongs to. If the predictive class is the class that the record
supposed to belong to, then the prediction is correct. Oth-
erwise, it is wrong. The proportional of correct predictions
from test data is accuracy and surely a high accuracy is
preferred.

In the machine learning community, many classification
rule systems have been proposed, and they produce satis-
factory accuracy in many applications. However, when the
test data is not as complete as the training data, a classi-
fication rule set may perform poorly because it tailors the
training data too much. We will give the following example
to show this.

Example 1. Given a well-known data set listed in Table
1, a decision tree (e.g. ID3 [18] can be constructed as in
Figure 1.

NO. Outlook Temperature Humidity Wind Play

1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes
10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No

Table 1: A training data set

The following 5 rules are from the decision tree.
1. If outlook is sunny and humidity is high, then do not

play tennis.
2. If outlook is sunny and humidity is normal, then play

tennis.
3. If outlook is overcast, then play tennis.
4. If outlook is rain and wind is strong, then do not play
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Figure 1: A decision tree from the training data set

tennis.
5. If outlook is rain and wind is weak, then play tennis.

We note that all rules include the attribute outlook. Suppose
that we have a test data set in which outlook information
is unknown. Then these rules cannot make any predictions.
Hence, this rule set is not robust at all. However, we may
have another rule set that can make some predictions in the
presence of missing i.e. outlook information in test data.

In real world applications, missing data in a database is
very common, especially in a test database. For example,
we may generate a diagnostic rule set from records with the
complete check results. But when we apply the rule set,
some records may miss one or more check results for some
reasons. Hence, a rule set that can make reasonably accurate
predictions in the presence of missing attribute values in test
data is highly desirable in practice. We say that a rule set
is more robust than another rule set if it can make more
accurate predictions on incomplete test data than the other
rule set. In the following, we will explore this problem and
its solutions.

1.2 Related work
Classification rule mining algorithms have been mainly

developed for category prediction by the machine learning
community. They use heuristic methods to find simple rule
sets to explain training data well, and are generally cate-
gorized into two groups [17], simultaneously covering algo-
rithms namely C4.5 [18], and sequential covering algorithms
such as AQ15 [15] and CN2 [6]. Most algorithms generate
simple and accurate rule sets that cover all training data,
but these rule sets may not be robust in the presence of
missing values as we will discuss in this paper.

There are many proposals for improving predictive ac-
curacy of traditional classifiers, among which Bagging [5]
and Boosting [8, 9] are significant in reducing predictive er-
rors. Both techniques utilize voting (weights are involved in
Boosting) from a set of classifiers obtained by sampling the
training database. However, Bagging and Boosting make
predictions hard to understand by users. In this paper, we
also consider multiple rule sets, but we disturb a database
systematically and use the union of all rule sets.

The proposal for association rule mining first appeared
in [1]. Most research work has been on how to generate
frequent itemsets efficiently since this may be the bottleneck
of association rule mining. Apriori [2] is a widely accepted

algorithm.
The traditional goal of association rule mining is to solve

market basket problems. However, it can also be used to
solve the classification problems, for example, CBA [12],
CMAR [11], CAEP [7] and LB [14]. However, all previ-
ous proposals are on building accurate classifiers, and none
of them relates to robust prediction.

In mining association rule based classification rules, some
techniques have been previously developed. Using multi-
ple supports can restrict many uninteresting rules whose
consequences are frequently occurring in a database [13].
We proposed the optimal class association rule set [10] as
a shortcut to generate association based classification rule
sets efficiently.

There is some previous work on handling missing attribute
values in training data [16, 18], but to the best of our knowl-
edge there is no report on how to deal with the missing
attribute values on test data.

2. ROBUSTNESS OF THE OPTIMAL CLASS
ASSOCIATION RULE SET

2.1 The class association rule set
Given a relational database D with n attributes, a record

of D is a n-tuple. For convenience of description, we consider
a record as a set of attribute-value pairs, denoted by T . A
pattern is a set of attribute-value pairs. The support of a
pattern P is the ratio of the number of records containing
P to the number of records in the database, denoted by
sup(P ). An implication is a formula P ⇒ c, where P is a
pattern and c is a class. The support of the implication P ⇒
c is sup(P ∪c). The confidence of the implication is sup(P ∪
c)/sup(P ), denoted by conf(P ⇒ c). The covered set of
the rule is the set of all records containing the antecedent of
the rule, denoted by cov(P ⇒ c). We say A ⇒ c is a class
association rule if sup(A ⇒ c) ≥ σ and conf(A ⇒ c) ≥
φ, where σ and φ are user specified minimum support and
confidence respectively. A class association rule set is a set
of association rule set with classes as their consequences.

Definition 1. The complete class association rule set is
the set of all class association rules wrt a database, the min-
imum support and the minimum confidence.

Given a database D, the minimum support σ and the
minimum confidence φ, the complete (class association) rule
set1 is denoted by Rc(σ, φ), or simply Rc.

We notice that the goal of classification rule generation is
for prediction, so confidence, a training accuracy, does not
suit for this goal. It is necessary to have a statistical true
accuracy as a replacement.

By using a result from [17], we adopt the lower bound of
test (true) accuracy of a hypothesis as the accuracy of a the
hypothesis. Hence, we define the accuracy of a rule to be

acc(A ⇒ c) = conf(A ⇒ c)−zN

q
conf(A⇒c)(1−conf(A⇒c))

|cov(A⇒c)|

where zN is a constant related with a statistical confidence
interval, for example, zN = 1.96 when the confidence inter-
val is 95%.

1In the rest of this paper, we consistently discuss class as-
sociation rules, so we omit words “class association” after-
wards.



The requirement of using this accuracy is that the sup-
port of a rule is not too small, for example, the absolute
support number is not less than 30. If the support of a rule
is too small, we need another estimation of test accuracy on
very small sample data. Laplace accuracy can then be used

instead [3]. It is acc(A ⇒ c) = |cov(Ac)|+1
|cov(A)|+|C| where |C| is the

number of all classes.
Usually, the minimum confidence requirement of a class

association rule is very high so it is natural to exclude con-
flicting rules, such as A ⇒ c1 and A ⇒ c2, in a complete
rule set.

2.2 The optimal class association rule set
In the practice of rule set based classification, a set of

rules is usually sorted by decreasing accuracy, and tailed
by a default prediction. This ordered rule set is called a
rule based classifier. In classifying an unseen test record (an
input record without class attribute information), the first
rule that matches the case classifies it. If no rule matches
the record, the default prediction is used. In this paper, we
ignore the effect of the default prediction since we will con-
centrate on the predictive power of a rule set. We formulise
this procedure in the following.

For a rule r, we use cond(r) to represent its antecedent
(conditions), and cons(r) to denote its consequence. Given
a test record T , we say rule r covers T if cond(r) ⊆ T .
A rule can make a prediction on its covered record, de-
noted by r(T ) → cons(r). If cons(r) is the class of T , then
the rule makes a correct prediction. Otherwise, it makes a
wrong prediction. We let the accuracy of a prediction equals
the accuracy of the rule making the prediction, denoted by
acc(r(T ) → c). If a rule gives the correct prediction on a
record, then we say the rule identifies the record.

Definition 2. Let T be a record in database D and R a
rule set for D. A rule r in R is predictive for T wrt R if r
covers T . If two rules cover T we choose the one with the
greater accuracy. If two rules have the same accuracy we
choose the one with higher support. If two rules have the
same support we choose the one with the shorter antecedent.

Please note that in the above definition, we take the sup-
port and the length of antecedent of a rule into consider-
ation. This is because they have been minor criteria for
sorting rules in a rule based classifier in previous practice,
such as in [12]. It is easy to understand the preference of the
highest support rule among a number of rules with the same
accuracy. The preference for a short rule is consistent with
the preference for a simple rule in traditional classification
rule generation practice.

As both accuracy and support are real numbers, in a large
database it is very unlikely that a record supports two rules
with the same accuracy and support. Therefore, we suppose
that each record has a unique predictive rule for a given
database and rule set in the rest of paper.

The prediction of rule set R on record T is the same as
that of the predictive rule of R on T with the same accuracy.

Now we consider how to compare predictive power of
rules. We use r2 ⊂ r1 to represent cond(r2) ⊂ cond(r1)
and cons(r2) = cons(r1). We call r2 is more general than
r1, or r1 is more specific than r2.

Definition 3. Given two rules r1 and r2, we say that r2

is stronger than r1 iff r2 ⊂ r1∧acc(r2) ≥ acc(r1). We denote

rule r2 is stronger than rule r1 by r2 > r1. In a complete rule
set Rc, we say a rule in R is (maximally) strong. if there is
no other rule in R that is stronger than it. Otherwise, the
rule is weak.

It is clear that only a (maximally) strong rule can make
a prediction in the complete rule set. Thus, we have the
following definition and an immediate result.

Definition 4. We call the set of all (maximally) strong
rules the optimal rule set wrt the complete class association
rule set.

Lemma 1. The optimal rule set wrt Rc is the set all po-
tentially predictive rules in Rc.

2.3 Robustness of the optimal class association
rule set

Suppose that we have an incomplete test record, i.e. some
attribute-values are missing. It is clear that we prefer a rule
set that can make correct prediction on these incomplete
records. More formally, we will give a definition for the
robustness as the following. Note that we say that a rule set
gives any prediction on a record with accuracy of zero when
it cannot provide a prediction on the record.

Definition 5. Let D be a database, T be a record of D,
and R1 and R2 be two rule sets for D. Rule set R1 is more
robust than R2 if, for all T ′ ⊆ T , predictions made by R1

are at least as accurate as those by R2.

Suppose that R1 is more robust than R2. For test data
that are as complete as the training data both rule sets
give the same number of correct predictions with the same
accuracy. For test data that are not as complete as the
training data, rule set R1 can provide at least the same
number of correct predictions as rule set R2 with at least the
same accuracy. Hence, a robust rule set has more predictive
power when test data are not as complete as the training
data.

Naturally, more rules will enhance the robustness of a rule
set, and the complete rule set is the most robust rule set.
However, this rule set is usually too large and includes many
rules without predictive power. Hence, we can go further to
simplify it.

Clearly there are natural connections between strong rules
and predictive rules since a strong rule is a potentially pre-
dictive rule. Hence, we have,

Theorem 1. For every rule set R ⊆ Rc for database D,
the optimal class association rule set Ro is the smallest rule
set that is as robust as the complete class association rule
set.

This means that no matter what an input record is (com-
plete or incomplete), that the optimal rule set gives exact
the same prediction on the record at the same accuracy as
the complete rule set.

Though the optimal rule set is much smaller than the
complete rule set, it is still much larger than a traditional
classification rule set. Some rules in the optimal rule set may
be unnecessary when the number of missing attribute values
is limited. Hence, we may further simplify the optimal rule
set. Besides, we are interested in the relationships between
the optimal rule set and a traditional classification rule set.
These are goals in the next section.



3. ROBUSTNESS OFK-OPTIMAL CLASS
ASSOCIATION RULE SETS

In this section, we have a default rule set, namely the
complete rule set, from the training database. When we say
a predictive rule without mentioning a rule set, then it is
with respect to the complete rule set. The test database is
the same as the training database without class information.

Robustness mainly concerns missing attribute values in
test databases, and hence we first define a k-incomplete
database to be a new database with exactly k missing values
from every record of the test database.

Definition 6. Let D be the test database and k ≥ 0.
The k-incomplete database Dk = {T ′ | T ′ ⊂ T, T ∈ D, |T | −
|T ′| = k}.

For convenience of discussion, we consider all k-incomplete
databases of D as a set of

�
n
k

�
(n is the number of attributes

for D) databases in which each omit exactly k attribute (col-
umn) information from D. For example, all 1-incomplete
databases contains a set of n databases where each omits
one attribute (column) information from D. We note that
the 0-incomplete database of D is D itself.

Let us represent the optimal rule set in terms of incom-
plete databases.

Lemma 2. Ro is the set of predictive rules for records in
k-incomplete databases wrt Rc where 0 ≤ k ≤ n.

The optimal rule set preserves all potentially predictive
rules from a training database for all incomplete databases.
Now we consider how to preserve all potentially predictive
rules for some incomplete test databases.

Definition 7. The k-optimal rule set (k ≥ 0) over a
database is all predictive rules on all k-incomplete databases.

We have the following result.

Lemma 3. The k-optimal rule set provides the same pre-
dictions as the optimal rule set on all p-incomplete databases
for 0 ≤ p ≤ k.

We can understand a k-optimal rule set in the following
way. A k-optimal rule set is a subset of the optimal rule set
that makes prediction as well as the optimal rule set on a
test database with k missing attribute value per record. As
a special case, 0-optimal rule set makes predictions as well
as the optimal rule set on a complete test database.

Theorem 2. The (k + 1)-optimal rule set (k ≥ 0) is at
least as robust as the k-optimal rule set.

Clearly, a k-optimal rule set is a subset of the optimal rule
set.

The k-optimal rule sets form a hierarchy.

Lemma 4. Let Rk and R(k+1) be the k-optimal and the
(k + 1)-optimal rule sets for D and Rc. Then Rk ⊆ Rk+1.

Till now, we have introduced the set of optimal rule sets,
and we observe that the following chain always holds these
optimal rule sets.

Rc ⊇ Ro ⊇ · · · ⊇ Rk+1 ⊇ Rk ⊇ · · · ⊇ R0

From this relation, we can see that the robustness of a
k-optimal rule set for k ≥ 0 is due to that it preserves more
potentially predictive rules in case that some rules are paral-
ysed by missing values in a test database.

Usually, a traditional classification rule set is smaller than
a 0-complete rule set, since most post pruning algorithms of
traditional classification systems work in a way to reduce
the size of an output rule set. Because of the heuristic trait
of traditional classification rule generation algorithms, we
cannot characterize the exact relationship between a tradi-
tional classification rule set and a k-optimal rule set. From
our observations, most rules in a traditional classification
rule set are in the 0-optimal rule set. For example, the rule
set from the decision tree on the tennis database is a subset
of 0-optimal rule set. Generally, a traditional classification
rule set is less robust than a 0-optimal rule set.

Finally, we will consider a property that will help us to
find k-optimal rule sets. We can interpret the k-optimal rule
set through a set of 0-optimal rule sets.

Lemma 5. The union of all 0-optimal rule sets over all
k-incomplete databases is the k-optimal rule set.

This lemma suggests that we can generate a k-optimal rule
set by generating 0-optimal rule sets on a set of incomplete
databases of the training database.

4. PRELIMINARY EXPERIMENTS
We implemented two algorithms to generate k-optimal ro-

bust rule sets. One is an approximate method extended from
C4.5 [18], called multiple C4.5rules. The other is a precise
method extended from the optimal class association rule set
[10], called optimal rule set approach. For more details and
software, please send an email to jiuyong@usq.edu.au.

We use four databases from UCI ML Repository [4] in our
experiments and a brief summary of the databases is listed
in Table 2. Our experiments were conducted on a Sun server
with two 200 MHz UltraSPARC CPUs. In the experiment,
we use local support of rule r, which is sup(r)/sup(cons(r)),
to avoid too many rules in the large distributed classes and
too few rules in the small distributed class . For example, in
database Hypothyroid, 95.2% records belong to class Nega-
tive and only 4.8 % records belong to class Hypothyroid. So,
5% (global) support is very small for class Negative class,
but is too large for class Hypothyroid.

Database Size Attr Values class
num per attr num

Anneal 899 38 2-9 5
Congressional Voting 435 16 3 2

Hypothyroid 3164 25 2 - 4 2
Mushrooms 8124 22 2 - 12 2

Table 2: A brief description of databases

The experimental settings is listed in Table 3. Min Sup
is the minimum local support, Min Acc is the minimum
accuracy and Max Len is the length of antecedent for the
longest rule in an optimal rule set. In database Hypothy-
roid we stopped executing the program before it found more
longer rules.

Sizes and generation time of different rule sets are listed in
Table 4. It is clear that the complete rule set is much larger



Database Min Sup Min Acc Max Len
Anneal 0.05 0.95 7

Congressional Voting 0.1 0.95 9
Hypothyroid 0.1 0.95 4
Mushrooms 0.2 0.95 6

Table 3: The experimental setting

than the optimal rule set and more expensive to generate.
The size of a k-optimal rule set is much smaller than that
of the optimal rule set and is a little larger than that of a
traditional classification rule set.

Mushrooms Voting
Rule set Size T(sec) Size T(sec)
complete 49599 657 151374 1387
optimal 312 18 1133 6

1-optimal 67 18 127 6
0-optimal 39 18 57 6

multiple C4.5Rules 46 195 32 1
(k = 1)

single C4.5Rules 16 9 7 <1

Anneal Hypothyroid
Rule set Size T(sec) Size T(sec)
complete 87247 857 11878 112
optimal 219 2 146 44

1-optimal 70 2 56 44
0-optimal 44 2 32 44

multiple C4.5Rules 70 20 21 8
(k = 1)

single C4.5Rules 22 <1 7 <1

Table 4: Size and generation time of different rule
sets

In our experiments, all rule sets are tested without de-
fault prediction. This is because the default prediction may
disguise the true accuracy. Consider database Hypothyroid:
if we set the default prediction as Negative, then a classi-
fier without any rule will give 95.2% accuracy. Clearly, this
accuracy is misleading.

We evaluated the predictive power of a rule set by the
identification accuracy, which is the accuracy without de-
fault prediction.

Identification accuracy = (the number of identified records)
/ (the number of all records in a database)

The identification accuracy is the proportion of identified
records by the rule set in a database. The higher the accu-
racy, the better the predictive power. Its range is between
0 to 100%.

We tested all generated rule sets on l-incomplete test
databases (0 ≤ l ≤ 6) of four databases, and reported their
identification accuracy in Figure 2. In our experiment, the
number of missing values is compared with the training data.
When a training database already has missing values, then
the missing values are additional. Each point in Figure 2 is
the average of ten trials.

From Figure 2, we can see that when test data is incom-
plete, a rule set from single C4.5Rules performs poorly while
both “precise” (the optimal rule set approach) and approx-
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imate (the multiple C4.5rules) k-optimal rule sets perform
significantly better. In all cases, the optimal rule set per-
forms best, and the 1-optimal rule set the second best. These
results are consistent with Theorems 1 and 2. Rule sets
from multiple C4.5rules perform better than those from sin-
gle C4.5Rules but worse than 1-optimal rule sets. We also
note that all “precise” 1-optimal rule sets perform exactly
the same as the optimal rule sets when the number of miss-
ing values is not more than 1 per record as stated by Lemma
3. We also note that a “precise” 1-optimal rule set performs
better on incomplete test databases than an approximate
1-optimal rule set from the multiple C4.5rules. Further,
approximate k-optimal rule sets (from multiple C4.5rules)
perform unstably: they sometimes perform better than 0-
optimal rule set, but sometimes do not.

5. CONCLUSION
In this paper, we discussed a new problem, finding robust

rule sets to predict on a test database that is not as complete
as the training database. We defined a criterion to compare
the robustness for different rule sets from a database. We re-
vealed that the optimal rule set is as robust as the complete
rule set with the smallest size, and defined k-optimal rule
sets for test databases with limited missing attribute values
to obtain simple rule sets. We characterized the relation-
ships among k-optimal rule sets and a traditional classifica-
tion rule set. We proposed a method to find k-optimal sets
through the optimal association rule approach. We showed
experimentally that a k-optimal rule set generated from the
proposed algorithm performs better than a k-optimal rule
set generated by an extension of C4.5Rules on incomplete
test databases, and that both rule sets perform significantly
better than a traditional classification rule set on incom-
plete test databases. Given the frequent missing value in
real world databases, the k-optimal rule sets have signifi-
cant potential in future applications.
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