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Abstract—In machine learning and data mining, heuristic and association rules are two dominant schemes for rule discovery.

Heuristic rule discovery usually produces a small set of accurate rules, but fails to find many globally optimal rules. Association rule

discovery generates all rules satisfying some constraints, but yields too many rules and is infeasible when the minimum support is

small. Here, we present a unified framework for the discovery of a family of optimal rule sets and characterize the relationships with

other rule-discovery schemes such as nonredundant association rule discovery. We theoretically and empirically show that optimal rule

discovery is significantly more efficient than association rule discovery independent of data structure and implementation. Optimal rule

discovery is an efficient alternative to association rule discovery, especially when the minimum support is low.

Index Terms—Data mining, rule discovery, optimal rule set.
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1 INTRODUCTION

RULES are among the most expressive and human-
understandable representations of knowledge; a rule-

based method produces self-explanatory results. Therefore,
rule discovery has been a major issue in machine learning
and data mining.

Heuristic algorithms for rule discovery that were
developed in the machine learning community, such as
C4.5rules [15], CN2 [6], and RIPPER [7] focus on classifica-
tion accuracy and usually return small rule sets. However, a
heuristic method does not guarantee the discovery of the
best-quality rules. A complete or optimal rule set is more
desirable whenever it is computationally feasible.

Association rule discovery [1] produces a complete rule
set within the minimum support and confidence constraints.
It has been widely accepted because of the simplicity of the
problem statement and the effectiveness of pruning by
support. Association rule discovery is a general-purpose
rule-discovery scheme and has wide applications. Classifi-
cation is one application. CBA [12] makes use of a method
that is similar to the C4.5rules pruning method to prune an
association rule set and produces more accurate classifiers
than C4.5rules. This suggests that some rules in the
complete rule set, which are missed by C4.5rules, make
CBA classifiers more accurate. However, association rule
discovery usually produces too many rules and is inefficient
when the minimum support is low.

Nonredundant association rule discovery [19] improves
the efficiency of association rule discovery. However, the
requirements for redundant rules are strict and the
efficiency of nonredundant rule discovery can be further
improved. We discuss the relationships between our
proposed optimal rule set and the redundant rule set in
Section 3.

Optimal rule discovery uncovers rules that maximize an
interestingness measure. The search for maxima further

prunes the search space and, hence, optimal rule discovery
is significantly more efficient than association rule
discovery.

One type of optimal rule set is k-largest rule sets, which
contain the top k rules measured by an interestingness
metric. Webb and Zhang’s k-optimal rule set [18] is a typical
example. k-optimal rules are measured by a leverage metric.
However, the top k rules may come from the same section
of data and leave some records in a data set uncovered by
rules. This is a drawback for optimal rule sets containing
k-largest rules.

The problem of not reasonably covering the data set
exists in other optimal rule sets, such as the SC optimality
rule set [2] and rule sets defined by all confidence and bond
[13]. In an SC optimality rule set, a rule with higher
confidence and support excludes another rule with lower
confidence and support. When the records covered by the
excluded rule are not covered by another rule, these records
lose their representative rules in the SC-optimal rule set. In
the generation of rule sets defined by all confidence and
bond, rules with different targets are compared directly for
the exclusion of rules from the rule sets. Rules with different
targets have different implications and they should not be
used to exclude each other.

The definition of optimal rule sets in this paper is very
close to a special constraint rule set with a zero confidence
improvement [3], which consists of rules whose confidences
are greater than confidences of all their simpler form rules.
A rule covers a subset of records covered by one of its
simpler form rules and, hence, it is guaranteed that the
records covered by the excluded rule are covered by other
rules with higher confidence. A PC optimality rule set [2]
postprunes the constraint association rule set with a zero
confidence improvement [3] and, hence, is in the same
category as the optimal rule sets that we discuss.

We achieve the following four developments in this
paper: First, we present a general definition for a family of
optimal rule sets for a range of interestingness metrics.
Second, we prove that the family of optimal rule sets
observe the same antimonotonic property. Third, we
develop an effective algorithm for mining the family of
optimal rule sets without assuming that the target is fixed to
one class. Fourth, we characterize the relationships between
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an optimal rule set and a nonredundant rule set and reveal
the relationships among support pruning, closure pruning,
and optimality pruning.

The rest of this paper is arranged as follows: Section 2
presents definitions, Section 3 gives properties of the family
of optimal rule sets, Section 4 provides a complete algorithm
for mining the optimal rule sets, Section 5 illustrates the
relationships among support pruning, closure pruning, and
optimality pruning, Section 6 presents proof-of-concept
experimental results, and Section 7 concludes the paper.

2 DEFINITIONS

Consider a relational data set D with n attribute domains. A
record of D is a set of attribute-value pairs, denoted by T . A
pattern is a subset of a record. We say a pattern is a k-pattern
if it contains k attribute-value pairs. All the records in D are
categorized by a set of classes C.

An implication is denoted by P ! c, where P is called the
antecedent, and c is called the consequence. The support of
pattern P is defined to be the ratio of the number of records
containing P to the number of all the records in D, denoted
by suppðP Þ. The support of implication P ! c is defined to
be the ratio of the number of records containing both P and
c to the number of all the records in D, denoted by
suppðP ! cÞ. The confidence of the implication P ! c is
defined to be the ratio of suppðP ! cÞ to suppðP Þ,
represented by confðP ! cÞ.

An association rule is a strong implication whose both
support and confidence are not less than given thresholds
from a data set.

The cover set of pattern P is the set of IDs of records
containing P , represented by covðP Þ. The cover set of rule
P ! c is a set of IDs of records containing both P and c,
denoted by covðP ! cÞ. Clearly, if P � Q, then we have
covðP Þ � covðQÞ and covðP ! cÞ � covðQ! cÞ.

For simplicity, in the rest of this paper, we use
uppercase letters, for example, P and Q, to stand for
patterns and lowercase letters, for example, a; b; . . . , to
stand for attribute-value pairs. We abbreviate P [Q as
PQ and P [ fag as Pa.

The association rule definition is understandable, but it
has the following major obstacles in real-world applications:

1. the confidence is not suitable for a variety of
applications;

2. the number of association rules is too large; and
3. the support pruning is not efficient when the

minimum support is low.

To overcome the first obstacle, many interestingness
metrics have been proposed to measure interestingness of
rules. For example, lift (interest or strength), gain, added-
value, Klosgen, conviction, p-s, Laplace, cosine, certainty
factor, Jaccard, and many others discussed by Tan et al. [16].

All these interestingness metrics are used monotoni-
cally. A rule with a higher value in a metric is more
interesting than a rule with a lower one. To generalize, we
use Interest to stand for an interestingness metric and
InterestingnessðP ! cÞ for the interestingness of rule P ! c.

Some interestingness metrics are not monotonic with
the interestingness, such as odds ratio. A rule with an
odds ratio that is significantly greater than or less than 1
is interesting. For example, let c be a disease and A be a

symptom or exposure factor. A high odds ratio of rule
A! c means the disease has higher occurrence probability
in the cohort with A than the cohort without A and vice
versa. In this paper, we consider an odds ratio that is
greater than 1 and, hence, monotonic with the interesting-
ness. When we need rules with odds ratios lower than 1, we
switch the consequence. For example, when we divide data
into the disease group and the nondisease group. A high
odds ratio in the nondisease group means a low odds ratio
in the disease group.

To make the rule definition more general, we replace the
confidence with the value of an interest metric. Formally,
we have the following definition:

Definition 1 (the general rule). A rule is a strong implication
whose both support and interestingness are not less than given
thresholds.

In the rest of this paper, a rule refers to a generalized rule
instead of an association rule. To proceed with the
discussions of obstacles 2 and 3, we give another definition:

Definition 2 (general and specific relationships). Given two
rules P ! c and Q! c, where P � Q, we say that the latter
is more specific than the former and the former is more general
than the latter.

A specific rule covers a subset (at most the equal set) of
records covered by one of its more general rules. More
formally, covðQ! cÞ � covðP ! cÞ. Therefore, the removal
of a specific rule from a rule set does not reduce the total
coverage of the rule set.

In some cases, we may consider the rule ; ! c as the
most general rule targeting c. Its confidence equals suppðcÞ.
For example, if 80 percent of customers buy bread when
they shop in a supermarket, then this is formalized as
; ! bread ðconfidence ¼ 80%Þ. Such a rule filters many
trivial rules that do not surprise a manager, for example,
rule egg! bread ðconfidence ¼ 75%Þ.

In other cases, we need to consider one-pattern ante-
cedent rules, such as a! c and b! c, as the most general
rules. For example, 99.9 percent of records in a medical data
set are not related to a particular disease, but we are still
interested in rules with 80 percent confidence in the records
since they may reveal some preventative patterns. In this
paper, we consider this case.

Obstacles 2 and 3 are closely related. A major reason
for many rules being of no interest to users is that they
are superfluous. For example, suppose that we have two
rules, ðsalary > $30; 000Þ ! creditCardðapprovalÞ ðconf ¼
85%Þ and ðsalary > $30; 000Þ and ðoccupation ¼ XÞ !
creditCardðapprovalÞ ðconf ¼ 84%Þ: The latter rule is
superfluous and should be removed.

There are two cases where the latter rule will be
interesting: when it has much higher confidence, or when
it has much lower confidence than the former rule. The
primary goal for rule discovery is to find rules with high
interestingness. After identifying a small set of highly
interesting rules, their exceptional rules, which have low
interestingness, are considered. For example, ðsalary >
$30; 000Þ and ðoccupation ¼ XÞ ! creditCardðapprovalÞ
ðconfidence ¼ 30%Þ is an exception to the rule ðsalary >
$30; 000Þ ! creditCardðapprovalÞ ðconfidence ¼ 85%Þ. After
a small set of rules that are of interest to users has been
identified, finding their exceptional rules is relatively
simple.
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Therefore, we disregard those superfluous rules in the
rule-discovery stage. To achieve this goal, we have the
following definition:

Definition 3: (an optimal rule set). A rule set is optimal with
respect to an interestingness metric if it contains all rules
except those with no greater interestingness than one of its
more general rules.

Since only more specific rules are removed from an
optimal rule set, an optimal rule set covers the same set of
records covered by its corresponding complete rule set.

Each interestingness metric defines an optimal rule set
and the above definition defines a family of optimal rule
sets. We use the following example to elaborate the
definition:

Example 1. Let the interestingness metric be the odds ratio
(or). We have a rule set and its corresponding optimal
rule set as shown in Table 1. Rules ac! z ðor ¼ 2:1Þ,
bc! z ðor ¼ 1:9Þ, and abc! z ðor ¼ 2:5Þ are excluded
since their odds ratios are smaller than those of their
more general rules.

We provide another example to show the practical
implication of an optimal rule set.

Example 2. When Interestingness is measured by an
estimated accuracy of a rule, the optimal rule set is an
optimal class association rule set [11]. Based on an
ordered rule-based classification model, all rules ex-
cluded by the optimal class rule set will not be used in
building a classifier because they are less accurate and
more complex than some rules in the optimal class
association rule set covering the same data section.
Therefore, a classifier built from the optimal class
association rule set is identical to that from a class
association rule set. In summary [11]: The optimal class
association rule set is the minimum subset of rules with
the same predictive power as the complete class
association rule set. Further experimental proofs are
reported in [10]. Classifiers built on the optimal class
association rule sets are at least of the same accuracy as
those from CBA [12] and C4.5 rules [15].

Building classifiers from optimal class association rule
sets is significantly more efficient than building them
from class association rule sets. First, mining optimal
class association rule sets is significantly faster than
mining class association rule sets. When the minimum
support is low, mining class association rule sets may not
be feasible. Second, an optimal class association rule set
is significantly smaller than a class association rule set
and, hence, building classifiers from the optimal class

association rule set is more efficient.

In the next section, we discuss properties of the family of
the optimal rule sets.

3 PROPERTIES OF OPTIMAL RULE SETS

In this section, we discuss some properties of the family of
optimal rule sets and their relationships with the non-
redundant rule set.

We start with some notation. Let X be a pattern where
X 6¼ ; and let c be a class. PX is a proper super pattern of
P . PQ is a super pattern of P . PQ ¼ P and PQX ¼ PX
when Q ¼ ;. PQX is a proper super pattern of P . :c
stands for a special class occurring in a record where c does
not occur, and, therefore, we have suppð:cÞ ¼ 1� suppðcÞ.
Similarly for pattern P : suppð:P Þ ¼ 1� suppðP Þ. P:X is a
pattern with the following support: suppðP:XÞ ¼
suppðP Þ � suppðPXÞ. Further, we have suppð:ðPXÞÞ ¼
suppð:PXÞ þ suppð:P:XÞ þsuppðP:XÞ.
Theorem 1 (antimonotonic property). If suppðPX:cÞ ¼

suppðP:cÞ; 1 then rule PX ! c and all its more-specific rules
will not occur in an optimal rule set defined by confidence,
odds ratio, lift (interest or strength), gain, added-value,
Klosgen, conviction, p-s (or leverage), Laplace, cosine,
certainty factor, or Jaccard.

A proof is provided in the Appendix.
The practical implication of the above theorem is that

once suppðPX:cÞ ¼ suppðP:cÞ is observed, it is not
necessary to search for more specific rules of PX ! c, for
example, PQX ! c. Those more specific rules will not be in
an optimal rule set. Rule PX ! c is removed since it is not
in an optimal rule set either.

In the following, we consider two special cases of the
above theorem:

Corollary 1: (closure property). If suppðP Þ ¼ suppðPXÞ,
then rule PX ! c for any c and all its more specific rules do
not occur in an optimal rule set defined by confidence, odds
ratio, lift (interest or strength), gain, added-value, Klosgen,
conviction, p-s (or leverage), Laplace, cosine, certainty factor
or Jaccard.

A proof is provided in the Appendix.
The practical implication of the above corollary is that,

once suppðPXÞ ¼ suppðP Þ is observed, it is not necessary to
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search for rules with PQX as their antecedent for any Q.
Those rules will not be in the optimal rule set.

The reason for naming the above corollary as the closure

property is that it is closely related to closed pattern set

mining [20].

Pattern Pc is closed if there exists no proper super

pattern X � Pc such that covðXÞ ¼ covðPcÞ. Consider a

chain of patterns P � P 0 � P 00 � Pc, which satisfies

covðP Þ ¼ covðP 0Þ ¼ covðP 00Þ ¼ covðPcÞ. Pc is the closure of

patterns P , P 0, and P 00. A closed pattern is the same as its

closure. The support of a pattern is equivalent to that of its

closure. In the above example, suppðP Þ ¼ suppðP 0Þ ¼
suppðP 00Þ ¼ suppðPcÞ. Further, a pattern Y is a proper

generator of Y 0 if Y 0 � Y and covðY 0Þ ¼ covðY Þ hold. A

pattern is a minimal generator if it has no proper generator.

For example, P 0 is a generator of P 00 and Pc, and P is a

minimal generator of Pc if there exists no Z � P such that

covðP Þ ¼ covðZÞ.
The closed pattern and minimal generator are two

closely related concepts and the mining methods for both

are very similar. The condition of Corollary 1 is the

fundamental test for mining both patterns. For example,

we have suppðP Þ ¼ suppðPXÞ for any X � ðPcnP Þ in the

above example. We illustrate this in Section 5. Usually,

closed patterns are useful for producing all frequent

patterns and minimal generators are useful for generating

nonredundant rules.

Zaki [19] gave a general definition of non-redundant

association rule sets. Here, we rephrase it in a simple form

by constraining the consequence to c. Rule Y ! c is

r e d u n d a n t i f t h e r e e x i s t s Y � X s u c h t h a t

covðY Þ ¼ covðXÞ. suppðY Þ ¼ suppðXÞ is the immediate

result of covðY Þ ¼ covðXÞ. For example, in the chain

P � P 0 � P 00 � Pc, all rules, such as P 0 ! c, P 00 ! c, and

Pc ! c, are redundant since they have the same support

and interestingness as rule P ! c but are more specific. A

rule set is nonredundant if it includes all rules except

redundant rules.

Theorem 2: Relationship with the nonredundant rule set.

An optimal rule set is a subset of a nonredundant rule set.

A proof is provided in the appendix.
We have another special case for Theorem 1.

Corollary 2: Termination property. If suppðP:cÞ ¼ 0, then

all more-specific rules of the rule P ! c do not occur in an

optimal rule set defined by confidence, odds ratio, lift (interest

or strength), gain, added-value, Klosgen, conviction, p-s (or

leverage), Laplace, cosine, certainty factor or Jaccard.

A proof is provided in the appendix.

The practical implication of the above corollary is that

once suppðP:cÞ ¼ 0 is observed, it is not necessary to search

for more specific rules of P ! c. Those more-specific rules

will not be in an optimal rule set. Rule P ! c is kept since it

may be in an optimal rule set.

Let us look at why it is called the termination property.

Assume that the interestingness metric is confidence. If

suppðP:cÞ ¼ 0, then rule confðP ! cÞ ¼ 100%. None of its

more specific rules improves this confidence and we stop

going any further. The same is true for other interestingness

metrics.

An illustrative comparison of conditions of Theorem 1

and Corollaries 1 and 2 is given in Fig. 1.
We use the following example to show how the

Theorem 1 and its corollaries work.
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Example 3. We assume z is a class and do not assume the
minimum support requirement in this example.

Usually, we have to consider all 15 candidate rules:
a! z, b! z, c! z, d! z, ab! z, ac! z, ad! z,
bc! z, bd! z, cd! z, abc! z, abd! z, acd! z,
bcd! z, and abcd! z.

Since suppðab:zÞ ¼ suppða:zÞ, according to Theorem 1,
rule ab! z and all its more specific rules—abc! z,
abd! z, and abcd! z—will not be in an optimal rule set.
Similarly, both rule ac! z and rule bc! z and their more
specific rules will not be in the optimal rule set.

Since suppðad:zÞ ¼ 0, all more specific rules of
ad! z, e.g., abd! z, acd! z, and abcd! z will not be
in the optimal rule set. Similarly, all more specific rules
of cd! z will not be in the optimal rule set.

Since suppðdÞ ¼ suppðbdÞ, bd! c and all its more
specific rules will not be in the optimal rule set.

Therefore, rules that are possible members of the
optimal rule set are a! z, b! z, c! z, d! z, ad! z,
and cd! z. This set of candidate rules is significantly
smaller than the original 15 candidate rules.

4 AN OPTIMAL RULE DISCOVERY ALGORITHM

In this section, we first show how to use Theorem 1 and its
corollaries for forward pruning. Then, we discuss a
candidate-presentation method for easy pruning.
Sections 4.3 and 4.4 present the detailed implementation
of forward pruning by Theorem 1 and its corollaries. The
complete algorithm is presented in Section 4.5. After that,
an illustrative example shows how the algorithm works.

4.1 Basic Ideas and Forward Pruning

General-to-specific searching is very common in rule
discovery. For example, C4.5rules, CN2, and Apriori
employ this method.

When a heuristic search method is employed, we worry
less about combinatorial explosion. However, when we
conduct an optimal search, combinatorial explosion is a big
problem.

We first look at how association rule discovery alleviates
this problem. An association rule discovery algorithm
prunes infrequent patterns forwardly. A pattern is frequent
if its support is not less than the minimum support. A
pattern is potentially frequent only if all its subpatterns are
frequent and this antimonotonic property is used to limit
the number of patterns to be searched. This is called
forward pruning.

Optimal rule discovery makes use of Theorem 1 and its
corollaries to forwardly prune rules.

We illustrate how Theorem 1 forwardly prunes rules that
are not in an optimal set. Given a pattern abcd, assume the
target is fixed to z. We usually have to examine candidate
rules a! z, b! z, . . . for one-patterns, ab! z, ac! z, . . .
for two-patterns, abc! z, abd! z, . . . for three-patterns,

and abcd! z for four-pattern. If we know suppða:zÞ ¼
suppðab:zÞ, then the theorem empowers us to skip examin-
ing candidates, ab! z, abc! z, abd! z, and abcd! z
because they are not in the optimal rule set anyway.
Corollary 2 works in a similar way.

We show how Corollary 1 forwardly prunes rules that
are not in an optimal rule set by using the above example.
When the targets are not fixed to z but include x and y too,
the number of rule candidates is tripled. We list those
including pattern ab in their antecedents as follows: ab! x,
ab! y, ab! z, abc! x, abc! y, abc! z, abd! x, abd! y,
abd! z, abcd! x, abcd! y, and abcd! z. If we know that
suppðaÞ ¼ suppðabÞ holds, then all candidates listed above
are ignored according to Corollary 1. Corollary 1 prunes
more candidates than Theorem 1, but its requirement is
stricter.

4.2 Candidate Representation

To facilitate the implementation of forward pruning by
Theorem 1 and its corollaries, we define a rule candidate as
a pair of (pattern, target set), denoted by ðP;CÞ. P is a
pattern and C is a set of classes. In a relational data set, we
have P \ C ¼ ;. For example, let P ¼ abc and C ¼ xyz, and
then ðP;CÞ stands for three candidate rules: abc! x,
abc! y, and abc! z. To remove a candidate rule, we
simply remove a class from the target set. For example,
candidate fabc; yzg stands for only two candidate rules,
namely, abc! y and abc! z. When the target set is empty,
the candidate stands for no rules.

The removal of classes from target set C is determined by
Theorem 1 and its corollaries. For example, if we have
suppðab:xÞ ¼ suppðabc:xÞ, then, according to the Theorem,
rule abc! x and all its more specific rules will not occur in
the optimal rule set. x should be removed from the
candidate set and the candidate becomes ðabc; yzÞ. If we
know suppðabc:yÞ ¼ 0, y should be removed from the target
set according to Corollary 2, and the candidate becomes
ðabc; zÞ. Consider another candidate ðbcd; xyzÞ. If we have
suppðbcdÞ ¼ suppðcdÞ, then, according to Corollary 1, the
target set of the candidate should be emptied and the
candidate becomes ðbcd; ;Þ.

Candidate ðP; ;Þ should be removed since no rules will
be generated from it and its supercandidates. ðP 0; C0Þ is
called a supercandidate of ðP;CÞ if P 0 � P holds.

The existence of a candidate relies on two conditions:
1) Pattern P is frequent, and 2) target set C is not empty.

4.3 Candidate Generator

For easy comparison, we present Candidate-gen for optimal
rule-set discovery in a way similar to Apriori-gen. We call a
candidate l-candidate if its pattern is an l-pattern. An
l-candidate set includes all l-candidates.

Function: Candidate-gen

// Combining
1) for each pair of candidates ðPl�1s; CsÞ and ðPl�1t; CtÞ in an

l-candidate set
2) insert candidate ðPlþ1; CÞ in the ðlþ 1Þ-candidate set

where Plþ1 ¼ Pl�1st and C ¼ Cs \ Ct
// Pruning

3) for all Pl � Plþ1

4) if candidate ðPl; ClÞ does not exist
5) then remove candidate ðPlþ1; CÞ and return
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6) else C ¼ C \ Cl
7) if the target set of ðPlþ1; CÞ is empty
8) then remove the candidate

First, we explain lines 1 and 2. Suppose that we have two
candidates, ðabc; xyÞ and ðabd; yÞ. The new candidate is
ðabcd; yÞ. The intersection of target sets here and in line 6 is
to ensure that removed classes from the target set of a
candidate never appear in the target set of its super-
candidates. The correctness is guaranteed by Theorem 1
and its corollaries since any class removal in the target set is
determined by them.

Second, we explain lines 3 to 8. Suppose we have new
candidate ðabcd; yÞ. It is the combination of ðabc; yÞ and
ðabd; yzÞ. We need to check if candidates identified by
patterns facdg and fbcdg exist. Suppose that they do exist
and are ðacd; yÞ and ðbcd; xzÞ. After considering candidate
ðacd; yÞ; by line 7, the new candidate remains unchanged.
After considering candidate ðbcd; xzÞ, by line 7, the target set
of the new candidate becomes empty because C ¼
fyg \ fx; zg ¼ ;. The new candidate is then pruned.

4.4 More Pruning

We have a pruning process in candidate generation and will
have another pruning process after counting the support of
candidates. This is a key to making use of Theorem 1 and its
corollaries for pruning. In the following algorithm, � is the
minimum support.

Function: Pruneðlþ 1Þ
// lþ 1 is the new level where candidates are counted.
1) for each candidate ðP;CÞ in ðlþ 1Þ-candidate set
2) for each c 2 C

// test the frequency individually
3) if suppðPcÞ=suppðcÞ � � then remove c from C

// test the satisfaction of Corollary 2
4) else if suppðP:cÞ ¼ 0 then mark c terminated
5) if C is empty then remove candidate ðP;CÞ and return
6) for each l-level subset P 0 � P

// test the satisfaction of Corollary 1
7) if suppðP Þ ¼ suppðP 0Þ then empty C

// test the satisfaction of Theorem 1
8) else if suppðP:cÞ ¼ suppðP 0:cÞ then

remove c from C
9) if C is empty then remove candidate ðP;CÞ

We prune candidates from two aspects, the infrequency
of the pattern and the emptiness of the target set.

Here, we consider a local support instead of the global
support. Because of the possible skewed distributions of
classes, a single global support is not suitable for a variant
rule targeting different classes. Many applications have
adopted local support in spite of using different names,
such as coverage in [3]. The local support of rule P ! c is
defined as suppðPcÞ=suppðcÞ. The local support is the
support in the data subset containing c. It is also called
the recall of rule P ! c. We prefer local support since it
observes the antimonotonic property of the support. When
we make use of local support, infrequent candidate rules
are removed one by one, as in line 3.

We are aware of two variants of the forward pruning by
Theorem 1 and Corollary 2. One is that rule PX ! c and all

its more-specific rules are not in an optimal rule set as in
Theorem 1. In this case, we just remove c from the target set.
Another is that all more specific rules of rule P ! c are not
in an optimal rule set except rule P ! c, as in Corollary 2. In
this case, we cannot remove c since we may lose rule P ! c.
We design a special statue for this situation, namely,
termination of target c.

Definition 4. Target c 2 C is terminated in candidate ðP;CÞ if
suppðPcÞ ¼ 0.

Terminated c is removed after the rule forming in line 9
of the ORD algorithm.

Line 4 of the Prune function is a direct application of
Corollary 2. Target c is marked as terminated and will be
removed after a rule is formed. Once c is removed from C,
all more-specific rules of P ! c will be removed in the
following rule-candidate generation.

Line 7 of the Prune function is a direct result of
Corollary 1. All classes in C are removed and, as a result,
candidate ðP;CÞ is removed. No supercandidates of ðP;CÞ
will be formed in the following rule-candidate generation.

Line 8 of the Prune function is a direct utilization of
Theorem 1. Target c is removed and, therefore, rule P ! c
and all its more-specific rules are removed in the following
candidate generation.

All candidates with an empty target set are removed in
lines 5 and 9 to ensure their supercandidates are pruned in
the following candidate generation.

4.5 ORD Algorithm

Now, we are able to present our algorithm for optimal rule
discovery, abbreviated ORD. In this algorithm, any inter-
estingness metric discussed in Section 3 can be used as a
rule-selection criterion and the output rule set is an optimal
rule set defined by the interestingness metric. It differs from
association rule discovery in that it does not form rules from
the set of all frequent patterns, but generates rules using
partial frequent patterns.

Algorithm 1 ORD: Optimal Rule Discovery

Input: a data set D, the minimum local support � and the
minimum interestingness � by a metric.
Output: an optimal rule set R defined by an interestingness
metric.

1) Set R ¼ ;
2) Count support of one-patterns by arrays
3) Build one-candidate sets
4) Form and add rules to R
5) Generate two-candidate set
6) While new candidate set is not empty
7) Count support of patterns for new candidates
8) Prune candidates in the new candidate set
9) Form rules and add optimal rules to R
10) Generate next-level candidate set
11) Return the rule set R

The above algorithm is self-explanatory and its two main
functions have been discussed in the previous sections.

The ORD algorithm is efficient since it does not generate
all frequent patterns. It only makes use of a small subset of
frequent patterns as shown in experiments. Note that in
line 8 in Function Candidate-gen and lines 5 and 9 in
Function Prune, all supercandidates of a candidate with the
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empty target set, are removed on top of those of a candidate
with the infrequent pattern.

4.6 An Illustrative Example

We provide an example to show how the ORD algorithm
works in this section.

Example 4. In the following data set, y and z are classes. We
do not assume the minimum support constraint. All
candidates generated by the ORD algorithm are listed in
Fig. 2.

The first-level candidates are used to prune the second-
level candidates.z is removed in candidate ðad; yzÞby line 3
in Function Prune due to suppðadzÞ ¼ 0. y in candidate
ðad; yzÞ is terminated by line 4 in Function Prune because

of suppðad:yÞ ¼ 0. Both y and z are removed in
candidate ðbd; yzÞ by line 7 in Function Prune since
suppðbdÞ ¼ suppðdÞ holds. z in candidate ðbc; yzÞ and
ðcd; yzÞ is removed by Line 8 in Function Prune because
b o t h suppðbc:zÞ ¼ suppðb:zÞ a n d suppðcd:zÞ ¼
suppðd:zÞ hold.

After rules have been formed, candidates ðad; ;Þ and
ðbd; ;Þ are removed. As a result, all their supercandidates,
such as ðabd; ;Þ, ðacd; ;Þ, and ðbcd; ;Þ, will not be
generated according to lines 4 and 5 in Function
Candidate-gen.

Candidate ðabc; yzÞ is generated by combining candi-
dates ðab; yzÞ and ðac; yzÞ according to lines 1 and 2 in
Function Candidate-gen. z is then pruned by line 7 in
Function Candidate-gen using its subcandidate ðbc; yÞ. y
in candidate ðabc; yÞ is removed by line 8 in Function
Prune due to suppðabc:yÞ ¼ suppðab:yÞ. Subsequently,
candidate ðabc; ;Þ is removed.

In the rule-forming procedure, rules are formed by a
user-specified interestingness metric. No matter what
metric discussed in Section 3 is used, the set of
candidates is identical. Only the output rule set differs.

5 SUPPORT PRUNING, CLOSURE PRUNING AND

OPTIMALITY PRUNING

In this section, we discuss support pruning, closure
pruning, and optimality pruning and then characterize
relationships among them. This clarifies the efficiency
improvement of optimal rule discovery over association
rule discovery and nonredundant rule discovery.

First, look at the support pruning of the following data set:

Fig. 3 shows support pruning using the minimum

support of 0.2. We see that the removal of e in Level 1

equals the removal of 15 patterns in subsequent levels, such

as ae, be, . . . , abe, ace, . . . , abce, abde, . . . , and abcde.
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Fig. 2. All candidates searched in Example 4. A class crossed is

removed and a class boxed is terminated.

Fig. 3. Support pruning for mining frequent patterns on data set A. Patterns crossed are infrequent.



Support pruning works effectively when the underlying
data set is sparse or the minimum support is high.
However, it does not work well on dense data sets or
when the minimum support is low.

Look at the closure pruning by the following data set:

Fig. 4. shows the closure pruning. There is no minimum
support requirement.

As discussed in Section 3, Corollary 1 summarizes the
closure pruning. Each pattern in a box is terminated
because the support of its superpatterns equals that of
itself. If the final goal is to find minimal generators, all
candidates are left as they are in Fig. 4. If the the final goal is
to find closed patterns, the number of candidates remains
unchanged, but patterns in some candidates are extended.
For example, ac is terminated due to suppðacÞ ¼ suppðcÞ
and, as a result, all occurrences of c will be replaced by ac.
Similarly, all occurrences of c are further replaced by ce

because of the termination of ce by suppðceÞ ¼ suppðcÞ.
Pattern ace is the only closed pattern left out in Fig. 4, and
other minimal generators are closed patterns too. Closed
patterns can be discovered in the same search tree finding
minimal generators. Therefore, both closed-pattern mining
and minimal-generator mining search for the same number
of candidates and make use of the closure pruning strategy.

Closure pruning works effectively when the underlying
data set is dense or the minimum support is low. We use an
example to elaborate the first point. Assume that a dense
data set contains five identical records fa; b; c; d; eg. Closed-
pattern mining will stop at Level 2 after searching for
15 candidates. In contrast, frequent-pattern mining will
continue all the way to Level 5 and search for 25 � 1

candidates. We present the following justification for the
second point: suppðPXÞ ¼ suppðP Þmeans covðP Þ � covðXÞ.
When covðXÞ remains unchanged, pattern P with a smaller
covðP Þ is more probable to satisfy covðP Þ � covðXÞ than
with a larger covðP Þ.

The above two pruning strategies are complementary.

How does the ORD algorithm use them in an effective way?

Let us look at the following data set concatenating the

above two data sets. z is the target for rules. Fig. 5 shows the

optimality pruning with the minimum local support of 0.2

in the data subset containing z.

The candidate set searched by optimal rule discovery is

the intersection of the candidate set (frequent patterns) for

association rule discovery in z data subset and the

candidate set (minimal generators) for nonredundant rule

discovery in :z data subset. The crucial point is that both

have to perform simultaneously. Both association rule

discovery and nonredundant rule discovery search for

more candidates than optimal rule discovery.

Now, we have an insight understanding of optimality

pruning as stated in Theorem 1. It makes use of the closure

pruning strategy. Comparing Corollary 1 with Theorem 1,
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Fig. 4. Closure pruning for mining minimal generators on data set B. Patterns crossed are nonexisting and patterns boxed are terminated

Fig. 5. Optimality pruning for optimal rule discovery targeting z on data
set ðAþ BÞ. Patterns crossed are removed and patterns boxed are
terminated.



we find that Theorem 1 states Corollary 1 in the data subset

excluding c.

6 EXPERIMENTAL RESULTS

In this section, we empirically evaluate the computational

complexity of optimal rule discovery in comparison with

association rule discovery and nonredundant association

rule discovery on four data sets from UCML repository [4]

described in Table 2. The efficiency of optimal rule

discovery is its effective optimality pruning. We show that

optimality pruning significantly reduces candidates for

searching.

The efficiency of an algorithm significantly depends on

the data structure and implementation. For example,

association rule discovery has various implementations.

All are based on support pruning strategy, but their

execution times vary. Theoretically, their computational

complexities are the same since they all search for all

frequent patterns. Their efficiencies vary since they employ

different data structures and counting schemes. There are a

number of implementations for association rule discovery

and we are unable to compare with them individually by

execution time.
However, the computational complexity improvement is

fundamental and the implementation only accelerates the
improvement. An empirical estimation of the complexity
for a rule-discovery algorithm is the number of candidates it
searches. In this paper, we compare the searched candidates
for association rule discovery, for nonredundant association
rule discovery, and for optimal rule discovery. An associa-
tion-discovery algorithm searches for all frequent patterns
and a nonredundant rule-discovery algorithm searches for
all frequent minimal generators (equivalently, all frequent
closed patterns). We compare the number of candidates for
the ORD algorithm with the number of frequent patterns
and the number of frequent minimal generators. This
comparison is independent of the implementation.

In this experiment, we employ the local support as

defined in Section 4.4, which is a ratio for an individual

class. A pattern is frequent if it is frequent in at least one

class. All frequent patterns are stored in the prefix tree.

The experiment was conducted on a 1 GHz CPU

computer with 2 Gbytes memory running Linux. We search

for rules containing up to eight attribute-value pairs. We do

not specify the type of optimal rule set since the same

candidate set generates an optimal rule set defined by any

interestingness metric discussed in Section 3.

Fig. 6 shows the searched candidates by the ORD

algorithm in comparison with the number of frequent

patterns and the number of frequent minimal generators.

The set of ORD candidates is a very small subset of frequent

patterns, and a subset of frequent minimal generators. This

trend is more evident when the minimum support is low.

This shows that optimal rule discovery has significantly less

computational complexity than association rule discovery,

and less computational complexity than nonredundant

association rule discovery.

In comparison with optimal rule discovery and non-

redundant rule discovery, association rule discovery is very

inefficient in data sets such as were used in this experiment.

The efficiency of association rule discovery deteriorates

dramatically when the minimum support is low. Optimal

rule discovery is more efficient than nonredundant associa-

tion rule discovery. Though differences between candidate

numbers of nonredundant association rule discovery and

optimal rule discovery are squashed in Fig. 6 by the large

number of frequent patterns, the discrepancies are still clear

in data sets Mushrooms and Sick.

7 CONCLUSIONS

In this paper, we discussed a family of optimal rule sets, the

properties for their efficient discovery, and their relation-

ships with the nonredundant rule sets. The family of

optimal rule sets supports a simple antimonotonic property

and an optimal rule set is a subset of a nonredundant rule

set. We presented the ORD algorithm for mining optimal

rule sets and evaluated its computational complexity on

some data sets in comparison with the association rule

discovery and nonredundant association rule discovery.

The computational complexity of optimal rule discovery is

significantly lower than that of association rule discovery

and lower than that of nonredundant association rule

discovery. We discussed the relationship of optimal prun-

ing with support pruning and closure pruning and we

concluded that optimality pruning makes use of both

support and closure pruning strategies simultaneously on

two disjointed data sets.

Optimal rule discovery is efficient and works well with

low or no minimum support constraint. It generates optimal

rule sets for a number of interestingness metrics. Therefore,

it is a great alternative for association rule discovery.

APPENDIX

In this appendix, we provide proofs for Theorems 1 and 2,

and Corollaries 1 and 2.

Theorem 1 (antimonotonic property). If suppðPX:cÞ ¼
suppðP:cÞ, then rule suppPX ! c and all its more specific

rules will not occur in an optimal rule set defined by

confidence, odds ratio, lift (interest or strength), gain, added-

value, Klosgen, conviction, p-s (or leverage), Laplace, cosine,

certainty factor, or Jaccard.

Proof. In the proof, we show

InterestingnessðPQX ! cÞ � InterestingnessðPQ! cÞ:
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TABLE 2
A Brief Description of Data Sets



Therefore, rule ðPX ! cÞ (when Q ¼ ;) and all its more

specific rules, for example, PQX ! c (when Q 6¼ ;), will

not occur in the optimal rule set.
The only case for the condition suppðPX:cÞ ¼

suppðP:cÞ holding is that covðP:cÞ � covðX:cÞ. We
then deduce that covðPQ:cÞ � covðQX:cÞ for any Q.
Consequently, suppðPQX:cÞ ¼ suppðPQ:cÞ holds for
any Q.

For the confidence case, consider fðyÞ ¼ y=ðyþ �Þ
monotonically increases with y when constant � > 0 and
suppðPQÞ � suppðPQXÞ > 0:

confðPQ! cÞ ¼ suppðPQcÞ
suppðPQÞ

¼ suppðPQcÞ
suppðPQcÞ þ suppðPQ:cÞ

¼ suppðPQcÞ
suppðPQcÞ þ suppðPQX:cÞ

� suppðPQXcÞ
suppðPQXcÞ þ suppðPQX:cÞ

¼ confðPQX ! cÞ:

We then prove the odds ratio case. Odds ratio is a
classic statistical metric to measure the association
between events. Consider fðyÞ ¼ y=ð�� yÞ monotoni-
cally increases with y when constant � > 0 and
suppðPQÞ � suppðPQXÞ > 0:

orðPQ! cÞ ¼ suppðPQcÞsuppð:ðPQÞ:cÞ
suppðð:ðPQÞcÞsuppðPQ:cÞ

¼ suppðPQcÞðsuppð:cÞ � suppðPQ:cÞÞ
ðsuppðcÞ � suppðPQcÞÞsuppðPQ:cÞ

¼ suppðPQcÞðsuppð:cÞ � suppðPQX:cÞÞ
ðsuppðcÞ � suppðPQcÞÞsuppðPQX:cÞ

¼ suppðPQcÞsuppð:ðPQXÞ:cÞ
ðsuppðcÞ � suppðPQcÞÞsuppðPQX:cÞ

� suppðPQXcÞsuppð:ðPQXÞ:cÞ
ðsuppðcÞ � suppðPQXcÞÞsuppðPQX:cÞ

¼ suppðPQXcÞsuppð:ðPQXÞ:cÞ
suppð:ðPQXÞcÞsuppðPQX:cÞ

¼ orðPQX ! cÞ:

Lift, also known as interest [5] or strength [8], is a
widely used metric for ranking the interestingness of
association rules. It has been used in IBM Intelligent
Miner. We make use of the previous results, confðPQ!
cÞ � confðPQX ! cÞ, in the following proof:

liftðPQ! cÞ ¼ suppðPQcÞ
suppðPQÞsuppðcÞ

¼ confðPQ! cÞ
suppðcÞ

� confðPQX ! cÞ
suppðcÞ

¼ liftðPQX ! cÞ:
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Fig. 6. The number of candidates for optimal rule discovery versus the number of frequent patterns for association rule discovery and the number of
frequent minimal generators for nonredundant association rule discovery. The ORD searches a small subset of frequent patterns and a subset of
minimal generators.



Gain [9] is an alternative for confidence. Fraction �

is a constant in interval ð0; 1Þ and only rules obtaining

positive gain are interesting. We use confðPQ! cÞ �
confðPQX ! cÞ > � in the following proof:

gainðPQ! cÞ ¼ suppðPQcÞ � �suppðPQÞ
¼ ðconfðPQ! cÞ � �ÞsuppðPQÞ
� ðconfðPQX ! cÞ � �ÞsuppðPQXÞ
¼ gainðPQX ! cÞ:

The proofs for metrics added-value,

addedvalueðP ! cÞ ¼ confðP ! cÞ � suppðcÞ;

and Klosgen,

KlosgenðP ! cÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suppðPcÞ

p
ðconfðP ! cÞ � suppðcÞÞ;

are very straightforward and, hence, we omit them here.

Conviction [5] is used to measure deviations from

independence by considering outside negation:

convictionðPQ! cÞ ¼ suppðPQÞsuppð:cÞ
suppðPQ:cÞ

¼ suppðPQÞð1� suppðcÞÞ
suppðPQÞ � suppðPQcÞ

¼ 1� suppðcÞ
1� confðPQ! cÞ

� 1� suppðcÞ
1� confðPQX ! cÞ

¼ convictionðPQX! cÞ:

P-s metric (or leverage), psðP ! cÞ ¼ suppðPcÞ �
suppðP ÞsuppðcÞ, is a classic interestingness metric for

rules proposed by Piatesky-Shaprio [14]. The proof for it

is very similar to that of gain and hence we omit it.

Laplace [6], [17] accuracy is a metric for classification
rules. jDj is the number of transactions in D and k is

the number of classes. In classification problems, k � 2

and, usually, confðPQX ! cÞ � 0:5. Therefore, k 	
confðPQX ! cÞ � 1 holds. Function fðyÞ ¼ ð�jDj þ yÞ=
ðjDj þ kyÞ monotonically decreases with y when k 	 � >
1 and 1=suppðPQXÞ � 1=suppðPQÞ.

LaplaceðPQ! cÞ ¼ suppðPQcÞjDj þ 1

suppðPQÞjDj þ k

¼ confðPQ! cÞjDj þ 1=suppðPQÞ
jDj þ k=suppðPQÞ

� confðPQX ! cÞjDj þ 1=suppðPQÞ
jDj þ k=suppðPQÞ

� confðPQX ! cÞjDj þ 1=suppðPQXÞ
jDj þ k=suppðPQXÞ

¼ LaplaceðPQX ! cÞ:

The proofs for the following two metrics are straight-
forward and, hence, we omit them:

CosineðP ! cÞ ¼ suppðPcÞ=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
suppðP ÞsuppðcÞ

p
Þ

and

CertaintyfactorðP ! cÞ ¼
ðconfðP ! cÞ � suppðcÞÞ=ð1� suppðcÞÞ:

Finally, we prove the metric of Jaccard.

JaccardðPQ! cÞ

¼ suppðPQcÞ
suppðPQÞ þ suppðcÞ � suppðPQcÞ

¼ confðPQ! cÞ
1þ suppðcÞ=suppðPQÞ � confðPQ! cÞ

� confðPQ! cÞ
1þ suppðcÞ=suppðPQXÞ � confðPQ! cÞ

� confðPQX ! cÞ
1þ suppðcÞ=suppðPQXÞ � confðPQX ! cÞ

¼ JaccardðPQX ! cÞ:

The theorem has been proved. tu
Corollary 1 (closure property). If suppðP Þ ¼ suppðPXÞ, then

rule PX ! c for any c and all its more-specific rules do not

occur in an optimal rule set defined by confidence, odds ratio,

lift (interest or strength), gain, added-value, Klosgen, convic-

tion, p-s (or leverage), Laplace, cosine, certainty factor, or

Jaccard.

P r o o f . I f suppðP Þ ¼ suppðPXÞ, t h e n suppðP:cÞ ¼
suppðPX:cÞ holds for any c. Therefore, this Corollary

is proved immediately by Theorem 1. tu
Corollary 2 (termination property). If suppðP:cÞ ¼ 0, then

all more-specific rules of the rule P ! c do not occur in an

optimal rule set defined by confidence, odds ratio, lift (interest

or strength), gain, added-value, Klosgen, conviction, p-s (or

leverage), Laplace, cosine, certainty factor, or Jaccard.

Proof. If suppðP:cÞ ¼ 0, then suppðPX:cÞ ¼ suppðP:cÞ ¼ 0

holds for any X. Therefore, this corollary is proved

immediately by Theorem 1. tu
Theorem 2 (relationship with the nonredundant rule set).

An optimal rule set is a subset of a nonredundant rule set.

Proof. Suppose that we have suppðP Þ ¼ suppðPXÞ and

there is no P 0 � P such that suppðP Þ ¼ suppðP 0Þ. The rule

PX ! c for any c is redundant. It will not be in an

optimal rule set either, according to Corollary 1.
Suppose that suppðP Þ ¼ suppðPXÞ and there is P 0 �

P such that suppðP Þ ¼ suppðP 0Þ. We always have
suppðP 0Þ ¼ suppðP 0Y Þ for Y � ðPXnP 0Þ. Rules P ! c
and PX ! c are redundant. They will not be in an
optimal rule set either, according to Corollary 1.

Further, many nonredundant rules are pruned by
Theorem 1.

Therefore, an optimal rule set is a subset of a
nonredundant rule set. tu
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