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Summary:

Objective: This paper studies aproblem of efficiently discovering risk patterns in med-
ical data. Risk patterns are defined by a statistical metric, relative risk, which has been
widely used in epidemiological research.

Method: To avoid fruitless search in the complete exploration of risk patterns, we de-
fine optimal risk pattern set to exclude superfluous patterns, i.e. complicated patterns
with lower relative risk than their corresponding simpler form patterns. We prove that
mining optimal risk pattern sets conforms an anti-monotone property that supports an
efficient mining algorithm. We propose an efficient algorithm for mining optimal risk
pattern sets based on this property. We also propose a hierarchical structure to present
discovered patterns for the easy perusal by domain experts.

Result: The proposed approach is compared with two well known rule discovery meth-
ods, decision tree and association rule mining approaches on benchmark data sets and
applied to a real world application. The proposed method discovers more and better
quality risk patterns than a decision tree approach. The decision tree method is not
designed for such applications and is inadequate for pattern exploring. The proposed
method does not discover alarge number of uninteresting superfluous patterns as an
association mining approach does. The proposed method is more efficient than an as-
sociation rule mining method. A real world case study shows that the method reveals
some interesting risk patterns to medical practitioners.

Conclusion: The proposed method is an efficient approach to explore risk patterns. It
quickly identifies cohorts of patients that are vulnerable to arisk outcome from alarge
data set. The proposed method is useful for exploratory study on large medical data
to generate and refine hypotheses. The method is also useful for designing medical
surveillance systems.

Keywords: Relative risk, risk pattern, data mining, association rule, decision tree,
epidemiology.
Software: http://www.cis.unisa.edu.au/ lijy/Risk-Preventive/Risk-Preventive.html



1 Introduction

1.1 Background and aims

Hospitals and clinics accumulate a huge amount of patient data over the years. These
data provide abasis for the analysis of risk factors for many diseases. For example, we
can compare cancer patients with non-cancer patients to find patterns associated with
cancer. This method has been common practice in evidence-based medicine, which is
an approach to the practice of medicine in which a clinician is aware of the evidence
in support of clinica practice, and the strength of that evidence.

The analysis of the data from comparative studies has usually been done by using
statistical software tools, such as SPSS. This is alabor intensive process. It is inef-
ficient to run an exhaustive analysis of interactions of 3 or more exposure variables.
Therefore, an automatic data mining tool is required to perform such tedious and time
consuming tasks.

Theinterpretability of resultsis arequirement for designing a data mining method
for medical applications. In general, medical practitioners and researchers do not care
how sophisticated a data mining method is, but they do care how understandable its
results are.

Rules are atype of the most human-understandable knowledge, and therefore they
are suitable for medical applications. There following are two widely used approaches
to extract rules from data.

Decision trees, typified by C4.5 [1], can be extended to rules. Decision trees are
usually used for building diagnosis models for medical applications [2, 3, 4]. Themain
objective is to minimise the overal errorsin classification. Rules from a decision tree
are usually accurate but some are not statistically significant. Furthermore, a decision
tree only represents one model among a number of possible models. Rules from a
decision tree may fail to present relationships that are of interest to users.

Association rule mining [5] is a general purpose rule discovery scheme. It has
been widely used for discovering rules in medical applications [6, 7, 8]. Three chal-
lenges of association rule mining approaches in these applications are 1) most widely
used interestingness criteria, such as confidence and lift, do not make sense to medical
practitioners, 2) too many trivial rules discovered overwhelm truly interesting rules,
and 3) an association rule mining approach is inefficient when the frequency require-
ment, the minimum support, is set low.

To tackle the above problems, we use awidely used epidemiological term, relative
risk, to define risk patterns. We propose optimal risk pattern sets to exclude superflu-
ous patterns that are of no interest to medical practitioners. We present an efficient
algorithm to discover optimal risk pattern sets. We also study a way to present struc-
tured risk patterns to medical practitioners. The proposed method has been applied to
areal world application and produced some interesting results. This paper extends our
previous work [9].

1.2 Reated work

Decision trees are a popular logical method for classification. A decision treeisahier-
archical structure that partitions data into some disjoint groups based on their different



attribute values. Leafs of a decision tree contain records of one or nearly one class,
and so it has been used for classification. An advantage of decision tree methods is
that decision trees can be converted into understandable rules. A most widely used
decision tree system is C4.5[1], itsancestor ID3 [10], and acommercial version C5.0.

Decision trees have been mainly used to build diagnosis modelsfor medical data[2,
3,4]. When it isused for exploring patternsin medical data, work in[11] showsthat it
isinadequate for such exploration. One reason is that the objective of decision treesis
not to explore data but to build a simple classification model on the data. Another rea-
son is that the heuristic search of decision tree prevents its finding many quality rules.
Decision trees only follow one path in tree construction, and hence may miss better
rules along aternative paths. Recently, a variant decision tree algorithm, high-yield-
partition tree method, has been proposed to discover hi-utility patterns for business
intelligence [12]. Its application to medical dataisto be explored.

Association rule mining isamajor data mining technique, and isamost commonly
used pattern discovery method. It retrieves all frequent patterns in a data set and forms
interesting rules among frequent patterns. Most frequently used association rule min-
ing methods are Apriori [13] and FP-growth [14].

Association rule mining has been widely used in medical data analysis. Brossette
et al. [6] uncovered association rules in hospital infection control and public surveil-
lance data. Peetz et a. [8] discovered association rules in septic shock patient data.
Sequentia patterns have been found in chronic hepatitis data by Ohsaki et a. [7], and
in adverse drug reaction data by Chen et a. [15]. Ordonez et al. used association rules
to predict heart disease [16]. However, the discovery of too many rules is a major
problem in all applications. Too many trivial and repetitive rules hide truly interest-
ing rules. Association rule mining is inefficient when the frequency requirement, i.e.
the minimum support, is set low. Furthermore, the lack of the right interestingness
measurements for medical application is another problem.

Some efficient variants of association rule mining have been presented in the last
few years, for example, mining non-redundant association rules[17], mining constraint
association rules [18], mining most interesting rules [19], mining top N-association
rules [20], and mining k-optimal rules [21] or patterns [22]. The rules are defined by
confidence, lift or leverage, and hence their results are not directly understandable to
medical practitioners. Apart from the first two methods, they have a data coverage
problem. For example, the top & rules may come from the same section of data, and
this leaves some records in a data set uncovered. As aresult, some records in data are
not represented in the results.

To our best knowledge, there is only one paper in data mining literature discussing
finding patterns defined by relative risk. Li et al. [23] studied a number of algorithms
to discover the most general and the most specific patterns defined by relative risk
using the convex property of plateaus of support. The most efficient algorithm in [23]
is comparable to that of mining minimal generators. We will show theoretically that
our approach is more efficient than mining minimal generators in Section 2.2.



2 Method

2.1 Problem definitions
2.1.1 Risk patterns

Let us assume that there is a collection of patient records. Each record is described
by a number of discrete attributes, one of which is the target attribute. The target
attribute takes two values: abnormal and non-abnormal. Records for patients with a
disease or risk under study are labelled as abnormal, otherwise records are labelled as
non-abnormal. An example of such adata set islisted as Table 1.

Gender | Age | Smoking | Blood pressure | ... Class
M 40 - 50 Y high . abnormal
M 20- 40 N normal ... | non-abnormal
F 20 - 40 N normal ... | non-abnormal

Table 1: An example of medical data set

In the following we refer to the abnormal class as a and the non-abnormal class as
n.

A pattern is defined as a set of attribute-value pairs. For example, {Gender = M,
Agein[40,50]} isapattern with two attribute-value pairs. The support of pattern P is
the ratio of the number of records containing P to the number of al recordsin the data
set, denoted by supp(P). When the data set is large, we have supp(P) = prob(P).

A pattern is usually called frequent if its support is greater than a given threshold.
However, in a medical data set, a pattern in the abnormal group would hardly be fre-
guent when the abnormal cases are themselves rare. Therefore, we define the local
support of P asthe support of P in the abnormal group, represented as

supp(Pa)

Isupp(P — a) = p—

where Pa is an abbreviation for P A a. Others have called this the recall of the rule
(P — a) [24]. We prefer to call it local support since it observes the anti-monotone
property of support: the support of a super pattern is less than or equal to the support
of its any sub pattern. In this paper, a pattern is frequent if itslocal support is greater
than a given threshold.

A risk pattern in this paper refers to the antecedent of a rule with the consequence
of abnormal. For the convenience of our discussions, we introduce another important
concept for association rules, confidence, in the following.

supp(Pa)

conf(P — a) = —

A pattern separates al records into two groups, a group with the pattern and the
other without the pattern, e.g., males between 40 and 50 and the rest. Cohorts separated
by a pattern and two classes form a contingency table, see Table 2.
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abnormal (a) | non-abnormal (n) total
P prob(P, a) prob(P,n) prob(P)
—P | prob(=P,a) prob(—P,n) prob(—P)
total prob(a) prob(n) 1

Table 2: A contingency table of a pattern and outcomes

Relative risk is a metric often used in epidemiological studies. It is often used to
compare the risk of developing adisease of agroup people with acertain characteristic
to the other group without the characteristic. Therelative risk (RR) for the cohort with
pattern P being abnormal is defined as follows:

RR(P — a) = prob(a|P)/prob(a|-P)
prob(P,a) ,prob(—P,a)
prob(P) ' prob(—P)
supp(Pa) supp(—Pa)
supp(P) * supp(—P)
supp(Pa) supp(—P)
supp(—Pa) supp(P)

—P meansthat P does not occur. Pa isan abbreviation of P A a. supp(—P) isthe
fraction of all records that do not contain P, and —Pa refers to the records containing
a but not P.

For example, if P = “smoking”, a = “lung cancer”, and RR = 3.0, then this
means that people who smoke are three times more likely to get lung cancer than those
who do not.

A relativerisk of lessthan 1 means the group described by the patternislesslikely
to be abnormal. A relative risk of grater than 1 means the group described by the
pattern ismore likely to be abnormal. Confidence interval of relative risk is determined
by the numbers in four cells of the contingency table [25]

We give aformal definition of risk patterns using relative risk in the following.

Definition 1 Risk patterns are patterns whose local support and relative risk are higher
than the user specified minimum local support and relative risk thresholds respectively.

A primitive goal is to find al risk patterns. However, mining all risk patterns
suffers two similar problems as association rule mining: too many discovered patterns
and low efficiency for low support. Mining optimal risk pattern sets aleviates the
problems.

2.1.2 Optimal risk pattern set

Many risk patterns are of no interest to users. For example, we have two patterns,
{SEX =M and HRTFAIL = T and LIVER = T} with relative risk 2.3, and {HRTFAIL
=T and LIVER = T} with relative risk 2.4. SEX = M in the first pattern does not
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increase relative risk and hence we say that the first pattern is superfluous. Thus we
introduce the optimal risk pattern set to exclude these superfluous patterns.

Definition 2 A risk pattern set is optimal if it includes all risk patterns except those
whose relative risks are less than or equal to that of one of their sub patterns.

In the above example, the first pattern will not be in the optimal risk pattern set
because it is a super set of the second pattern but has lower relative risk.

Optimal pattern set will exclude many superfluous and uninteresting risk patterns,
for example, if pattern “symptom = x” is arisk pattern, many patterns, like “gender
= m, symptom = x”, “gender = f, symptom = x”, “gender = m, age = middle age,
symptom = x” with the same or alower relative risk will be excluded from the optimal
risk pattern set. Practically, a pattern with a slight improvement in relative risk over its
sub patternsis uninteresting. A minimum improvement requirement can be defined by
users. The optimal pattern set makes use of the zero minimum improvement. Mining
a pattern set with a nonzero minimum improvement can be extended by post-pruning
the optimal pattern set.

In the optimal risk pattern set, the relative risk of a super pattern has to be greater
than the relative risk of its every sub pattern. Note that the set of records covered by
a super pattern is a subset or at most an equal set of the set of records covered by a
sub pattern. Therefore, every record in a data set will be covered by a pattern with
the highest relative risk. In other words, the optimal pattern set does not include all
patterns, but does include patterns with the highest relative risk for al records.

Another important reason for defining the optimal risk pattern set isthat it supports
aproperty for efficient pattern discovery. Wewill present the property in the following
section.

2.2 Anti-monotone property of optimal risk pattern sets

In this section, we will prove that optimal risk pattern set satisfies an anti-monotone
property, which supports efficient optimal pattern discovery.

We first introduce notation used in the following lemma and corollary. Px is a
proper super pattern of P with one additional attribute-value pair . We use « to stand
for class a, and —a to stand for a class that is not a. We can use n instead of —a for
a two-class problem. We use —a because conclusions in this section are true for the
multiple class problem too. We have supp(—a) = 1 — supp(a) and supp(P—a) =
supp(P) — supp(Pa). Furthermore, we have supp(—(Pz)) = 1 — supp(Pz) =
[supp(—Pz)+supp(—~P—-x)+supp(P-x)+supp(Pz)]—supp(Pz) = supp(—Px)+
supp(—P—x) + supp(P—z).

Lemmal Anti-monotone property for optimal risk pattern sets
If (supp(Pz—a) = supp(P—a)) then pattern Px and all its super patterns do not
occur in the optimal risk pattern set.

Proof Wefirst present a proof scheme.
Let PQx be aproper super pattern of PQ. PQx = Px and PQ = P when@Q = 0.
To prove the Lemma, we need to show that RR(PQx — a) < RR(PQ — a).



supp(PQa) supp(—(PQ))

supp(—(PQ)a) supp(PQ)
conf(PQ — a)

conf(—(PQ) — a)
conf(PQx — a)

conf(—(PQ) — a)
conf(PQz — a)

conf(=(PQx) — a)

= RR(PQz — a)

RR(PQ — a)

Y

@

Y

2

We can deduce that supp(P@Q—a) = supp(PQz—a) for any Qfromsupp(P—a) =
supp(Pz—a).

Next we prove Step (1). Consider f(y) = y%a monotonically increases with y
when constant « > 0 and supp(PQ) > supp(PQz) > 0.

supp(PQa)
supp(PQ)
supp(PQa)
supp(PQa) + supp(PQ—a)
supp(PQa)
supp(PQa) + supp(PQz—a)
supp(PQza)
supp(PQza) 4 supp(PQz—a)
= conf(PQz — a)

conf(PQ — a) =

We then prove Step (2). Note that from supp(PQ—a) = supp(PQz—a), we can
deduce that supp((PQ)—z—a) = 0. Another property we shall make use of is that

fly) = % monotonically increases with y when constant « > 0 and supp(—(PQzx)) >
supp(—(PQ)) > 0.

conf(—(PQx) — a)

supp(—(PQzx)a)

supp(~(PQw))

supp(—(PQz)) — supp(~(PQx)—a)
supp(~(PQw))

supp(=(PQx)) — (supp(=(PQ)z—a) + supp(~(PQ)-z—a))

supp(—~(PQx))

(since supp((PQ)—z—a) = 0.)

supp(=(PQx)) — supp(=(PQ)—-a)
supp(~(PQx))

supp(~(PQ)) — supp(~(PQ)~a)
supp(~(PQ))

supp(~(PQ)a)

supp(~(PQ))

= conf(=(PQ) — a)




The Lemma has been proved. [J

From the above lemma, we can adopt a pruning technique as follows. once we
observe that any pattern, e.g., Pz, satisfying supp(Pz—a) = supp(P—a), we do not
need to search for its super patterns, e.g., PQx, since they do not occur in an optimal
risk pattern set.

Corollary 1 Closure property
if (supp(Pz) = supp(P)) then pattern Pz and all its super patterns do not occur in
the optimal risk pattern set.

Proof If supp(Px) = supp(P), then supp(Pz—a) = supp(P—a). Therefore, al its
super patterns do not occur in the optimal risk pattern set according to Lemma 1. [

From the above corollary, we can adopt a pruning technique as follows. once
supp(Pz) = supp(P) is observed, we do not need to search for its super patterns,
e.g., Px(Q since they will not be in the optimal risk set.

This corollary is closely associated with mining minimal generators [26]. P isa
proper generator of Px when supp(Pzx) = supp(P). P iscaled aminimal generator
if thereisno P’ C P such that supp(P’) = supp(P). According to Corollary 1, a
pattern in an optimal risk pattern set has to be a minimal generator. Corollary 1 isa
special case of Lemma 1. Lemma 1 disqualifies many minimal generators from being
considered to be in the optimal risk pattern set. Asaresult, mining optimal risk pattern
sets does not search al minimal generators, and therefore is more efficient than mining
minimal generators.

2.3 Risk pattern mining and presenting

We now discuss how to discover optimal pattern sets efficiently, and how to present risk
patterns in a easy to peruse structure. The algorithm makes use of the anti-monotone
property to find optimal risk pattern sets efficiently.

2.3.1 MORE algorithm

A néive method to find an optimal risk pattern set undergoes the following three steps.
Firstly, discovering al frequent patterns in the abnormal group. Secondly, forming
rules using relative risk to replace confidence. Thirdly, post-pruning alarge number of
uninteresting rules. This procedure is normally inefficient when the minimum support
islow.

Our optimal risk pattern mining algorithm makes use of the anti-monotone prop-
erty to efficiently prune the search space, and this distinguishes it from an association
rule mining algorithm.

The efficiency of an association rule mining algorithm lies in its efficient forward
pruning of infrequent itemsets. An itemset is frequent if its support is greater than
the minimum support. An itemset is potentially frequent only if all its subsets are
frequent, and this property is used to limit the number of itemsets to be searched. This
anti-monotone property of frequent itemsets makes forward pruning possible.



Lemma 1 and Corollary 1 are used to forwardly prune risk patterns that do not
occur in the optimal risk pattern set. When a pattern satisfies the condition of Lemma 1l
or Corollary 1, al its super patterns are pruned. Pseudo-code for mining optimal risk
pattern setsis presented in the following.

Algorithm 1 MORE: Mining Optimal Risk pattErn sets

Input: data set D, the minimum support o in abnormal class a, and the minimumrel-
ative risk threshold 6.

Output: optimal risk pattern set R

Global data structure: [-pattern setsfor 1 < [ (An [-pattern contains [ attribute-value
pairs.)

1) StR=10

2) Count support of 1-patterns in the abnormal class

3) Generate(1-pattern set)

4) Sdect risk patterns and add themto R

5) new pattern set < Generate(2-pattern set)

6) While new pattern set is not empty

7) Count supports of candidates in new pattern set
8) Prune(new pattern set)

9) Add patterns with relative risk greater than 6 to R
10)  Pruneremaining superfluous patternsin R

11) new pattern set < Generate(next level pattern set)
12) Return R

The above algorithm is self-explanatory. We list two important functions as fol-
lows.

Function 1 Generate( ({ + 1)-pattern set)
/I Combining
1) Let (I + 1)-pattern set be empty set
2) For each pair of patterns .S;_1p and S;_1q in [-pattern set

3) Insert candidate S;_1pq in (I + 1)-pattern set
/[ Pruning

4) For all S C Sl,lpq

5) If S; does not exist in [-pattern set

6) Then remove candidate S;_1pq

7) Return (I + 1)-pattern set

Line (5) isimplemented by anti-monotone properties of frequent patterns and op-
timal risk patterns. A non-existing pattern in al-pattern set isan infrequent pattern or a
pattern satisfying Lemma 1 or Corollary 1. They are pruned in the following function.

Function 2 Prune((/ + 1)-pattern set)
1) For each pattern S'in (I + 1)-pattern set
2) If supp(Sa)/supp(a) < o then remove pattern S
3) Elseif thereisa sub pattern S’ in [-pattern set
such that supp(S’) = supp(S) or supp(S’—a) = supp(S—a)



4) Then remove pattern S
5) Return

Lines (3) and (4) are implemented according to Lemma 1 and Corollary 1. Not
only an infrequent pattern but also a pattern satisfying Lemma 1 or Corollary 1 is
removed. Both Lemma 1 and Corollary 1 are very effective and the resultant algorithm
is more efficient than an association rule mining algorithm.

In the following, we use an example to show how the algorithm works.

B C D E|A
by ¢ d e a
b ¢ di e a
b ¢ d e | a
b ¢ d e | a
b ¢ d ey | a
b ¢ dy e3| —a
b ¢ d3 e | na
by ¢33 d e | —a

Table 3: The data set of Example 1

Example 1 Consider the dataset D in Table 3, and assume o = 0.4 and 6 = 2.0.

After line (5) in MORE, the 1-pattern set contains {b, ¢, d, e} and the 2-pattern set
comprises {bc, bd, be, cd, ce, de}. Line (8) in MORE calls function Prune(2-candidate
set). Pattern be is pruned because supp(be—a) = supp(c—a), and pattern de is pruned
because supp(de—a) = supp(d—a). After the pruning, the 2-pattern set becomes
{bd, be, cd, ce}. Line (10) in the MORE calls Function Generate (3-pattern set). Can-
didate bde is generated in line (3) of Function Generator, and then pruned in line (6)
of Function Generator because pattern de does not exist in the 2-pattern set. The same
procedure repeats on pattern cde. No 3-pattern is generated and hence the program
terminated. The output optimal risk pattern set contains {¢c(RR = 2.4),d(RR =
2.4),bd(RR = 2.5),cd(RR = 2.5),ce(RR = 2.5)}. Anillustration of the searched
patterns and output risk patterns by MORE is shown in Figure 1.

¢

/N
M\dA

b
_be~ bd be _de

Figure 1: Anillustration of the searched patterns and output risk patterns by MORE in
Example 1. Patterns crossed are pruned. Patternsin bold are output risk patterns.

As a comparison, we show how to use an association rule mining method to
achieve the same goal. We may generate all frequent patternsin class a and form asso-
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ciation rulestargeting a with the relative risk as the strength. An association rule min-

ing algorithm will examine candidate patterns {b, c, d, e, bc, bd, be, cd, ce, de, bed, bee, ede}
andreturn aset of al risk patterns, {¢(RR = 2.4),d(RR = 2.4),bd(RR = 2.5),cd(RR =
2.5),ce(RR = 2.5),bcd(RR = 2.0),bce(RR = 2.0),cde(RR = 2.0)}. Anillustra-
tion of the searched patterns and the output risk patterns by an association mining
algorithm is shown in Figure 2.

¢
/N
b c d e
e N
bc bd be cd ce de
N |
bcd bce  bde cde

Figure 2: Anillustration of the searched patterns and output risk patterns by an associ-
ation rule mining based approach in Example 1. Only frequent patterns within class a
are considered. Patterns crossed are pruned. Patternsin bold are output risk patterns.

We see that the proposed algorithm, MORE, searches a smaller space, and returns
a smaller risk pattern set than an association rule mining algorithm. Thisis a small
data set including only afew items. For alarge rea world data set, differences of the
searched spaces and output pattern sets between the two methods are significant.

2.3.2 Pattern presentation

An optimal risk pattern set is smaller than an association rule set, but is still big for
medical practitioners to review them. We may only return the top k& patterns with the
highest relative risk but they may all come from the same section of the data set and
lack representatives for al abnormal cases.

In order to account for al known abnormal cases, we aim to retain a risk pattern
with the highest relative risk for each case. We use the following method to select a
small set of representative patterns to present to users.

Algorithm 2 Selecting Representative Risk Patterns
Input: data set D, and optimal risk pattern set R.
Output: representative risk pattern set R

1) SR =10

2) For eachrecord » in D belonging to class a

3) Find all patternsin R that are subsets of r

4) Add the pattern with the highest relative risk to R
5) Sort all patternsin R in the RR decreasing order

6) Return R/

As a result, each abnormal record in D has its own representative risk pattern in
R’. Through the above selection, the number of patterns becomes manageable.
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We organise the remaining risk patterns into atree structure and hide them behind
each representative pattern by using a hyper link. An example is shown in Figure 3.
As aresult, medical practitioners can easily examine the representative patterns and
find their related patterns. Thisisvery useful for finding the evolution of relative risks.

Representative patterns

Pattern = “old patients & visit in business hours & no previous visit”
Relative Risk =2.00

Details
admitted discharged
with pattern 58 103
without pattern 750 3410

Sub patterns (partial) linked to the representative pattern by a hyperlink

Pattern = “old patients & visit in business hours”
Relative Risk =1.86

Details
admitted discharged
with pattern 61 121
without pattern 747 3392

Pattern = “old patients”
Relative Risk = 1.59

Details
admitted discharged
with pattern 139 360
without pattern 669 3153

Figure 3: A representative pattern and its sub patterns in a tree structure. Users are
presented with a small list of representative patterns. All sub patterns are hidden from
users initialy, and are brought out when the user clicks the representative pattern in
order to know the evolution of the relative risks. There are some repetitions in the tree
to make it easy to follow.

3 Experimentsand discussions

3.1 Experimental results

Purposes of experiments are to compare MORE to a rule based classification sys-
tem C5.0, a commercia version of C4.5 [1], and an association rule mining based
approach. We used two benchmark medical data sets from UCML repository [27],
which are described in Table 4.
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Name #Records | #Attributes | Distributions
Hypothyroid 3163 25 4.8% & 95.2%
Sick 2800 29 6.1% & 93.9%

Table 4: A brief description of data sets used in experiments

3.1.1 Comparison with C5.0

For C5.0, we first used the default setting and then set differential misclassification
costs as 20 and 15 for data sets Hypothyroid and Sick respectively. The purpose of
differential misclassification costs is to penalise misclassifications in some groups.
If we do not set differential misclassification costs (DMC) in Hypothyroid data set,
it only results in 4.8% overall error rate that all cases in the hypothyroid group are
classified as negative. Thissmall overall error rate reduces the chance of forming rules
in hypothyroid group. When we set the differential misclassification costs as 20 in
Hypothyroid data set, 1 error in the abnormal group is equivalent to 20 errors in the
non-abnormal group. Asaresult, both types of cases have an equal chance for forming
rules.

We set the minimum local support as 5%, and the minimum relative risk as 1.5 for
MORE. To compare with C5.0 fairly, we set the maximum number of attribute-value
pairsin apattern asfour since most patterns from C5.0 have four or less attribute-value
pairs. Rules discovered by C5.0 with the relative risk lessthan 1.5 and/or with thelocal
support less than 5% are filtered. We use this setting since the number of representative
patterns of MORE is comparable to the number of C5.0 rules. If we set the minimum
local support low, the number of risk patterns of MORE will be larger. This setting is
identical to that in our real world case study in the following section, where setting has
been advised by domain experts.

C5.0 MORE
data set default | withDMC | optima | representative
(number) | (number) | (number) (number)
Hypothyroid 3 5 462 4

Sick 3 7 304 3

Table 5: Comparison with C5.0 by the number of patterns discovered

Table 5 reports the summary of patterns discovered (rules targeting abnormal) of
C5.0 and MORE on both data sets. Table 6 lists the average local support and relative
risk of discovered patterns by both methods.

Firstly, C5.0 produces fewer patterns than MORE. The total number patterns dis-
covered by MORE is up to 150 times larger than that of C5.0. Setting differential
misclassification costs (DMC) does not result in more rules. The exploratory power
C5.0islimited sinceit discovers few rules. C5.0 isdesigned for building classification
models rather than discovering patterns. In contrast, MORE a gorithm is designed for
exploring the data to generate hypotheses for further studying. It is not designed for
classification.
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C5.0 default C5.0 with DMC MORE Representative

data set ave(lsupp) | ave(RR) | ave(lsupp) | ave(RR) | ave(lsupp) | ave(RR)

Hypothyroid 0.31 294 0.43 231 0.78 333
Sick 0.40 27.0 0.29 18.6 0.95 431

Table 6: Comparison with C5.0 by the quality of discovered patterns using the average
local support and relative risk

Secondly, C5.0 fails to find patterns with the highest relative risks. The objective
of classification is different from identifying risk patterns. Further, rules discovered
by C5.0 tend to be specific and are not supported in data. In contrast, MORE can find
patterns with highest relative risk and highest support. This has been demonstrated in
Table 6 that both the average local support and the average relative risk of representa-
tive patterns are higher than those from C5.0. A fine-tuned decision tree can uncover
someinteresting patterns in a data set. However, a decision tree does not guarantee the
discovery of the patterns with the highest relative risk nor all patterns with the relative
risk above a threshold because of its heuristic search trait. The way of search dictates
the difference of two methods.

3.1.2 Comparison with variant association rule mining based approaches

Another approach to discover risk pattern sets is based on association rule mining.
Firstly, find al frequent patterns in the abnormal group. Secondly, form association
rules targeting the abnormal by replacing the confidence with the relative risk. We will
show that this approach generates too many patterns and is inefficient in comparison
with MORE.

For both MORE and the association rule mining based approach, we set the mini-
mum local support as 5%, the minimum relative risk as 1.5, and the maximum length
of patterns as 4. We implemented the association rule mining based approach by Apri-
ori [13]. However, results reported in this section are independent from the implemen-
tation since the number of discovered rules and frequent patterns are identical among
association rule mining methods. The summary of discovered patterns are listed in
Table7.

Association MORE
data set (pattern number) | (pattern number)
Hypothyroid 21807 462
Sick 24833 304

Table 7: Comparison with an association rule mining approach

The association rule mining approach produces too many patterns and many pro-
vide superfluous information. For example, (T3 < 1.15) isarisk pattern because T3
isan indicator for sick. The association rule mining based approach discovers 37 pat-
terns with additional conditions, like (T3 < 1.15, TBGmeasured =f) and ( T3 < 1.15,
TBGmeasured = f, preghant= f), which have exactly the same relative risk as pattern

14



(T3 < 1.15). There are another 4742 patterns containing (T3 < 1.15) which have
lower relative risk in the association rule set. All these patterns are not included in the
optimal risk pattern set. An optimal risk patterns set is smaller than its corresponding
risk pattern set discovered by association rule mining, but includes highest relative risk
patterns for all records.

Non-redundant association rule mining [17] makes use of candidates of minimal
generators instead of frequent patterns. It avoids generating a lot of superfluous rules
and is more efficient than association rule mining. However, non-redundant associ-
ation rule mining searches all minimal generators that are a superset of candidates
searched by MORE. Therefore, non-redundant association rule mining is also less ef-
ficient than MORE for mining risk patterns.

To demonstrate the efficiency improvement obtained by MORE over the associa-
tion rule mining and non-redundant association rule mining approaches, we conducted
more experiments using different support settings and high interactions. We searched
for risk patterns containing up to ten attribute-value pairs. To make the comparison
independent of implementation and computers, we show the number of searched can-
didates (frequent patterns and minimal generators) instead of the execution time. As
aresult, the conclusion is general because theoretically the reduction of the searched
candidates is the reduction of computational cost. Figure 4 showsthat MORE searches
fewer candidates than both frequent patterns and minimal generators, and hence is
more efficient than the association rule mining and non-redundant association rule
mining based approaches. Thisis more evident when the support is lower.

25 x 10° Hyperthyroid x 10° Sick

[ 1Frequent patterns [_1Frequent patterns
[ IMinimal generators M [ Minimal generators| |

I Searched patterns || 18- Il Searched patterns ||

N
]

=
&)

[N

_—‘
-

The number of patterns
The number of patterns

i lhw e o
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The minimum support The minimum support

Figure 4; Comparison of the number of patterns searched by MORE with the number
of frequent patterns and minimal generators searched by other approaches. MORE
searches fewer candidates and hence more efficient.

In sum, C5.0isnot designed for exploring risk patterns. Association rule mining is
not efficient for exploring risk patterns, and produces too many risk patterns. MORE
is efficient, and produces a manageable number of risk patterns.

3.2 A casestudy

This method has been applied to a real world applications for analysing emergency
department adminstration data.
The hospital in this case study is aregional hospital in Australia. Its emergency
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department has a 10 bed ultra short stay unit for a short period observation. A patient
may stay at the ultra short stay unit for up to 20 hours. Patients staying in the ultra short
stay unit may be admitted to the hospital for further treatment, or may be discharged
after a brief observation. In some occasions, the beds are not enough to cope with a
large demand, and doctors need to transfer some patients to the ward. A significant
reduction in administrative work can be achieved if patients who eventually end up at
the hospital are admitted to the ward without staying in ultra short stay units after the
initial assessment.

The emergency department of Toowoomba Base hospital has collected 4321 pa
tient records who have presented in the ultrashort stay unit over two years. 808 records
are for patients who were eventually admitted to the hospital and 3513 records are for
patients who were discharged after a short stay at ultra short stay units. Doctors are in-
terested in knowing patterns of patients who are admitted. We have done a pilot study
on this data set.

Patients are described by 16 attributes. A triage attribute classify patients into 5
groups. Some disease related attributes indicating whether patients have the follow-
ing problems:. renal, cardio, diabetes, and asthma. Some attributes describe personal
related information, such as gender, age (categorised into four age groups), marital
status, and indigenous status. An attribute indicates location information, in town or
off town. Some temporal related attributes show season, month, and week date. An
attribute shows whether the patient has visited the hospital within aweek. All values
are binary or categorical.

We have used C4.5 to analyse the data set firstly. C4.5 builds a model with an ac-
curacy of 82% on this data set. We have not conducted cross validation to evaluate the
model since it is not our objective to build a predictive model. Instead, we are inter-
ested in the rules discovered by C4.5 targeting admitted class. 20 rules are discovered
by C4.5. After we filter rules with 5% local support and 1.5 relative risk thresholds,
only two rules are left. Two rules are not enough for doctors to understand the data set.
Furthermore, the two rules do not include the pattern with the highest relative risk.

Many rules discovered by C4.5 are of no interest to doctors since the rules do not
have sufficient support from data. For example, thefirst two rules from C4.5 havelocal
supports (in number) of 11 and 3 respectively. They are good classification rules since
their confidence are 100%. However, they are of no interest to doctors since they only
explain few cases although their relative risk are high. If we consider risk patterns at
such low minimum support level, there are thousands of them, i.e. 4105 risk patterns
when the minimum number of local support is9.

Furthermore high accurate rules discovered by C4.5 may not be high relative risk
patterns. We show this by the following experiment. We ranked 20 rules discovered
by C4.5 first by accuracy and then by relative risk. We calculated the Spearman’s rank
correlation between the two ranks. Results are shown in Figure 5. We can see that two
ranks are loosely correlated. Therefore, discovering accurate classification rulesis not
suitable for the discovery of risk patterns.

When we applied MORE algorithm to the data set with a support threshold of 5%
and relative risk threshold of 1.5, we discovered 131 risk patterns toward admitting to
the hospital where 75 patterns are representatives.

Discovered patterns reconfirm many known factors by doctors. For example, pa-
tients with cardiovascular or renal related disease are more than two times more likely
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Correlation between ranks by relative risk and by aceuracy of rules identified by C4.5ules
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Figure 5. Correlation between the rank by accuracy and the rank by relative risk.Two
ranks are loosely correlated. This explains why C4.5 does not find the pattern with the
highest relative risk.

to be admitted to the hospital than other patients. Patients with skin/subcutaneous/joint
infections are nearly three times more likely to be admitted to the hospital.

Discovered patterns show some common practices used by doctors. Patients who
live off town are more likely to be admitted to the hospital even though their situations
are not urgent (relative risk of 1.7). Thisis due to the extra caution of doctors.

Discovered patterns reveal some interesting phenomena. Male patients with limb
injuries are nearly two times more likely admitted to the hospital (relative risk of 1.83).
Note that neither male patients nor limb injuries alone are risky. This may be attribute
to serious injuries in sports or a bias against female limb injury admissions. Patients
presented to the department on Mondays in business hours are 1.57 times more likely
to be admitted to the hospital than other patients. This shows that the lack of medical
service on weekend causes some delayed admissions. Old male patients are very risky
(relative risk of 2.23) to be admitted to the hospital. This may be due too the fact that
mal e patients are reluctant to see doctors until there is a pressing urgency.

Since many combinations have been tested in the risk pattern mining process, some
patterns becomes significant just by chance. Validation isimportant to accept or reject
them. MORE presents asmall set of well structured representative hypotheses quickly
from adata set. They can be either validated by domain experts or by further statistical
studies. MORE is an efficient data exploratory tool for initial data anaysis.

4 Conclusions

This paper has discussed a problem of finding risk patterns in medical data. Risk pat-
terns are defined by an epidemiological metric, relative risk, and hence are understand-
able to medical practitioners. We define optimal risk pattern set to exclude superfluous
patterns that are of no interesting to users. The definition of optimal risk patterns leads
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to an anti-monotone property for efficient discovery, and we proposed an efficient al-
gorithm for mining optimal risk pattern sets. We have also proposed away to organise
and present discovered patterns to usersin an easy to explore structure. The proposed
method has been compared with two well known rule discovery methods. The method
has also been applied to a real world medical data set and has revealed a number of
interesting patterns to medical practitioners. We have the following conclusions from
the work: a decision tree approach is unsuitable for discovering risk patterns; an as-
sociation rule mining approach is inefficient in discovering risk patterns and produces
too many uninteresting superfluous patterns; and the proposed algorithm discovers a
small set of risk patterns efficiently, which includes the highest relative risk patterns
for al records.

The method is useful for exploratory study on large medical data sets. It quickly
discovers some “risk spots’ in alarge medical data set. Results are understandable to
medical practitioners. It can be used to generate and refine hypotheses for further time
consuming statistical studies.
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