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Abstract—This paper studies a problem of robust rule-based classification, i.e., making predictions in the presence of missing values

in data. This study differs from other missing value handling research in that it does not handle missing values but builds a rule-based

classification model to tolerate missing values. Based on a commonly used rule-based classification model, we characterize the

robustness of a hierarchy of rule sets as k-optimal rule sets with the decreasing size corresponding to the decreasing robustness. We

build classifiers based on k-optimal rule sets and show experimentally that they are more robust than some benchmark rule-based

classifiers, such as C4.5rules and CBA. We also show that the proposed approach is better than two well-known missing value

handling methods for missing values in test data.

Index Terms—Data mining, rule, classification, robustness.
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1 INTRODUCTION

AUTOMATIC classification has been a goal for machine
learning and data mining, and rule-based methods are

widely accepted due to their easy understandability and
interpretability. In the last 20 years, rule-based methods have
been extensively studied, for example, C4.5rules [20], CN2
[7], [6], RIPPER [8], CBA [16], CMAR [15], and CPAR [23].

Most rule-based classification systems make accurate

and understandable classifications. However, when a test

data set contains missing values, a rule-based classification

system may perform poorly because it may not be robust.

We give the following example to show this.

Example 1. Given a well-known data set listed in Table 1, a

decision tree (e.g., ID3 [19] can be constructed as in Fig. 1.
The following five rules are from the decision tree:

1. If the outlook is sunny and humidity is high, then
do not play tennis.

2. If the outlook is sunny and humidity is normal,
then play tennis.

3. If the outlook is overcast, then play tennis.
4. If the outlook is rain and wind is strong, then do

not play tennis.
5. If the outlook is rain and wind is weak, then play

tennis.

We note that all rules include the attribute outlook.

Suppose that the outlook information is unknown in a

test data set. This rule set makes no predictions on the

test data set and, hence, is not robust. It is possible to

have another rule set that makes some predictions on the

incomplete test data set.

In real-world applications, missing values in data is very

common. In many cases, missing values are unrecoverable

due to unrepeatable procedures or the high cost of

experiments or surveys. Therefore, a practical rule-based
classification system has to be robust for missing values.

One common way to deal with missing values is to
estimate and replace them [18], called imputation. Some
typical imputation methods are: mean imputation, predic-
tion imputation, and hot deck imputation [3]. Imputation
methods are dominating in classification. For categorical
attributes, the following three imputation methods are
commonly used: most common attribute value substitution
[7], local most common attribute value substitution [17],
and multiple attribute value substitution [20]. In a recent
study [3], the k-nearest neighbor substitution method is
shown as the most accurate imputation method.

In this paper, we discuss an alternative approach for
dealing with missing values. Instead of imputing missing
values, we propose to build robust rule-based classification
models to tolerate missing values. An imputation method is
to “treat” missing values, but the proposed method is to
make a system “immunize” from missing values to a certain
degree.

Treating missing values can be effective when users
know the data very well, but may lead to misleading
predictions when a wrong value is imputed. For example,
when a missing value female is imputed by value male,
misleading prediction on the record may occur. In the worst
case, the errors of a classification model and the errors of an
imputation method are additive. In contrast, the proposed
method does not impute missing values and, hence, does
not incur errors from the missing value estimation.

We will discuss how to build robust rule-based
classifiers that tolerate missing values. A rule-based
classifier built on our method will be shown to be more
accurate than two benchmark rule-based classifications
systems, C4.5rules [20] and CBA [16] on incomplete test
data sets. We also show that the classifier is more accurate
than C4.5rules plus two imputation methods, respectively.
A preliminary study appeared in [14], and this is a
comprehensive report with a significant extension.

This paper primarily characterizes the relationships
between the size of rule sets and their tolerative capability
for missing values in test data. The theoretical conclusions
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are very useful for selecting right rule sets to build rule-

based classifiers. The paper also shows that building robust

classifiers is a good alternative to handling missing values.
The rest of the paper is organized as follows: Section 2

defines class association rules and their accuracies. Section 3

defines the optimal rule set and discusses its robustness.

Section 4 defines k-optimal rule sets and discusses their

robustness. Section 5 presents two algorithms to generate

k-optimal rule sets. Section 6 demonstrates that k-optimal

rule set-based classifiers are more robust than some bench-

mark rule-based classifiers. Section 7 concludes the paper.

2 CLASS ASSOCIATION RULES AND ACCURACY

ESTIMATION

In this section, we define class association rules and discuss

methods to estimate their accuracy.
Note that rules used for the final classifier are only a very

small portion of a class association rule set. It is strongly

argued that the optimal class association rule set [13] should

be a proper base to build rule-based classifiers. In this

paper, we start with the complete class association rule set

and then move to the optimal class association rule set to

make the connection and distinction between our work and

other works clear.
We use association rule concepts [1] to define class

association rules. Given a relational data set D with

n attributes, a record of D is a set of attribute-value pairs,

denoted by T . An attribute is dedicated to class labels or

every tuple has one class. A pattern is a set of attribute-

value pairs. The support of a pattern P is the ratio of the

number of records containing P to the number of records

in the data set, denoted by suppðP Þ. An implication is a

formula P ! c, where P is a pattern and c is a class. The

support of the implication P ! c is suppðP [ cÞ. The

confidence of the implication is suppðP [ cÞ=suppðP Þ,
denoted by confðP ! cÞ. The covered set of the rule is

the set of all records containing the antecedent of the

rule, denoted by covðP ! cÞ. We say A! c is a class

association rule if suppðA! cÞ � � and confðA! cÞ � �,

where � and � are the minimum support and confidence,

respectively.

Definition 1. The complete class association rule set is the set of

all class association rules that satisfies the minimum support

and the minimum confidence.

Given a data set D, the minimum support � and the

minimum confidence �, the complete class association rule

set is denoted by Rcð�; �Þ, or simply Rc.
We list some frequently used notations of this paper in

Table 2 for the fast referral.
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TABLE 1
A Training Data Set

Fig. 1. A decision tree from the training data set.

TABLE 2
Some Frequently Used Notations in the Paper



In classification study, the basic requirements of a rule
are accuracy and coverage. More specifically, a rule covers
few negative records in the training data set and identifies a
certain number of records that have not been identified by
other rules. The formal definition of “identify” will appear
in the next section. A classification rule generation algo-
rithm usually uses implicit minimum accuracy and support
requirements. For example, the accuracy of a classification
rule is generally very high, and those small coverage rules
are more likely to be removed in the postpruning. Hence,
the minimum thresholds in the above definition should not
cause problems in practice.

In practice, predictions are made by a classifier. A
classifier is a sequence of rules sorted by decreasing
accuracy and tailed by a default prediction. In classifying
an unseen record without class information, the first rule
that matches the case classifies it. If no rule matches the
record, the default prediction classifies it.

An estimation of rule accuracy is important since it
directly affects how rules are used in the prediction. There
are a few ways to estimate rule accuracy. Laplace accuracy
is a widely used estimation [6]. We rewrite the Laplace
accuracy in terms of support and cover set as follows:

LaplaceðA! cÞ ¼ suppðA! cÞ � jDj þ 1

jcovðA! cÞj þ jCj ;

where jCj is the number of all classes, suppðA! cÞ � jDj is
the number of correct predictions made by the rule on the
training data and jcovðA! cÞj is the number of reords
containing the antecedent of the rule in the training data.

Quinlan used the pessimistic error rate in rule pruning
[20]. We present the pessimistic error as the pessimistic
accuracy in the following:

PessimisticðA! cÞ ¼ 1�
f þ z2

2N þ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f
N �

f2

N þ z2

4N2

q

1þ z2

N

;

where f ¼ 1� confðA! cÞ, N ¼ jcovðA! cÞj, and z is the
standard deviation corresponding to a statistical confidence
c, which for c ¼ 25% is z ¼ 0:69.

Other interestingness metrics [21], such as the Chi-square
test, can be used to compare predictive power of association
rules. Our intention is not to discuss which estimation is the
best in this paper. The accuracy of a rule can be estimated
by a means. We represent the accuracy of rule A! c as
accðA! cÞ. We used Laplace accuracy in our experiments.

Usually, the minimum confidence of a class association
rule is high so it naturally excludes conflicting rules, such as
A! y and A! z, in a complete class association rule set.

We will consistently discuss class association rules in the
rest of the paper. For the sake of brevity, we omit class
association in the following discussions.

3 THE OPTIMAL RULE SET AND ITS ROBUSTNESS

3.1 Ordered Rule-Based Prediction Model and the
Optimal Rule Set

In this section, we first formalize the procedure of rule-
based classification and then define the optimal classifica-
tion rule set.

We start with some notations. For a rule r, we use

condðrÞ to represent its antecedent (conditions), and consðrÞ
to denote its consequence. Given a test record T , we say

rule r covers T if condðrÞ � T . The set of records that are

covered by a rule r is called the cover set of the rule,

denoted by covðrÞ. A rule can make a prediction on a

covered record. If consðrÞ is the class of T , then the rule

makes a correct prediction. Otherwise, it makes a wrong

prediction. Let the accuracy of a prediction equal the

estimated accuracy of the rule making the prediction. If a

rule makes the correct prediction on a record, then we say

the rule identifies the record.
There are two types of rule-based classification models:

1. Ordered rule-based classifiers: Rules are organized
as a sequence, e.g., in the descending accuracy order.
When classifying a test record, the first rule covering
the record in the sequence makes the prediction.
This sequence is usually tailed by a default class
(prediction). When there are no rules in the sequence
covering the test record, the record is predicted to
belong to the default class. C4.5rules [20] and CBA
[16] employ this model.

2. Unordered rule-based classifiers: Rules are not
organized in a sequence and all (or some) rules
covering a test record participate in the determina-
tion of the class of the record. A straightforward way
is to adopt the majority vote of rules like in CPAR
[23]. A more complex way is to build a model to
compute the combined accuracy of multiple rules.
Improved CN2 [6] and CMAR [15] employ this
method.

We do not consider committee prediction, e.g., Bagging

[5], which uses multiple classifiers.
The first model is simple and effective. It makes a

prediction based on the maximum likelihood. This is

because rules with higher accuracy usually precede rules

with lower accuracy and the accuracy approximates the

conditional probability when the data set is large.
There is no uniform form for the second model. Methods

of voting vary in different proposals. An important

condition for using the second model, independence of

rules, is normally not satisfied. For example, in a complete

class association rule set, the conditions of most rules are

correlated. Further, voting may be bias against small

distributed classes.
In this paper, we employ the ordered rule-based

classification model. We formalize rule order as follows:

Definition 2. Rule r1 precedes rule r2 if:

1. accðr1Þ > accðr2Þ,
2. accðr1Þ ¼ accðr2Þ and suppðr1Þ > suppðr2Þ, or
3. accðr1Þ ¼ accðr2Þ, suppðr1Þ ¼ suppðr2Þ, and

jcondðr1Þj < jconfðr2Þj:

In the above definition, we take the support and the

length of a rule into consideration because they have been

minor criteria for sorting rules in practice, such as in [16].

Building a classifier is more complicated than this. We use
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this simple model to draw some theoretical conclusions,
and then verify the conclusions by experiments.

A predictive rule is defined as follows:

Definition 3. Let T be a record and R be a rule set. Rule r in R is
the predictive rule for T if r covers T and is the most preceding
rule among all rules covering T .

For example, both rule ab! zðacc ¼ 0:9Þ and rule d!
yðacc ¼ 0:6Þ cover record fabcdeg. Rule ab! z is the
predictive rule for the record but rule d! y is not.

As both the accuracy and the support are real numbers,
in a large data set it is very unlikely that a record is covered
by two rules with the same accuracy, support, and length.
Therefore, it is a reasonable assumption that each record
has a unique predictive rule for a given data set and a rule
set, and we use this assumption in the rest of paper.

In the ordered rule-based classification model, only one
rule makes prediction on a record and, hence, we have the
following definition:

Definition 4. Let the prediction of rule set R on record T be the
same as the prediction of the predictive rule in R on T.

For example, rule ab! zðacc ¼ 0:9Þ predicts record
fabcdefg to belong to class z with the accuracy of 90 percent.
Rule set fab! zðacc ¼ 0:9Þ; d! yðacc ¼ 0:6Þg predicts re-
cord fabcdefg to belong to class z with the accuracy of
90 percent since rule ab! zðacc ¼ 0:9Þ is the predictive rule.

Some rules in the complete rule set never make
predictions on any records, and we exclude them in the
following.

First, we discuss how to compare predictive power of
rules. We use r2 � r1 to represent condðr2Þ � condðr1Þ and
consðr2Þ ¼ consðr1Þ. We say that r2 is more general than r1, or
r1 is more specific than r2. A rule covers a subset of records
covered by one of its more general rules.

Definition 5. Rule r2 is stronger than rule r1 if r2 � r1 and
accðr2Þ � accðr1Þ. In a complete rule set Rc, a rule is
(maximally) strong if there is not another rule in Rc that is
stronger than it. Otherwise, the rule is weak.

Only strong rules make predictions in the complete
rule set. For example, rule ab! z is weak because
accðab! zÞ < accða! zÞ. Whenever rule ab! z covers a
record, rule a! z does. Since rule a! z precedes rule
ab! z, rule ab! z never has a chance to be a predictive
rule. Therefore, we have the following definition to
exclude weak rules like ab! z.

Definition 6. The set of all strong rules in the complete rule set is
the optimal rule set, denoted by Ropt.

A related concept of optimal rule set is nonredundant
rule set. A definition of nonredundant association rule sets
is presented by Zaki [24] and a nonredundant classification
rule set is called an essential classification rule set [2]. The
definition of essential classification rule sets is more
restrictive than the definition of optimal rule sets. A more
specific rule is excluded from an essential rule set only
when both its support and its confidence are identical to
those of one of its more general rules. The definition of the

optimal rule definition follows the observation that a more
specific rule with accuracy lower than that of one of its
more general rule does not participate in building an
ordered rule-based classifier. An optimal rule set is a subset
of the essential rule set. More detailed discussions on the
relationships between optimal rule sets and nonredundant
rule sets is characterized in my other work [12].

3.2 Robustness of the Optimal Rule Set

In this section, we first define robustness of rule sets and
then discuss the robustness of the optimal rule set.

We use a concept of robustness to characterize the
capability of rule set making predictions on incomplete data
sets. We say that a rule set gives any prediction on a record
with the accuracy of zero when it cannot provide a
prediction on the record.

Definition 7. Let D be a data set, and R1 and R2 be two rule sets
for D. R2 is at least as robust as R1 if, for all T 0 � T and
T 2 D, predictions made by R2 are at least as accurate as those
by R1.

For example, let R1 ¼ fab! zðacc ¼ 0:9Þg and

R2 ¼ fab! z ðacc ¼ 0:9Þ; d! z ðacc ¼ 0:8Þg:

For record fabcdeg, both rule sets predict it to belong to
class z with the same accuracy of 90 percent. When b is
missed from the record, R2 predicts it to belong to class z
with the accuracy of 80 percent whereas R1 predicts it to
belong to class z with the accuracy of 0 percent. Thus, R2 is
more robust than R1.

For a large data set, estimated accuracies of rules
approach true accuracies of rules. Consider that rule set
R2 is more robust than rule set R1. For a complete test data
set both rule sets make predictions with the same accuracy.
For an incomplete test data set, rule set R2 makes
predictions at least as accurately as rule set R1.

Ideally, we would like to have a rule set to make
predictions on any incomplete record, but it is impossible
since there may not be a rule in Rc covering every
incomplete record. The robustness of a rule set is limited
by rules in Rc. On the other hand, this rule set is
unnecessarily large. The optimal rule set is a smaller
equivalence.

Theorem 1. For any complete class association rule set Rc, the
optimal classification rule set Ropt is the smallest rule set in
size that is as robust as Rc.

Proof. All weak rules excluded by the optimal rule set
cannot be predictive rules in any cases because they are
ordered lower and more specific than their correspond-
ing strong rules that exclude them. On the other hand,
every strong rule is a potentially predictive rule. When
an incomplete record contains only the antecedent of a
strong rule, the strong rule is the predictive rule for the
record. Therefore, both the complete rule set and the
optimal rule set have the same set of predictive rules
and, hence, the optimal rule set is as robust as the
complete rule set.

Now, we prove the minimum property. Suppose that
we may omit a rule r from the optimal rule set Ropt and
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the new rule set R0o ¼ Ropt n r is still as robust as the
complete rule set Rc. Consider a test record that is
covered only by rule r. By the definition of the optimal
rule set, there is no rule in R0o covering the record or at
most there are some covering rules with a lower accuracy
than r. Hence, the prediction made by R0o cannot be as
accurate as that from Ropt. As a result, R0o is not as robust
as Rc, and this contradicts the assumption.

The theorem is proved. tu

This theorem means that no matter what an input record

is (complete or incomplete) the optimal rule set gives the

same prediction on the record as the complete rule set with

the same accuracy.
Let us look at differences between the complete rule set

and the optimal rule set through an example.

Example 2. For the data set in Example 1, there are 21 rules

in the complete rule set when the minimum support is

2=14 and the minimum confidence is 80 percent.

However, there are only 10 rules in the optimal rule

set, and they are listed as follows. We take confidence as

accuracy in this example for easy illustration since,

otherwise, an accuracy estimation method requires a

calculator. (Numbers in parentheses are support and

accuracy, respectively.)

1. If the outlook is sunny and humidity is high, then
do not play tennis. ð3=14; 100%Þ.

2. If the outlook is sunny and humidity is normal,
then play tennis. ð2=14; 100%Þ.

3. If the outlook is overcast, then play tennis.
ð4=14; 100%Þ.

4. If the outlook is rain and wind is strong, then do
not play tennis. ð2=14; 100%Þ.

5. If the outlook is rain and wind is weak, then play
tennis. ð3=14; 100%Þ.

6. If humidity is normal and wind is weak, then play
tennis. (3=14; 100%).

7. If the temperature is cool and wind is weak, then
play tennis. (2=14; 100%).

8. If the temperature is mild and humidity is
normal, then play tennis. (2=14; 100%).

9. If the outlook is sunny and temperature is hot,
then do not play tennis. (2=14; 100%).

10. If humidity is normal, then play tennis.
(6=14; 87%).

Since the complete rule set is larger, we do not show it
here. However, to demonstrate why some rules in the
complete rule set are not predictive rules, we list seven
rules including attribute value overcast as follows:

3. If the outlook is overcast, then play tennis.
ð4=14; 100%Þ.

11. If the outlook is overcast and temperature is hot,
then play tennis. ð2=14; 100%Þ.

12. If the outlook is overcast and humidity is high,
then play tennis. ð2=14; 100%Þ.

13. If the outlook is overcast and humidity is normal,
then play tennis. ð2=14; 100%Þ.

14. If the outlook is overcast and wind is strong, then
play tennis. ð2=14; 100%Þ.

15. If the outlook is overcast and wind is weak, then
play tennis. ð2=14; 100%Þ.

16. If outlook is overcast and temperature is hot and
wind is weak, then play tennis. ð2=14; 100%Þ.

Only rule 3 is included in the optimal rule set out of the
above seven rules. The other six rules are not predictive
rules since they follow rule 3 in the rule sequence
defined by Definition 2 and are more specific than rule 3.
Therefore, they cannot be predictive rules.

In the above example, the size difference between the
complete rule set and the optimal rule set is not very
significant because the underlying data set is very small. In
some data sets, however, the optimal rule set can be less
than 1 percent of the complete rule set.

Even though the optimal rule set is significantly smaller
than the complete rule set, it is still much larger than a
traditional classification rule set. Some rules in the optimal
rule set are unnecessary when the number of missing
attribute values is limited. Therefore, we show how to
reduce the optimal rule set for a limited number of missing
values in the following section.

4 k-OPTIMAL RULE SETS AND THEIR ROBUSTNESS

In this section, we further simplify the optimal rule set to
k-optimal rule sets for test data sets with up to k missing
attribute values. We then discuss properties of k-optimal
rule sets.

We first define the k-incomplete data set to be a new data
set with exactly k missing values from every record of the
data set. We use k-incomplete data sets as test data sets.

Definition 8. Let D be a data set with n attributes, and k � 0.
The k-incomplete data set of D is

Dk ¼ fT 0 j T 0 � T; T 2 D; jT j � jT 0j ¼ kg:

Conveniently, Dk consists of a set of n
k

� �
data sets where each

omits exactly k attributes (columns) from D.

For example, the 1-incomplete data set contains a set of
n data sets where each omits one attribute (column) from D.
Note that the 0-incomplete data set of D is D itself.

Let us represent the optimal rule set in terms of
incomplete data sets.

Lemma 1. The optimal rule set is the set of predictive rules for
records in the union of k-incomplete data sets for 0 � k < n.

Proof. First, a weak rule, excluded by the optimal rule set,
cannot be a predictive rule for the k-incomplete record.
When a weak rule and one of its corresponding strong
rules cover the k-incomplete record, the strong rule will
be the predictive rule. The weak rule is more specific
than the strong rule and hence there is no chance for the
weak rule to cover a record that is not covered by the
strong rule.

Second, a strong rule, included by the optimal rule set,
will be the predictive rule for an incomplete record. Let
an incomplete record contain only the antecedent of the
strong rule. The strong rule is the predictive rule of the
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record because other more general rules covering the
record have lower accuracy than the strong rule.

Consequently, the lemma is proved. tu

In other words, if the optimal rule set could not make a

prediction on an incomplete record, another rule set, e.g.,

the complete rule set, could not either; a rule in an optimal

rule set is a predictive rule for some incomplete records. For

example, given an optimal rule set

fa! z ðacc ¼ 0:9Þ; b! zðacc ¼ 0:8Þ; c! z ðacc ¼ 0:7Þg:

For record fabcdefgg, rule c! z becomes the predictive rule

when both a and b are missing.
The optimal rule set preserves all potential predictive

rules for k-incomplete data sets with k up to n� 1. However,

it is too big in many applications. Now, we consider how to

preserve a small number of predictive rules for limited

number of missing values in incomplete data sets.

Definition 9. A k-optimal rule set contains the set of all

predictive rules on the k-incomplete data set.

For example, rule set fa! z ðacc ¼ 0:9Þ; b! z ðacc ¼
0:8Þg is 1-optimal for record fabcdefgg. When a is missing,

rule b! z is the predictive rule. When b, c, d, e, f , or g is

missing, rule a! z is the predictive rule.
We have used the name of k-optimal rule sets in one of

our previous work [14]. Recently, another rule mining

algorithm [22] also generates k-optimal rule sets, which

contain k rules with the largest leverage. k in our k-optimal

rule sets stands for k-missing values per record, and is

usually a small number. k in the other k-optimal rule sets

indicates the number of rules, and is a reasonably big

number.
We have the following property for k-optimal rule sets.

Lemma 2. The k-optimal rule set makes the same predictions as

the optimal rule set on all p-incomplete data sets for

0 � p � k.

Proof. The k-optimal rule set contains predictive rules for all

p-incomplete data sets with 0 � p � k according to

Definition 9, and hence this lemma holds immediately.tu

For example, given an optimal rule set

fa! z ðacc ¼ 0:9Þ; b! z ðacc ¼ 0:8Þ;
c! z ðacc ¼ 0:7Þ; d! z ðacc ¼ 0:6Þg:

Rule set fa! z ðacc ¼ 0:9Þ; b! z ðacc ¼ 0:8Þ; c! zðacc ¼
0:7Þg is 2-optimal for record fabcdefgg. It makes the same

prediction as the optimal rule set on record fabcdefgg with

up to two missing values, e.g. fbcdefgg and fcdefgg.
The k-optimal rule set is a subset of the optimal rule set

that makes the same predictions as the optimal rule set on a

test data set with k missing attribute values per record. As a

special case, a 0-optimal rule set1 makes the same

predictions as the optimal rule set on the complete test

data set.

Theorem 2. The ðkþ 1Þ-optimal rule set is at least as robust as

the k-optimal rule set.

Proof. For those records in p-incomplete data sets for p � k,

both rule sets make the same predictions because both

make the same predictions as the optimal rule set

according to Lemma 2.
For those records in the ðkþ 1Þ-incomplete data set,

the ðkþ 1Þ-optimal rule set makes the same predictions
as the optimal rule set and the k-optimal rule set does
not. Hence, there may be some records that are identified
by the ðkþ 1Þ-optimal rule set but not by the k-optimal
rule set.

Consequently, the ðkþ 1Þ-optimal rule set is at least as
robust as the k-optimal rule set. tu

For example, 2-optimal rule set fa! z ðacc ¼ 0:9Þ; b!
z ðacc ¼ 0:8Þ; c! z ðacc ¼ 0:7Þg is more robust than 1-opti-

mal rule set fa! z ðacc ¼ 0:9Þ; b! z ðacc ¼ 0:8Þg. When

values a and b are missed from the record fabcdefgg, the first

rule set predicts it to belong to class z with the accuracy of 70

percent whereas the second rule set makes any prediction

with the accuracy of 0 percent.
We give an example to show k-optimal rule sets and their

predictive capabilities.

Example 3. In the data set of Example 1, with the minimum

support of 2=14 and the minimum confidence of

80 percent, we have the optimal rule set with 10 rules

as shown in Example 2. These 10 rules can identify all

records in the data set. We take confidence as accuracy in

this example for easy illustration since otherwise an

accuracy estimation method requires a calculator. We

have a min-optimal rule set as follows, where two

numbers in the parentheses are support and accuracy,

respectively:

1. If the outlook is sunny and humidity is high, then
do not play tennis. ð3=14; 100%Þ:

2. If the outlook is sunny and humidity is normal,
then play tennis. ð2=14; 100%Þ.

3. If the outlook is overcast, then play tennis.
ð4=14; 100%Þ.

4. If the outlook is rain and wind is strong, then do
not play tennis. ð2=14; 100%Þ.

5. If the outlook is rain and wind is weak, then play
tennis. ð3=14; 100%Þ.

6. If humidity is normal and wind is weak, then play
tennis. (3=14; 100%).

Rules 1, 2, 3, 4, and 5 identify different records in the
data set, so they are included in the min-optimal rule set.
As to rule 6, it is the predictive rule for record 9. When
identifying record 9, rule 6 has higher support than rule 2
and, hence, is the predictive rule for the record. This
consideration results in that the min-optimal rule set is
more robust than the rule set from the decision tree.
When Outlook information is missing, the rule set from
the decision tree identifies nothing while the min-
optimal rule set identifies three records. The min-optimal
rule set provides exactly the same predictions as the
optimal rule set on the complete test data set.
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With the following four additional rules, the rule set
becomes 1-optimal.

7. If the temperature is cool and wind is weak, then
play tennis. (2=14; 100%).

8. If the temperature is mild and humidity is
normal, then play tennis. (2=14; 100%).

9. If the outlook is sunny and the temperature is hot,
then do not play tennis. (2=14; 100%).

10. If humidity is normal, then play tennis
(6=14; 87%).

This rule set gives more correct predictions on
incomplete test data than the min-optimal rule set. For
example, when Outlook information is missing, the
1-complete rule set identifies six records, which are three
records more than the min-optimal rule set; when
Temperature, 14, equal; when Humidity, 11, 2 more; and
when Wind, 11, 2 more. The improvement is clear and
positive. In this example, the 1-optimal rule set equals the
optimal rule set. This is because that the data set contains
only four attributes. In most data sets, a 1-optimal rule set
is significantly smaller than an optimal rule set.

The k-optimal rule sets form a hierarchy.

Lemma 3. Let Rk and Rkþ1 be the k-optimal and the ðkþ
1Þ-optimal rule sets for D. Then, Rk � Rkþ1.

Proof. Rk contains the set of all predictive rules over all

p-incomplete data sets for p � k. Rkþ1 contains the set of

all predictive rules over all p-incomplete data sets for p �
k and all predictive rules for ðkþ 1Þ-incomplete data sets.

The predictive rule for a record is unique as assumed

following Definition 3. So, Rk � Rkþ1. tu

In Examples 2 and 3, Ropt ¼ R4 ¼ R3 ¼ R2 ¼ R1 � Rmin.

Theoretically, k is up to n, the number of attributes, but

practically, only a small k << n is meaningful.
Until now, we have introduced the set of optimal rule

sets, and we observe that the following hierarchy holds

these optimal rule sets:

Ropt 	 
 
 
 	 Rkþ1 	 Rk 	 
 
 
 	 Rmin:

The robustness of a k-optimal rule set for k > 0 is due to

that it preserves more potentially predictive rules in case

that some rules are paralyzed by missing values in a data set.
Usually, a traditional classification rule set is smaller

than a min-optimal rule set, since most traditional classifi-

cation systems postprune the final rule set to a small size.

From our observations, most traditional classification rule

sets are subsets of min-optimal rule sets. For example, the

rule set from ID3 in Example 1 is a subset of the min-

optimal rule set in Example 3 and is less robust than the

min-optimal rule set. Experimental results will show this.
Finally, we consider a property that will help us to find

k-optimal rule sets. We can interpret the k-optimal rule set

through a set of min-optimal rule sets.

Lemma 4. Consider that a k-incomplete sub data set omits

exactly k attributes from data set D. The union of min-optimal

rule sets over all k-incomplete sub data sets is k-optimal.

Proof. For each of every k-incomplete sub data set, we obtain
a min-optimal rule set that contains all predictive rules
for the incomplete data set. The union of these min-
optimal rule sets contains all predictive rules on the
k-incomplete data set, and hence is k-optimal. tu

We give an example to show this lemma.

Example 4. Follow Example 3. When Outlook information is
omitted, a min-optimal rule set consists of rules 6, 7, 8,
and 10; when Temperature, rules 1, 2, 3, 4, 5, and 6; when
Humidity, rules 3, 4, 5, 7, and 9; when Wind, rules 1, 2, 3,
8, 9, and 10. The union of the above four min-optimal
rule sets on four 1-incomplete data subsets is 1-optimal.

This lemma suggests that we can generate the k-optimal
rule set by generating min-optimal rule sets on a set of
incomplete data sets.

5 CONSTRUCTING k-OPTIMAL RULE SETS

We now consider two different methods constructing
robust rule sets. The first method extends a traditional
classification rule generation technique and the second one
extends an optimal classification rule mining technique.

5.1 A Multiple Decision Tree Approach

Heuristic methods have been playing an important role in
classification problems, so here we first discuss how to
generate k-optimal rule sets by a heuristic method.

In order to use a rule set on incomplete data sets, we may
generate a rule set from an incomplete data set. For a set of
k-incomplete sub data sets of the training data set, we can
construct a set of rule sets on them. Intuitively, the union
rule set will withstand up to k missing values to some
extent.

We use C4.5rules [20] as the base rule generator in this
algorithm. Although constructing multiple classifiers has
been discussed before, such as Bagging [5] and Boosting [9],
[10]. This algorithm differs from others in that it samples
attributes systematically rather than records randomly, and
that it uses the union of all rule sets instead of individual
classifiers.

The k-incomplete data set consists of a set of n
k

� �
(n is the

number of attributes for D) sub data sets in which each
omits exactly k attribute (column) information from D.

Algorithm 1 Multiple tree algorithm

Input: data set D, integer k � 1

Output: Rule set R

(1) set R ¼ ;
(2) for each k-incomplete sub data set D0 of D

(3) build a decision tree T from D0 by C4.5
(4) call C4.5rules to generate a rule set R0 from T

(5) let R ¼ R [R0
(6) return R

We now study the robustness of the output rule set of the
algorithm. Suppose that each R0 is the min-optimal rule set
for the corresponding k-incomplete sub data set. The final
rule set is the k-optimal rule set by Lemma 4. A traditional
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classification rule set is usually less robust than a min-

optimal as shown in the experiments. Therefore, the output

rule set is at most as robust as the k-optimal rule set.
This algorithm may be inefficient when k is large. This is

because n
k

� �
rule sets have to be generated where significant

repeating computation is involved. It is possible to modify

codes of the C4.5 and C4.5rules to avoid the repeating

computation. However, this modification may not be

necessary when precise k-optimal rule sets can be generated.

5.2 An Optimal Class Association Rule Set
Approach

In this section, we present a precise method to compute

k-optimal rule sets. A naive method would perform the

following three steps:

1. Generate the complete rule set by an association rule
approach, such as Apriori [1] or FP-growth [11].

2. Find the min-optimal rule set for every k-incomplete
data set.

3. Union all min-optimal rule sets.

This method would be inefficient. First, the complete rule

set is usually very large, and is too expensive to compute for

some data sets when the minimum support is low. Second,

the process of finding the min-optimal rule set from a large

complete rule set is expensive too.
An efficient algorithm [22] generating k-optimal rule sets

actually serves different purposes since that k-optimal is

different from this k-optimal as discussions following

Definition 9.
In our proposed algorithm, we directly find a smaller

optimal rule set and compute the k-optimal rule set from the

optimal class rule set in a single pass over the data set.
An efficient algorithm for generating the optimal rule set

is presented in [13]. Here, we only present an algorithm to

compute the k-optimal rule set from the optimal rule set.
Given a rule r, let AttrðrÞ be the set of attributes whose

values appear in the antecedent of r. A p-attribute pattern is

an attribute set containing p attributes. Given a record T

and an attribute set X, let OmitðT;XÞ be a new partial

record projected from T without attribute values from X.

Algorithm 2 k-optimal rule set generator

Input: data set D, optimal rule set Ropt and k � 0

Output: k-optimal rule set R

(1) set R ¼ ;
(2) for each record Ti in D

(3) let R0i contain the set of rules that cover Ti
(4) for each r 2 R0i let UsedAttr ¼ UsedAttr [AttrðrÞ
(5) for each k-attribute set X in UsedAttr

(6) let T ¼ OmitðTi;XÞ
(7) if there is no predictive rule for T in Ri

(8) then select a predictive rule r0 for T and

move it from R0i into Ri

(9) let R ¼ R
S
Ri

(10) return R

We first illustrate the algorithm by the following

example.

Example 5. Consider data set in Table 1 and the optimal
rule set in Example 2. We use the above algorithm to
generate the 1-optimal rule set. Let T1 be the first row
in Table 1. Initially, R ¼ ; and R01 ¼ fr1; r9g, where r1

and r9 represent the first rule and the ninth rule in
the optimal rule set in Example 2. In line 4,
UsedAttr ¼ fOutlook; Temperature;Humidityg. F r o m
line 5 to line 8, first, the value in the Outlook column
is omitted and no rule is selected. Second, the value
in the Temperature column is omitted and the first
rule r1 is selected. Third, the value in the Humidity
column is omitted and the ninth rule r9 is selected.
Up to line 9, R ¼ R1 ¼ fr1; r9g. Rule set fr1; r9g is the
1-optimal rule set for T1. As a comparison, rule set
fr1g is the min-optimal rule set for T1. For any one
missing value in T1, the min-optimal rule set has
50 percent of probability of being paralyzed by the
missing value, either in the Outlook column or in the
Humidity column, whereas the 1-optimal rule set has
25 percent of probability of being paralyzed by the
missing value, only in the Outlook column. 1-optimal
rule set reduces the probability of being paralyzed by
missing values.

Now, we consider its correctness. In lines (4) and (5), we
only consider attributes used in rules since missing values
in other attributes do not affect the performance of rules.
This algorithm selects predictive rules for all k-missing
patterns on each of every record in the training data set in
lines (5) to (7). The algorithm generates a k-optimal rule set
correctly according to Lemma 4.

6 EXPERIMENTS

In the previous sections, we built a theoretical model for
selecting classification rule sets that were less sensitive to
missing values in test data. In this section, we will
experimentally prove that these rule sets do tolerate certain
missing values in test data by showing their classification
accuracies on incomplete test data. Missing values have not
been handled, and we intend to show the ability of
tolerating missing values of k-optimal rule sets and
k-optimal classifiers.

In the first part of the experiments, we evaluate the
robustness of k-optimal rule sets by following the defini-
tions in the previous sections except that a record in a
k-incomplete data set does not contain k missing values
exactly, but on average.

In the second part of the experiments, we build
classifiers based on k-optimal rule sets following a common
practice in building rule-based classifiers. We compare our
classifiers against two other benchmark rule-based classi-
fiers on their classification performances on incomplete test
data sets by using 10-fold cross validation. We also compare
the proposed classifier with C4.5rules plus two well-known
missing value handling methods.

6.1 Proof-of-Concept Experiment

In this section, we conduct an experiment to show the
practical implication of definitions and theorems. k-optimal
rule sets are tested on randomly generated l-incomplete test
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data sets where 0 � l � 6. The l-incomplete data sets are
different from Definition 8 since they contain l-missing
values on average rather than exactly.

Two data sets are selected from the UCI ML repository [4]
and a brief description of them is in Table 4. They contain
two classes each and their class distributions are relatively
even. They are very easy to be classified by any classification
method. We use them because they illustrate the main points
of this paper very well.
k-optimal rule sets are generated by following algorithms

1 and 2. As a comparison, a traditional classification rule set
is generated by C4.5rules [20]. k-incomplete test data sets are
generated by omitting on average k values in each record.
We control the total number of missing values, and let each
record contain different number of missing values. To make
the results reliable, we test every rule set on 10 randomly
generated incomplete test data sets and report the average
accuracy.

In the experiment, all rule sets are tested without the
default predictions, since here we test robustness of rule
sets rather than classifiers. Predictive rules are defined by
Definition 3 using Laplace estimated accuracy. We set the
minimum support as 0.1 in each class, called local support,
minimum confidence as 0.5, and maximum rule length as 6
for k-optimal rule sets.

Table 3 shows that complete rule sets are significantly
larger than optimal rule sets which are significantly larger
than 1- and min-optimal rule sets. We observe the hierarchy
of k optimal rule sets discussed in Section 4. Min-optimal
rule sets are larger than rule sets from the C4.5rules [20].
Rule sets generated by multiple decision trees (k=1) are
smaller than precise 1-optimal rule sets. This is because the
C4.5rules prefers simple rule sets.

Fig. 2 shows that optimal rule sets perform the most
accurately on incomplete test data, 1-optimal rule sets the
second best, min-optimal rule sets the third, and rule sets
from C4.5rules the worst. These results are consistent with
Theorem 2. Rule sets from multiple C4.5rules (k=1) perform
better than rule sets from single C4.5rules but worse than 1-
optimal rule sets.

These results illustrate the main ideas in this paper very
well. No rule set can be absolutely robust, but some rule
sets are more robust than others. The robustness of
k-optimal rule sets follows Theorem 2. The reason for the
robustness is that some additional rules are preserved in
case other rules are paralyzed by missing values in the test
data set.

We note that there is not big room for accuracy
improvement between 1-optimal rule sets and optimal
rule sets. Therefore, k-optimal rule sets for k > 1 are

unnecessary. We also note that 1-optimal rule sets from
the multiple decision tree approach are not as robust as
precise 1-optimal rule sets. This is consistent with our
analysis in Section 5.

6.2 Comparative Experiments

In this section, we conduct experiments to demonstrate the
practical implication of the theoretical results in construct-
ing robust rule-based classifiers. Different rule-based
classifiers are tested on randomly generated incomplete
test data sets where missing values have not been handled.
The 10-fold cross validation method and 28 data sets have
been employed in the experiments. A rule-based classifier
that classifies incomplete test data with a higher accuracy is
more robust than a rule-based classifier with a lower
accuracy.

We construct k-optimal rule set-based classifiers by
following a common practice for building rule-based
classifiers. All rules in a k-optimal rule set are sorted by
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TABLE 3
Sizes of Different Rule Sets

A complete rule set is very large, an optimal rule set is large, and a rule set from C4.5rules is very small. A 1-optimal rule set is larger than a min-
optimal rule set. A rule set from multiple C4.5rules is closer to a min-optimal rule set than to a 1-optimal rule set.

TABLE 4
Data Set Description



their Laplace accuracy first. We then initiate an empty

output rule sequence. We choose a rule with the minimum

misclassification rate in the k-optimal rule set, and move this

rule to the head of the output rule sequence. We remove the

records covered by this rule, and compute the misclassifica-

tion rate of remaining rules in the k-optimal rule set. Then,

we recursively move the rule with the minimum misclassi-

fication rate to the tail of output rule sequence until there is

no record left. When there are two rules with the same

misclassification rate, the preceding rule in the k-optimal

rule set is removed. After the above procedure is finished,

remaining rules in the k-optimal rule set are appended to

the output rule sequence in the order of Laplace accuracy.

The majority class in the data set is set as the default class.
All k-optimal classifiers are compared against two

benchmark rule-based classifiers, C4.5rules [20] and CBA

[16]. The former is a typical decision tree-based classifier,

and the latter is an association-based classifier. We do not

include the multiple decision tree approach since a

1-optimal rule set from the multiple decision tree approach

is not as robust as a precise 1-optimal rule set as shown by

our analysis and experiment. Further, the multiple decision

tree approach is too time consuming when k > 1.
Twenty-eight data sets from UCI ML Repository [4] are

used to evaluate the robustness of different classifiers. A

summary of these data sets is given in Table 4. The 10-fold
cross validation method is used in the experiment.
k-incomplete test data sets are generated by randomly
omitting values in test data sets so that each record has on
average k-missing values. Because the k-incomplete test data
sets are generated randomly, the accuracy of each fold of 10-
fold cross validation is the average of accuracies obtained
from 10 tests.

The parameters for the optimal rule set generation are
listed as follows: Local minimum support (support in a
class), 0.01, minimum confidence, 0.5, and maximum length
of rules, 6. For both C4.5rules and CBA, we used their
default settings.

Fig. 3 shows that an optimal classifier is significantly
larger than both CBA and C4.5rules classifiers. A CBA
classifier approaches a min-optimal classifier in size. A
C4.5rules classifier is the smallest. A 1-optimal classifier is
nearly twice as large as a min-optimal classifier.

Fig. 4 shows that optimal, 1-optimal, and min-optimal
classifiers are more accurate than both CBA and C4.5rules
classifiers on incomplete test data sets. Therefore, all
optimal classifiers are more robust than CBA and C4.5rules
classifiers.

The accuracy differences in Fig. 4 is not so significant
because the accuracies have been floated by the default
predictions. A test record covered by no rule in a classifier is
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Fig. 2. The robustness of different rule sets. Optimal rule sets are the more robust, 1-optimal rule sets the second, min-optimal rule set the third, and

rule sets from C4.5rules the least robust. Rule sets from multiple C4.5rules are more robust than rule sets from single C4.5rules, but less robust than

1-optimal rule sets.

Fig. 3. The average sizes of different classifiers on 28 data sets. An

optimal classifier is large whereas a C4.5rules classifier is very small. A

CBA classifier is close to a min-optimal classifier, and both are smaller

than a 1-optimal classifier.

Fig. 4. The average accuracies of five classifiers with the default

predictions on 28 data sets. Optimal, 1-optimal, and min-optimal

classifiers (top three lines) are more robust than CBA classifiers and

C4.5rules classifiers.



predicted to belong to the default class. The default
prediction makes a classifier simple but may disguise the
true accuracy. For example, in data set Hypothyroid,
95.2 percent records belong to class Negative and only
4.8 percent records belong to class Hypothyroid. So, if we
set the default prediction as Negative, then this classifier
will give 95.2 percent accuracy on a test data set that misses
all values. The true accuracy for this “empty” data set
should be zero rather than 95.2 percent. We see that how the
accuracy is floated by the default prediction. Further, this
distribution knowledge is too general to be useful. For
example, a doctor uses his patient data to build a rule-based
diagnosis system. Eighty percent of patients coming to see
him are healthy and, hence, the system sets the default as
healthy. Though the default easily picks up 80 percent
accuracy, this accuracy is meaningless for the doctor.

In the following experiments, we remove the default
prediction from each classifier. We repeat the same
experiment for all classifiers without the default predictions
and report the average accuracies on Fig. 5. CBA has not
been included because we could not remove its default
prediction.

Fig. 6 shows that all optimal classifiers are more accurate

than C4.5rules classifiers on incomplete data, and hence are

more robust. Optimal classifiers are more robust than

1-optimal classifiers, which are more robust than min-

optimal classifiers on average. Optimal classifiers improve

classification accuracies on incomplete test data by up to

28.2 percent over C4.5rules classifiers without the default

predictions. This is a significant improvement.
By comparing size differences of optimal, 1-optimal, and

min-optimal classifiers with their classification accuracy
differences on incomplete test data, 1-optimal classifiers
make use of rules effectively.

To show the advantages of building robust classifiers

over imputing missing values, we compare the robust rule-

based classifiers to C4.5rules plus two different missing

value imputing methods. Most common attribute value

substitution is a simple but effective approach for imputing

missing categorical values [7]. k-nearest neighbor substitu-

tion is the most accurate approach for imputing missing

values as shown in the recent work [3]. In the former

approach, a missing value is replaced by a value that occurs

most frequently in an attribute. In the later approach, a

missing value is replaced by a value that occurs most

frequently in its k-nearest neighborhood.
We compare the proposed robust classifier, e.g.,

1-optimal classifier without handling missing values, to
C4.5rules with test values being imputed by both ap-
proaches. In the k-nearest neighbor substitution, k is set as
10 as in [3]. When the size of a test data set is smaller than

100 but greater than 30, k is set as 5. When the size of a test
data set is smaller than 30, k is set as 3.

Fig. 6 shows that 1-optimal classifier alone is more

accurate than C4.5rules plus most common attribute
substitution and k nearest neighbor substitution, respec-
tively. This demonstrates that building robust rule-based
classifiers is better than treating missing values. In addition,

1-optimal classifier also benefits from a good imputation
method. When the average missing values in each record
exceeds two in our experiments, k-nearest neighbor sub-

stitution method improves the accuracy of 1-optimal
classifier.

7 CONCLUSIONS

In this paper, we discussed a problem of selecting rules to

build robust classifiers that tolerate certain missing values

in test data. It differs from a missing value handling

problem since our discussion is about “immunizing” from

the missing values rather than “treating” missing values.

We defined a hierarchy of optimal rule sets, k-optimal rule

sets, and concluded that the robustness of k-optimal rule

sets decreases with the decreasing size of rule sets. We

proposed two methods to find k-optimal sets. We demon-

strated the practical implication of the theoretical results by

extensive experiments. All optimal rule set-based classifiers

are more robust than two benchmark rule-based classifica-

tion systems, C4.5rules and CBA. We further show that the

proposed method is better than two well-known missing

value handling methods for missing values in test data.
Given the frequent missing values in real-world data,

k-optimal rule sets have great potential in building robust
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Fig. 5. The average accuracies of four classifiers without the default

predictions on 28 data sets. Optimal rule classifiers are the most robust,

1-optimal classifiers the second, min-optimal classifiers the third, and

C4.5rules classifiers the least robust.

Fig. 6. The comparison of 1-optimal classifier with two missing value

imputation methods on 28 data sets. The 1-optimal classifier is more

accurate than C4.5rules plus two imputation methods, respectively, in

the presence of missing values.



classifiers in the future applications. The theoretical results

also provide a guideline for pruning rules in a large rule set.
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