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ABSTRACT
In this paper, we discuss a problem of finding risk patterns in med-
ical data. We define risk patterns by a statistical metric, relative
risk, which has been widely used in epidemiological research. We
characterise the problem of mining risk patterns as an optimal rule
discovery problem. We study an anti-monotone property for min-
ing optimal risk pattern sets and present an algorithm to make use of
the property in risk pattern discovery. The method has been applied
to a real world data set to find patterns associated with an allergic
event for ACE inhibitors. The algorithm has generated some useful
results for medical researchers.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data min-
ing; J.3 [Life and Medical Sciences]: Health

General Terms
Algorithm, performance

Keywords
Relative risk, rule, optimal risk pattern set, medical application

1. INTRODUCTION
Over the years hospitals and clinics have collected a huge amount

of patient data. These data provide a base for the analysis of risk
factors for many diseases. For example, we can compare cancer
patients with non-cancer patients to find patterns associated with
cancer. This method has been common practice inevidence-based
medicine, which is an approach to practising medicine in which a
clinician is aware of the evidence in support of clinical practice,
and the strength of that evidence. It is an effective way to gener-
ate hypotheses for further study, such as arandomized controlled
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trial or acohort study. In a randomized controlled study, there are
two groups, a treatment group and a control group. The treatment
group receives the treatment under investigation, and the control
group receives either no treatment or some standard default treat-
ment. Patients are randomly assigned to all groups. A cohort study
is a study where patients who presently have a certain condition
and/or receive a particular treatment are followed over time and
compared with another group without those conditions. The cohort
study is used when it is not ethical to assign random patients to a
harmful practice, say smoking, for a randomized controlled study.
Instead the cohort study will find a group of people who smoke and
a group of people who do not, and follow them forward through
time to see what health problems they develop. See [1] for more
details.

However, the comparison has usually been made by manually
operating some data analysis tools, e.g. SPSS. This is a labor in-
tensive process, and the comparison is very difficult to be exhaus-
tive and it is very difficult to apply to high level interactions, for
example, combination of 3 or 4 exposure variables. Data mining
is a booming and comprehensive research area and a lot of novel
methods dealing with large data sets have been proposed in the last
decade. There are thousands of publications in data mining, but
very few of them focus on applications on medical data. The fol-
lowing are some possible reasons.

Understandability of results Data mining results are typically
difficult to interpret, and much effort is necessary for domain ex-
perts to turn the results to practical use. In general, users do not care
how sophisticated a data mining method is, but they do care how
understandable its results are. Therefore, no method is acceptable
in practice unless its results are understandable. However, a lot of
data mining methods have not achieved this goal yet. For example,
it is difficult to interpret results from neural networks.

Decision tree, typified by [14], can be extended to rules [15], and
their results are more straightforward to interpret. They have been
used to solve classification problems in medical data analysis [10,
19]. However, C4.5 does not work well on the skewed cases in
medical data where the normal population greatly outnumbers the
population with disease. Other rule based classification methods,
e.g. CN2 [7, 6], suffer the same problem.

Amount of results The quantity of output from many data min-
ing method is often unmanageable. For example it is quite impos-
sible for domain experts to review a huge number of association
rules. Association rule mining has been used in medical data anal-
ysis. Brossetteet al [4] found association rules in hospital infection



control and public surveillance data. Paetzet al [13] found associa-
tion rules in septic shock patient data. Too many rules is a problem
in both projects. Sequence patterns have been found in chronic hep-
atitis data by Ohsakiet al [12], and on adverse drug reaction data
by Chenet al [5]. However, these cases result in too many trivial
and similar patterns which is also a problem in the research.

Parameter Tuning Many fast heuristic data mining methods
need a lot of tuning and they are not easy for users to use. For
example,k-means clustering method can generate some very good
results that are competitive with some advanced clustering meth-
ods, but the adjustment of parameters and initial setting are tedious
for many users. Similar problem exists in the setting of support and
confidence thresholds for association rule mining.

Efficiency Many optimal data mining methods are not efficient
enough for the user interaction in practice. An optimal method
needs less tuning than a heuristic method but it is usually time con-
suming. In practice, data mining is a user interactive process and
therefore efficiency is very important. However, the efficiency of
many data mining methods needs further improving.

For example, association rule mining is still inefficient when
the minimum support is low. Some optimal rule discovery meth-
ods, e.g. PC optimality rule mining [2] and optimal class associ-
ation rule set mining [9] are significantly more efficient and less
restricted by the minimum support. In this paper, we shall show
that mining risk patterns can be considered an optimal rule mining
problem, and an efficient algorithm can be employed.

Interestingness MeasureAnother important factor is that risk
patterns are not in line with most data mining objectives. Most
data mining algorithms aim to uncover the more frequent patterns.
In medical applications, the risk patterns usually exist in a small
population. For example, a very small percentage of people are
HIV positive or develop cancer. However, risk patterns are also
not exactly outliers or exceptions, which also has been studied [8].
The reason is that among the small percentage of positive samples,
we do want to see frequent patterns. Hence this requires a special
measurement of interestingness.

There are a lot of proposed interestingness criteria for associa-
tion rule mining, and a comprehensive comparison has been con-
ducted in [17]. Some evaluation work on medical data sets has
been reported in [11]. However, most criteria do not make sense
to medical practitioners. So we should use those have been used in
medical research, such as, relative risk and odds ratio.

In the paper, we will present an efficient method to exhaustively
find all high risk patterns in high level interactions and present un-
derstandable results to medical practitioners.

2. PROBLEM DEFINITIONS
We shall introduce the problem based on the scenario of the med-

ical data, where we are given a target disease or identified risk.
There is a large collection of patient records. Each record contains
a number of attributes, and one of the attributes is the target. The
target variable can take two possible values: normal and abnormal.
A patient without the disease or risk under study isnormal, other-
wiseabnormal.

2.1 Risk patterns
Consider a relational data set, where records are classified as two

distinct categories, i.e. normal and abnormal. An example of such
a data set is listed as follows.

Gender Age Smoking Blood pressure . . . Class
M 40 - 50 Y high . . . abnormal
M 20 - 40 N normal . . . normal
F 20 - 40 N normal . . . normal
...

...
...

... . . .
...

The data set is usually very large and skewed, e.g. in a million
records 99% are normal. This is because a disease is usually rare in
comparison with the healthy population. In the following we refer
to the abnormal class bya and the normal class byn.

We call a set of attribute-value pairsa pattern, e.g. {Gender =
M, Age in [40,50)} is a pattern with two attribute-value pairs.

The support of patternP is the ratio of the number of records
containingP to the number of all records in the data set, denoted
by supp(P ). When the data set is large, we havesupp(P ) ≈
prob(P ).

A pattern is usually called frequent if its support is greater than
a given threshold. However, in a medical data set, a pattern in the
abnormal group would hardly be frequent since the abnormal cases
are rare. Therefore, we define thelocal support of P as the support
of P in the abnormal group, represented as

lsupp(P ) =
supp(P ∪ a)

supp(a)

Others have called this the recall of the rule(P ⇒ a) [11]. We
prefer to call it local support since it observes the anti-monotone
property of the support. In this paper, a pattern isfrequent if its
local support is greater than a given threshold.

A pattern separates all records into two groups, a group with the
pattern and another without the pattern, e.g. male between 40 and
50 and the rest.

Cohorts separated by a patternP and thea andn classification
form a contingency table.

abnormal (a) normal (n) total
P prob(P, a) prob(P, n) prob(P )
¬P prob(¬P, a) prob(¬P, n) prob(¬P )
total prob(a) prob(n) 1

Relative risk for the cohort with patternP being abnormal is
defined as the following.

RR(P ) = prob(a|P )/ prob(a|¬P )

=
prob(P, a)

prob(P )
/
prob(¬P, a)

prob(¬P )

≈ supp(Pa)

supp(P )
/
supp(¬Pa)

supp(¬P )

=
supp(Pa) supp(¬P )

supp(¬Pa) supp(P )

¬P means thatP does not occur.Pa is an abbreviation ofP ∪a.
supp(¬P ) is the fraction of all records that do not containP , and
¬Pa refers to the records containinga but notP .

Relative risk is a metric often used in epidemiological studies.
For example, ifP is smoking, the abnormal is lung cancer, and
RR = 3.0, then this means people who smoke are three times
more likely to get lung cancer than those who do not.

Another statistical metric often used in epidemiological study is
odds ratio. Odds ratio and relative risk are consistent. A larger
odds ratio leads to a larger relative risk, and vice versa. Under the
rare-disease assumption, the odds ratio approximates the relative
risk [3]. The odds ratio is usually used incase control studies. In
this paper we make use of the relative risk.



Definition 1 Risk patternsare frequent patterns whose relative risks
are higher than a threshold.

A risk pattern is in fact a rule targeting the abnormal class. Since
we are only concerned with the abnormal class, we omit the target
of a rule and call it a pattern.

Our primitive goal is to find all risk patterns in a large data set.

2.2 Classification and association rule mining
do not work well

This problem looks like a traditional classification problem, but
all existing classification methods, e.g. C4.5 [15], do not work well
on these highly skewed data sets. The problem lies with the accu-
racy measurement for this problem. For example, assume a data set
contains 100 abnormal cases and 9900 normal cases. Any noises in
the normal class, say 1%, overwhelm all patterns in the abnormal
class. Therefore, no accurate rules can be found for the abnormal
class. Furthermore, most classification systems employ a default
prediction. In this case, setting the default to be normal will give
99% accuracy but this accuracy has no meanings for medical prac-
titioners. Although C4.5 has suggested some remedies for skewed
data, from our experiences it is still short of solving the problem.

Another important factor, which is different from classification
rule mining, is that doctors or patients are interested in knowing the
increase in risk of a certain pattern over cases without the pattern.
For example, how much would smoking increase the chance of lung
cancer. This is a comparison between the chance of lung cancer in
the smoking population versus the chance of lung cancer in the
non-smoking population. Conventional classification results would
not directly give such an indication.

The primitive goal looks like that of association rule mining, but
an association rule mining algorithm is not suitable for this prob-
lem. Association rule mining finds rules whose support and confi-
dence are above some minimum thresholds. Rules in the abnormal
class are easily ignored since they are lowly supported. Also, it
is very difficult to find high confidence rules since confidence is
an accuracy measurement and suffers the same problem discussed
previously. Further, we are interested in rules that generate patterns
of high relative risk instead of high confidence rules.

We may alter an association rule mining algorithm for this pur-
pose. We may restrict the results to patterns that are frequent in the
abnormal class only, assuming a support threshold is given for the
abnormal class. We may also replace the confidence by the relative
risk in association rule mining. However, too many rules from an
association rule mining algorithm scare away users, and low effi-
ciency with a low support constraint hinders the users’ interaction.

2.3 Optimal risk pattern sets
We follow the track of association rule mining, and will solve

two problems: too many rules in the result and low efficiency with
a low support constraint.

Many patterns from association rule mining are not of interest
to users (since we consider one class only, rules are equivalent to
patterns.). For example, we have two patterns,{SEX = M and HRT-
FAIL = T and LIVER = T} with relative risk 2.3, and{HRTFAIL
= T and LIVER = T} with relative risk 2.4. SEX = M in the first
pattern does not increase relative risk and hence the first pattern
is superfluous. Thus we introduce the optimal risk pattern set to
exclude these superfluous patterns.

Definition 2 A risk pattern set is optimal if it includes all risk pat-
terns except those whose relative risks are less than or equal to that
of one of their sub patterns.

In the above example, the first pattern will not be in the optimal
risk pattern set because it is a super set of the second pattern but
has lower relative risk.

We are aware that some interesting patterns may not be in the
optimal risk pattern set. We use an example to show our points.
Suppose that we have the following three patterns:
(1) PVD = T with RR 3.0,
(2) SEX = F and PVD = T with RR 2.0 and
(3) SEX = M and PVD = T with RR 4.0.

Patterns (2) and (3) are very interesting since any record with
PVD = T will be explained by one of them. However, pattern (2) is
excluded by the optimal risk pattern set.

This is a typical example showing that we need patterns in the
whole range of relative risk, both small and large. However, con-
sider that we have generated thousands of patterns. Which patterns
should we choose to present to users? Normally, we have to rely
on a metric. In our case, it is the high relative risk. As a result,
patterns with lower relative risk will be ignored anyway.

One goal of this research is to identify some possible high risk
patterns for further studies. For the easy examination by domain
experts, the found risk patterns are further reduced to representative
patterns by a high relative risk criterion. Therefore, patterns with
lower relative risks have no chance to be presented to users.

After a small set of interesting patterns with high relative risk
are identified, their relevant patterns with lower relative risk are
easily retrieved. For example, assume that pattern (3) is found and
identified as an interesting pattern by domain experts. Patterns (2)
will be retrieved easily. This has been done in our rule exploration
stage.

Therefore, we may focus on the patterns with higher relative
risks in pattern generation stage, and ignore the patterns with lower
relative risks since otherwise results will be confused.

Our primary goal turns to to find optimal risk pattern sets since
it accounts for the major computational cost.

3. ANTI-MONOTONE PROPERTY OF
OPTIMAL RISK PATTERN SETS

In this section, we will explore an anti-monotone property to sup-
port efficiently mining optimal risk pattern sets.

The following are some notations that are used in the following
lemma and corollary.

Px is a proper super pattern ofP with one additional attribute-
value pairx. To make the result general and be applicable to mul-
tiple classes, we use¬a to stand for classes that are not abnor-
mal. In the two class case shown in the previous section,¬a = n.
We have the following relationships:supp(¬a) = 1 − supp(a),
supp(P¬a) = supp(P )− supp(Pa), andsupp(Px¬a) =
supp(Px)− supp(Pxa).

Lemma 1 Anti-monotone property
if (supp(Px¬a) = supp(P¬a)) then patternPx and all its super
patterns do not occur in the optimal risk pattern set.

PROOF. We omit proof here because of space limit.

From the above lemma, we can adopt a pruning technique as fol-
lows: once we observe that any pattern, e.g.Px, satisfying
supp(Px¬a) = supp(P¬a), we do not need to search for its su-
per patterns, e.g.PQx since their relative risks cannot be greater
than those of their sub patterns, e.g.PQ. PatternPx is also re-
moved sinceRR(Px) ≤ RR(P ).

The lemma is followed by a corollary.



Corollary 1 Closure property
if (supp(Px) = supp(P )) then patternPx and all its super pat-
terns do not occur in the optimal risk pattern set.

This corollary is closely association with non-redundant associ-
ation rule mining [18] becauseP is a proper generator ofPx when
supp(Px) = supp(P ). A non-redundant association rule set is
generated from a set of minimal generators. Consider this corol-
lary is a special case for the anti-monotone property, and hence
mining optimal risk pattern sets does not make use of all minimal
generators and is more efficient.

Corollary 1 is used in a similar way as Lemma 1. The condition
for Corollary 1 is stricter than that for Lemma 1.

4. ALGORITHMS
A naive method to find an optimal risk rule set is to post-prune

an association rule set but this may be very inefficient when the
minimum support is low and the data set is large and dense.

Our optimal risk pattern mining algorithm makes use of the anti-
monotone property to efficiently prune searching space, and this
distinguishes it from an association rule mining algorithm.

The efficiency of an association rule mining algorithm lies in
its efficient forward pruning infrequent itemsets. An itemset is fre-
quent if its support is greater than the minimum support. An itemset
is potentially frequent only if all its subsets are frequent, and this
property is used to limit the number of itemsets to be searched. The
anti-monotone property of frequent itemsets makes forward prun-
ing possible.

Lemma 1 and Corollary 1 are used to forward prune of risk pat-
terns that do not occur in the optimal risk pattern set. When a pat-
tern satisfies the condition of Lemma 1 or Corollary 1, all its super
patterns are pruned. A pseudo-code algorithm for mining optimal
risk pattern sets is presented in the following.

Algorithm 1 Mining Optimal Risk Pattern Sets
Input: data setD, the minimum supportσ in abnormal classa, and
the minimum relative risk thresholdθ.
Output: optimal risk pattern setR
(Note: Anl-pattern containsl attribute-value pairs.)

Global data structure:l-pattern sets for1 ≤ l
1) SetR = ∅
2) Count support of 1-patterns in abnormal class
3) Generate 1-pattern set
4) Select risk patterns and add them toR
5) new pattern set← Generate(2-pattern set)
6) While new pattern set is not empty
7) Count supports of candidates in new pattern set
8) Prune(new pattern set)
9) Select risk patterns and add them toR
10) new pattern set← Generate(next level pattern set)
11) ReturnR

The above algorithm is self-explanatory. We list two important
functions as follows.

Function 1 Generate((l + 1)-pattern set )
// Combining

1) Let(l + 1)-pattern set be empty set
2) For each pair of patternsSl−1p andSl−1q in l-pattern set
3) Insert candidateSl−1pq in (l + 1)-pattern set

// Pruning
4) For all Sl ⊂ Sl−1pq
5) If Sl does not exist inl-pattern set

6) Then remove candidateSl−1pq
7) Return(l + 1)-pattern set

Line (5) is implemented by the anti-monotone properties of fre-
quent patterns and optimal risk patterns.

In the proposed algorithm, patternP is frequent if supp(Pa)
supp(a)

≥
σ. In other words, it is frequent in sub data set containinga. This is
because the data set can be very skewed, and evena is not frequent
in the whole data set.

Function 2 Prune((l + 1)-pattern set)
1) For each patternS in (l + 1)-pattern set
2) If supp(Sa)/ supp(a) ≤ σ then remove patternS
3) Else if there is a sub patternS′ in l-pattern set

such thatsupp(S′) = supp(S) or
supp(S′¬a) = supp(S¬a)

4) Then remove patternS
5) Return

Line (3) and (4) are implemented according to Lemma 1 and Corol-
lary 1. They are very effective and the resultant algorithm is signif-
icantly more efficient than an association rule mining algorithm.

An optimal risk pattern set is significantly smaller than an associ-
ation rule set, but is still too big for medical practitioners to review
them all. We may only returnk top patterns with the highest rela-
tive risk but they may all come from a dense section of the data set
and lack the representation for all abnormal cases.

In order to account for all known abnormal cases, we aim to
retain one risk pattern with the highest relative risk among a number
of patterns for each case. We use the following method to select a
small set of representative patterns to present to users.

Algorithm 2 Selecting Representative Risk Patterns
Input: data setD, and optimal risk pattern setR.
Output: representative risk pattern setR′

1) SetR′ = ∅
2) For each recordr in D belonging to classa
3) Find all patterns inR that are subsets ofr
4) Add the pattern with the highest relative risk toR′

5) Sort all patterns inR′ in the RR decreasing order
6) ReturnR′

As a result, each abnormal record inD has its own representative
risk pattern inR′ whenever possible. Through the above selection,
the number of patterns becomes quite manageable.

We do not throw away the remaining risk patterns. Instead we
organize them into a tree structure and hide them behind each repre-
sentative pattern by using a hyper link. As a result, medical practi-
tioners can easily examine the representative patterns and find their
related patterns. This is very useful for finding the evolution of
relative risk.

5. AN APPLICATION
This method has been applied to a real world project of detect-

ing adverse drug reactions. The project has been sponsored by the
Australian Commonwealth Department of Health and Aging. The
data set used is a linked data set of hospital, pharmaceutical and
medical service data.

When a new drug is introduced, unexpected side-effects may go
unnoticed until a large number of cases are reported. It is of im-
portance both financially and socially to detect the adverse effects



early. We apply our proposed technique on this problem. In partic-
ular we focus on the study to determine how ACE inhibitor usage
is associated with Angioedema.

ACE inhibitors are used to treat congestive heart failure (CHF)
and high blood pressure (hypertension). ACE inhibitors may also
be prescribed to patients after a heart attack or to patients with
certain kind of kidney problems, especially with diabetes. An-
gioedema is a swelling (large welts or weals), where the swelling
is beneath the skin rather than on the surface. It is associated with
the release of histamine and other chemicals into the bloodstream,
and is part of the allergic response. The swelling may occur in the
face, neck, and in severe cases may compromise breathing.

Our goal is to identify what types of patients are at risk of An-
gioedema after taking ACE inhibitors. The data for this task con-
sists of all patients exposed to ACE inhibitors. Classa includes
all patients who got Angioedema after taking ACE inhibitors, and
classn (or¬a) includes all the other patients taking ACE inhibitors
but without Angioedema.

Patients are described by 12 general attributes, such as age, gen-
der, indigenous status, the total number of bed days and the eight
hospital diagnosis flags, and 15 pharmaceutical attributes, i.e. 14
ATC (Anatomical and Therapeutic Classification) level-1 drugs and
the total number of scripts. Numerical attributes are discretised fol-
lowing the instructions of domain experts.

The data set contains 132000 cases, where only 114 are allergic
cases. Therefore, the data set is highly skewed.

We set the minimum local support as 0.05, the maximum number
of attribute-value pairs in a risk pattern as 4, and the minimum rel-
ative risk as 2.0. The program finished within 1 minute. It returned
417 risk patterns, and 37 representative patterns.

The following are the first three representative patterns with the
highest relative risk.

Pattern 1: RR = 3.99

• Gender = Female

• Hospital Circulatory Flag = Yes

• Usage of Drugs in category “Various” = Yes

Pattern 2: RR = 3.82

• Age> 60

• Usage of drugs in category of “Genito urinary system and sex
hormones” = Yes

• Usage of drugs in category of “Systematic hormonal prepara-
tions” = Yes

Pattern 3: RR = 3.41

• Usage of drugs in category of “Genito urinary system and sex
hormones” = Yes

• Usage of drugs in category of “General anti-infective for sys-
tematic use” = Yes

• Usage of drugs in category of “Nervous system” = No

Most found patterns are of great interest to domain experts and
verified by them. We have conducted further statistical analysis,
e.g. the survival analysis and significance test [16], to evaluate the
statistical significance of found patterns.

The survival analysis is concerned with the modelling of ‘life-
time’ data. We estimate the survivor functionS(t), by the prob-
ability of non-admission to hospitals for Angioedema at aget, to
distinguish the subgroup described by the pattern from the others.
In addition, we use log-rank test, a formal measure of the strength
of evidence that two populations have different lifetimes. It is to
detect a difference between groups when the survival curve is con-
sistently higher for one group than another.
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Figure 1: Survival analysis charts of the first three patterns.
Blue lines (inside fillings) indicate patient groups identified by
the patterns and red lines (inside shades) for the other patients.
Fillings and shades show confidence intervals. The groups iden-
tified by patterns have significantly higher probability of hospi-
tal admission for Angioedema than the other patients for age
50 and above.



Figure 1 presents the estimated survivor functions of the groups
identified by patterns (within the filled blue regions) and the other
patients (within the shaded red regions). Filled blue regions and
the shaded red regions indicate their confidence intervals respec-
tively. Clearly, for the age 50 and above, the groups identified by
patterns have significantly higher probability of hospital admission
for Angioedema than the other patients.

A pattern is statistically significant if it has a low P-value. The P-
values of the log-rank test of the patterns are much lower than 0.01.
For example, P-values for the above three patterns are4.2× 10−9,
2.5 × 10−5 and2.6 × 10−9 respectively. This also suggests that
the sub-groups described by patterns are overwhelmingly different
from the other patients.

Both statistical evaluations conclude that the proposed method is
able to find statistically significant patterns from a large and skewed
data sets.

In the final presentation, we show evolution of relative risk of
each pattern, and some patterns that are not in the optimal risk pat-
tern set will be rediscovered. An example for showing evolution of
Pattern 1 is shown in Figure 2

Pattern 1: RR = 3.99
Gender = Female
Hospital Circulatory Flag = Yes
Usage of Drugs in category “Various” = Yes

Sub pattern: RR = 1.82
Gender = Female
Hospital Circulatory Flag = Yes

Sub pattern: RR = 1.53
Gender = Female

Figure 2: A user interesting evolution path of Risk Pattern 1

6. CONCLUSIONS
We have discussed a new problem of finding risk patterns in

medical data. We have made use of an epidemiological metric,
relative risk, in measuring interestingness of patterns and have con-
cluded it is an optimal rule mining problem to find high risk pat-
terns. We have studied an anti-monotone property for the optimal
risk pattern set, and then presented an efficient algorithm to mine
optimal risk pattern sets. We applied the method to a real world
medical and pharmaceutical linked data set and has revealed some
patterns potentially useful in clinical practice.
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