An Adaptive Method of Numerical
Attribute Merging for
Quantitative Association Rule Mining

Jiuyong Li, Hong Shen and Rodney Topor
School of Computing and Information Technology
Griffith University
Nathan QId 4111 Australia
Email: {jiuyong,hong,rwt}@cit.gu.edu.au

Abstract

Mining quantitative association rules is an important topic of data mining since most real world
databases have both numerical and categorical attributes. Typical solutions involve partitioning each
numerical attribute into a set of disjoint intervals, interpreting each interval as an item, and applying
standard boolean association rule mining. Commonly used partitioning methods construct set of
intervals that either have equal width or equal cardinality. We introduce an adaptive partitioning
method based on repeatedly merging smaller intervals into larger ones. This method provides an
effective compromise between the equal width and equal cardinality criteria. Experimental results
show that the proposed method is an effective method and improves on both equal-width partitioning
and equal-cardinality partitioning.
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1 Introduction

1.1 Association rule mining

Association rule mining was first studied by Agrawal et al. [1], and can be formally stated as follows.
Let I = {iy,i2,--- ,im} be a set of symbols that are called items. The items may be goods, attributes, or
events. A transaction T is a set of items, T' C I, and a collection of transactions form a database D. A
set of items is called an itemset, and an itemset with k items is called a k-itemset. The support of itemset
X, denoted as o(X), is the percentage of D in which every transaction contains X. An itemset is called
a frequent itemset if its support is not less than a user specified minimum support ¢, or o(X) > (. An
implication in the form of X — Y is an association rule, where X,Y C I and XNY = (. The confidence
of rule X — Y is the ratio of 0(X UY) to (X)), denoted by x(X — Y). If &(X — YY) >, where n is a
user specified minimum confidence, the rule is called a strong rule. For example, suppose 30% of students
have taken both Computer Programming and Word Processing, and 80% of the students who have taken
Computer Programming also have taken Word Processing. Then the rule “(Computer Programming)
— (Word Processing)” has support of 30% and confidence of 80%. The goal of association rule mining is
to find strong rules in databases, which is normally achieved by first finding frequent itemsets and then
forming association rules.

1.2 Quantitative association rule mining

Mining association rules in databases of numerical and categorical attributes rather than boolean at-
tributes is called mining quantitative association rules [13]. An example of a quantitative association
rule is Age € [40, 50] A Married — Cars = 2.



There are several possible methods for quantitative association rules mining. One is to consider
individual categorical states and separate numerical values as items, and then use a boolean association
rule mining algorithm. After all rules are obtained, the rules with adjacent numerical values are grouped
[9, 14]. For example rule Age = 50 A Married — house and rule Age = 55 A Married — house are
combined as Age € [50,55] A Married — house. This method suffers from difficulties of mining on
certain numerical values such as insufficient support from the database to some individual numerical
values and too many numerical values on a particular attribute.

A second method of quantitative association rule mining is to map quantitative attributes into
boolean attributes, then use algorithms of boolean association rule mining. Mapping a categorical
attribute to a boolean attribute is straightforward: it can be realized by enumerating categorical states
to a set of positive integers (items). As to numerical attributes, the common way is to cut a continuous
attribute to some intervals then map all values in an interval to an item. Converting a continuous
attribute to a set of discrete values is called discretization.

There are several methods to do this [2, 6, 5, 3]. Many methods are supervised discretization methods
in which optimal classes are known beforehand. However, in many data mining problems, the optimal
classes are not known, so unsupervised discretization is more suitable. There are few unsupervised
discretization methods. The two most frequently used methods are the following.

1. Equal-width discretization divides the continuous attribute range into N intervals of equal width.
For example, ages from 20 to 60 can be divided into four intervals of width 10 years. This method
can be easily implemented, but has the clear drawback that there may be too few instances in some
intervals and too many in other intervals, and both cases hinder mining high quality association
rules.

2. Equal-depth (or equal-cardinality) discretization divides the continuous attribute range into N
intervals so that there are 1/N of the total instances in each interval. This method avoids the
possible imbalance inherent in the equal-width discretization method, but it may separate similar
attribute values into different intervals and group dissimilar attributes into the same interval.

Equal-depth discretization method is preferred in general [7, 11, 13]. A key problem in using this
method is choosing the number of intervals. Small interval size tends to result in the loss of interesting
rules, and large interval size tends to reduce the accuracy of rules. To deal with this problem, a measure
of K-partial completeness is defined to decide how many intervals should be cut in a continuous attribute
[13]. However, even with this measure, this method may not work very well on highly skewed data as
stated by Srikant and Agrawal [13]. A main cause of these problems is that equal-width discretization
method and equal-depth discretizatione method do not consider both value densities and value distances
at the same time.

In addition to the above, methods based on clustering have also been proposed for unsupervised
discretization [4, 11]. In [11], a method for clustering numeric atttributes to mine distance based asso-
ciation rule was proposed, where an association rule is represented by C, — C,, where C and C} are
density clusters.

Our work is motivated by the concept of clustering, but does not form association rules directly
from clusters like [11]. We discretize numerical attributes and then convert quantitative association
rule mining to boolean association rule mining. Our proposed discretization method is an unsupervised
discretization method. It initially places each numerical attribute value in a separate interval, and
then selectively merges similar adjacent intervals. It uses a merging criterion that considers both value
densities and value distances of numerical attributes, and produces proper value density and suitable
interval width so that association rules can be easily found from them. After numerical attributes are
discretized as a set of disjoint intervals, each interval can be interpreted as a boolean attribute, thus
transforming quantitative association rule mining into boolean association rule mining.

In this paper, we first define a criterion for merging adjacent intervals and develop a numerical
attribute merging algorithm. Next we present a quantitative association rule mining algorithm. Finally,
we implement both algorithms and compare our proposed discretization method with equal-width and
equal-depth discretization methods.



2 Numerical attribute merging algorithm

The goal of our work is to partition a numerical attribute into a set of disjoint intervals by minimizing
differences within intervals and maximizing differences between intervals in light of clustering[10]. In-
tervals with too few attribute occurrences in the database would prevent itemsets from having sufficient
support and intervals with too many attribute values would fail to discriminate between attribute values
and would hence fail to lead to useful association rules. Hence, we present a merging algorithm to
produce a set of intervals with suitable attribute values.

Initially, suppose that a numerical attribute has m distinct values, {z1, 2, ..., 2, }. Without loss
of generality we further assume that z; < ;41 for all 1 <z < m — 1 (we can simply sort these values
otherwise). Define m intervals Iy, ... , I, such that each I; includes z;, 1 <1i < m. Let each interval I;
have a representative centre ¢; initially defined to be x;, 1 < i < m.

In general, suppose that an interval I contains attribute values {z1, s, ...z} and has representative
center c¢. Define the average intra-interval distance of I with respect to ¢ to be

Dist(Z, ¢) szDd T, C), (1)

where w; is the weight of value z;, and Dy = Zle | ; — ¢ | is the Manhattan distance since all values
in I are one-dimensional. Let the weight w; of z; to be the number of occurrences of value z; in the
database.

Assume that two adjacent intervals I; = {z1,... ,2;} and I; = {z;11,... ,ziy;} have representative
it
n n . . .
centres ¢; = Zplizp and ¢; = W, where attribute value z, contains n, occurrences (in the
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database), < 1p < j < m. Clearly, the number of attribute occurrences in I; is N; = 2221 np. and in
I; is N; = Z;ﬂH_l np. The union, I = I; U I}, of the two intervals containing j attrubute values and
N;+N; = Z;ﬂl np attrubute occurences in total thus has its representative centre given by the average
weighted value of (¢;,n;) and (cj,n;):
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The intra-interval distance of I with respect to ¢ calculated by Equation (1) is then uniquely defined by
c; and ¢; as follows. When z; < ¢ < z;11 which holds in our algorithm, noting that 22:1 Tpnp = ¢ N;
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We may now define the difference between I; and I;, denoted by Diff(c;,¢;), to be propotional to
their intra-interval distances given by the above equation. That is,
N;N;

Diff(c;, ¢j) = m(cj - ¢i). (4)
i J

We can see that the difference between two intervals is determined not only by the distance between
their representative centers but also by the number of database occurrences of values in each interval. If
two pairs of intervals are the same distance apart, the pair with smaller number of occurrences in each
interval has a smaller difference than the pair with larger number of occurrences in each interval.

Next we consider how to choose a pair of adjacent intervals to merge. Given m consecutive intervals
I, ..., I, whose representative centers are ci, ..., Cp, there are m — 1 pairs of adjacent intervals. We
test every pair of adjacent intervals, and then merge the two with the smallest Diff, say I and Ij;.
The merged interval I = I U I has representative centre ¢ and number of values nj updated as
follows.

ek = (ngcg + ngpacryr) /(g + Neg1);

g = Nk + Ngg1;

We repeatedly merge the pair of adjacent intervals with minimum difference in this way.

We now propose a criterion for terminating this merging process before we have reduced the data to
a single large interval. If the density of each interval is large enough to form a rule, namely n;/N > (,
or the representative centers of each pair of adjacent intervals are so far apart that they are unlikely to
be in one group, for example (c;1; — ¢;) > 3d, where d is the average distance of adjacent values of a
numerical attribute, the numerical attribute merging procedure stops.

After executing the above procedure, the whole range of numerical attribute values is partitioned
into a set of adjacent intervals, where the number of values in each interval is large enough to reach the
user specified minimum support or each interval is too isolated to be merged into an adjacent interval.

The above procedure may be summarised as follows.

Algorithm 1 Numerical attribute merging algorithm
Input: An ordered sequence of numeric attributes {x1,...,Zm }.
Output: An ordered sequence of disjoint intervals I, ..., I, covering xi,...,2T,, m' < m.

For each x; (1<i<m) do
Let I; contain x;;
Let ¢; = x; be the representative centre of I;;

End

Let m' = m;

For each interval pair (I;;I;41) (1 <i<m') do
Let Diff (Ci, Ci+1) = n?frll:; (ci—i-l — Ci);

End

While (termination condition is not satisfied) do
Let k be such that Diff (ck,ck+1) is minimal;
Let ¢, = (nick + npp16r41)/ Mk + Npy1);
Let ng, = ng + ng41;
Merge Iy, and Ip41 into a new interval Iy;
Letm' =m' —1;
Recompute Diff(cr.—1,cr) and Diff(cy, cry1);

End;

Output intervals I, ... Ly ;




3 Quantitative association rule mining

Quantitative association rule mining is the process of mining association rules for databases with both
categorical attributes and numerical attributes. In a quantitative association rule X — YV, X and Y
may be the combination of boolean values, categorical states and numerical intervals. In the previous
section, we have discussed how to find suitable intervals of numerical attributes. In this section we give
a brief description of our algorithm for quantitative association rule mining. It consists of the following
four steps.

3.1 Pre-processing

In this stage, the goal is to convert categorical and numerical attributes to boolean attributes on which
boolean association rule mining algorithms can be applied. This is achieved by enumerating the values
of categorical attributes and mapping interval sets of numerical attributes to a set of items. The core of
this stage is to find suitable intervals for each numerical attribute, which affects the mining performance
greatly. In our algorithm, interval finding is realized by Algorithm 1. After sets of cut-points of numer-
ical attributes are found, all values in one interval are interpreted as an item. For example, different
temperature ranges represent different items in Table 1. After that we can use boolean association rule
mining on these items.

sex code | cough | code | temperature | code
male 1 bad 3 35.0 - 36.9 6
female 2 slight 4 36.9 - 37.1 7
— — no 5 37.1-42.0 8

Table 1: An example of converting quantitative attributes to a set of items

3.2 Frequent itemset finding

The following efficient algorithm for frequent itemset finding was developed in [12]. The data structure
set trie is important in the algorithm, since it allows efficient generation of candidates and verification
and storage of frequent itemsets. Some similar data structures have also been used for association rule
mining.

The set trie we use is an ordered and labeled root tree that can store a set and all its subsets
conveniently. Its main characters are listed below.

Given a sorted set of positive integers L = {l1,ls,... ,l,,}, where [; < l;11 if i < j.

1. Each node in set trie is labeled by an element in L, and more than one node (or leaf) in a set trie
can have the same labels.

2. Labels of son nodes are ranked higher than their parents by the order in set L.

3. Each node stores all nodes on the path from the root to it.

An example of a set trie that stores set {1, 3, 5, 6} and all its subsets is depicted in Figure 1.
Frequent itemset finding involves four steps:

1. Initiating a set trie.

We first find all frequent 1-itemsets and frequent 2-itemsets, and then initiate a set trie. Nodes
in the first layer of set trie are added directly from all frequent items. Nodes in the second layer
are those items having frequent links (two items that form a frequent 2-itemset are called having
frequent link between them) with nodes in the first layer.
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Figure 1: An example of set trie

2. Generating candidates for frequent itemsets

Our candidate generation is based on the following observation: If an itemset is frequent, all its sub-

sets are frequent itemsets and links among all items contained in it are frequent links. Candidates

are generated as follows. Suppose that a node has m frequent itemsets, {i1,42,...,9k },{91,92, -« Gk by- -5
{i1,42,...,1k,, }, as its sons in the k-th layer of a set trie. Candidates in the (k + 1)-th layer under

the node iy, of k-th layer are {iy,is,...,ig,,ir, }, Where o(ig,,ir,) > ¢ and k1 < ky < kp,. We can
generate all candidates in the (k + 1)-layer of the set trie by this way. The candidate generator

based on set triee is very efficient since candidates only relate to siblings under a same parent
rather than all k-itemsets so that much searching time is saved. A newly generated candidate is

added in the tree as a new leaf.

3. Counting support of candidates

A tree structure can be easily searched in breadth-first or depth-first. However in a set trie, we
do not search the whole trie but trace it by a transaction. We illustrate tracing procedure by the

following example. Suppose that a transaction has k frequent items, {i1,is,...,ix}. In the first
layer we only go to nodes 41,12, ...,%t, and mark them. Then we go into subtrees rooted by the
marked nodes, and mark nodes is, ..., i in the second layer of the subtrees. And so on. Support

of each itemset under marked nodes is incremented by 1. As the length of a transaction is far
smaller than the size of set I, tracing set trie only searches a small part of the whole and set trie
hence is very fast.

4. Deleting infrequent itemsets

If an itemset is proved to be infrequent, then all its supersets can not be frequent itemsets. In
a set trie, supersets are stored in subtrees rooted by nodes storing the prefix subsets of them, as
illustrated in Figure 1. If a node stores an infrequent itemset, the whole subtree including itself
can be removed from the set trie. When there is no infrequent itemset to be removed, all frequent
itemsets are stored in the set trie and are easily located since themselves are paths.

3.3 Rule forming

After all frequent itemsets are obtained, the task here is to test whether two disjoint subsets of an
frequent itemset can form a rule. If there are the user specified targets, this step will be very simple.
Otherwise we have to test all subsets as consequences in turn. For a consequence Y, which is an item
or an itemset, we first search set trie for frequent itemsets Z = {S;|Y C S;}. Then we obtain a set of
rule {X; = Y,i=1,2,...,m}, where x(X; — Y) > n. For the convenience of rule pruning, rules with a
same consequence are stored together and storage structure is also the set trie, since it is convenient for
searching and counting in the post processing procedure.



The rule forming by the criterion of the minimum support and the minimum confidence may produce
many uninteresting redundant rules. Rule pruning in the following section can resolve the problem of
redundancy. Measures of interestingness are very application oriented.

3.4 Post-processing

There may be some redundant rules in the result of mining, if some of them account for some similar
facts, such as A — C' and AAB — C. The goal of rule pruning is to select a set of minimally overlapping
rules from a raw rule set without losing information. Given support and confidence, an interesting rule
is the one with the highest confidence, hence the pruning method we propose is to choose the rule with
the highest confidence and delete other similar rules.

Forarule X — Y, if (XUY) C T, then we say that rule X — Y covers transaction T'. On the other
hand, if (X U-Y) C T, then we say that rule X — Y wuncovers transaction T

For aset of rules R ={X; Y |1<i<m,} and a database D = {T4,...,T,}, the total covered
transactions of rule set R over D is

Cov(R) = U T; where (X3 UY) C T; for any (X —»Y) CR.

i=1

The coverage of rule set R is the ratio of the size of Cov(R) to the number of all transactions.

Consider two rules X; — Y and X — Y where £(X; = Y) > k(X2 — Y). If both of them cover
the same data set, rule Xo — Y loses support when transactions covered by rule X; — Y are removed
from database. As a result, the confidence of rule X; — Y is reduced as well.

If we choose a rule, and then remove all transactions covered by the rule from database, supports
and confidences of the rest rules will change. For rule X — Y, there are o(X) = o(X UY) + (X U-Y)
and k(X - Y)=0(XUY)/(c(XUY) +0(X UAY)). Once we store a rule covering transactions in
cov; and uncovering transactions in uncov;, and update them after each rule is selected, supports and
confidences of rest rules can be updated easily. The ultimate goal is to simplify the raw rule set while
maintaining total coverage unchanged.

A pruning algorithm selecting high confidence rules and keeping the same total coverage as the raw
rule set is given below.

Algorithm 2 Pruning the rule set
Input: Database D = {Ty,...,T,}, itemset Y, and rule set R={X; -V |1<i<m}.
Output: Pruned rule set R' C R.
Let R' = (;
For each rule (X; = Y) C R do
Let cov; = Uj_, Tj, where (X; UY) C Tj;
Let uncov; = Jj_, Tj, where (X; U=Y) C Tj;
End
Let Cov = |J~, covy;
Let m' =m;
While (Cov # 0) do
Let d be such that k(Xq — YY) is minimal;
Lt R =R\ (Xg—Y);
Let R' =R' | (Xg = Y);
Letm' =m' — 1 ;
Let Cov = Cov \ {T}, | (XqUY)CTr};
For each (X; - Y)CR do
Let cov; = cov; \ {Tk|(XqUY) C Tk}
Let k(X; = Y) = |cov;| [ (|covi| + [uncov;]);
End;
End;



Output rule set R'.

4 Performance results

Quantitative association rule mining algorithm depends critically on the discretization of continuous
attributes. If discretization produces a set of suitable intervals, the computed association rules will
have a large total coverage. The method proposed in this paper has been evaluated by comparing its
performance with equal-width and equal-depth discretization methods.

We implemented our quantitative association rule mining algorithm and tested it on some databases
from the Machine Learning Database Repository at the University of California at Irvine. A brief
description of the database is given in Table 2.

Database name Records Attributes Classes
Glass Identification 214 9 Numerical 3
Heart Disease 270 7 Numerical + 6 Categorical 2
Iris Plant 150 4 Numerical 3
Wisconsin Breast Cancer (original) 699 10 Numerical 2

Table 2: Brief description of databases

The experiment was conducted by comparing the proposed algorithm methods with equal-width
and equal-depth discretization methods, in which numerical attributes are partitioned into 5 or 10 equal
value intervals or equal density intervals respectively. They are denoted as equal-width 5, equal-width 10,
equal-depth 5 and equal-depth 10.

In the experiment, we do not find all possible rules but some interesting rules with consequences as
the labeled classes. To avoid finding too few rules from the small distributed items and too many rules
from the large distributed items at a fixed minimum support, we use local support instead of support.
The local support of a rule X — Y is the support of X UY in the sub-database of transactions that
include Y.

The experiment results are displayed in Figure 2.

From Figure 2, we can see that the overall results of our numerical attribute merging method is
better than others. In 24 trials, only 1 trial is worse, 4 trials are marginally lower, and the other 19 trials
are better than or equal to equal-width and equal-depth methods. We observed that no other method
in the experiment achieves this performance.

Tt is reported [5, 8] that performances of all discretization methods have little difference except that
supervised discretization methods are better than unsupervised discretization methods. In the case that
labelled classes are known, the supervised discretization methods are good choices. When the class
information is unknown, the method proposed in this paper is a good one. Since it considers both
instance densities and value distances, it has the merits of both equal-depth and equal-width methods.
Let us consider two extreme cases. If the termination condition of Algorithm 1 does not include the
restriction of the density in an interval, the merging result will become equal-width partition. On the
other hand, if the termination criterion has no distance restriction, then the merging result will be equal-
depth partition. Therefore our proposed method is an adaptive method that generalizes the equal-depth
and equal-width methods.

5 Conclusion

In this paper, we have introduced an unsupervised discretization method that uses a clustering based
criterion to merge adjacent intervals until some termination criterion is reached. The numerical attribute
merging algorithm is evaluated in comparison with equal-width and equal-depth discretization methods.
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Figure 2: Comparison of mining result of three class blind methods

Experiment results show that the proposed method gains certain improvement in quantitative association
rule mining over these existing methods. This improvement comes from the fact that our method is an
adaptive method that generalises both equal-width and equal-depth methods.
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