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a b s t r a c t 

Motivation: Adverse drug reactions (ADRs) are one of the leading causes of morbidity and mortality and 

thus should be detected early to reduce consequences on health outcomes. Medication dispensing data 

are comprehensive sources of information about medicine uses that can be utilized for the signal detec- 

tion of ADRs. Sequence symmetry analysis (SSA) has been employed in previous studies to detect signals 

of ADRs from medication dispensing data, but it has a moderate sensitivity and tends to miss some ADR 

signals. With successful applications in various areas, supervised machine learning (SML) methods are 

promising in detecting ADR signals. Gold standards of known ADRs and non- ADRs from previous studies 

create opportunities to take into account additional domain knowledge to improve ADR signal detection 

with SML. 

Objective: We assess the utility of SML as a signal detection tool for ADRs in medication dispensing 

data with the consideration of domain knowledge from DrugBank and MedDRA. We compare the best 

performing SML method with SSA. 

Methods: We model the ADR signal detection problem as a supervised machine learning problem by link- 

ing medication dispensing data with domain knowledge bases. Suspected ADR signals are extracted from 

the Australian Pharmaceutical Benefit Scheme (PBS) medication dispensing data from 2013 to 2016. We 

construct predictive features for each signal candidate based on its occurrences in medication dispensing 

data as well as its pharmacological properties. Pharmaceutical knowledge bases including DrugBank and 

MedDRA are employed to provide pharmacological features for a signal candidate. Given a gold standard 

of known ADRs and non-ADRs, SML learns to differentiate between known ADRs and non-ADRs based 

on their combined predictive features from linked sources, and then predicts whether a new case is a 

potential ADR signal. 

Results: We evaluate the performance of six widely used SML methods with two gold standards of known 

ADRs and non-ADRs from previous studies. On average, gradient boosting classifier achieves the sensitiv- 

ity of 77%, specificity of 81%, positive predictive value of 76%, negative predictive value of 82%, area under 

precision-recall curve of 81%, and area under receiver operating characteristic curve of 82%, most of which 

are higher than in other SML methods. In particular, gradient boosting classifier has 21% higher sensitiv- 

ity than and comparable specificity with SSA. Furthermore, gradient boosting classifier detects 10% more 

unknown potential ADR signals than SSA. 

Conclusions: Our study demonstrates that gradient boosting classifier is a promising supervised signal 

detection tool for ADRs in medication dispensing data to complement SSA. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Adverse drug reactions (ADRs) are unpleasant or harmful ef-

ects associated with taking a medicine [1] . For instance, anti-

nflammation drugs such as ibuprofen have been known to be as-
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ociated with gastrointestinal bleeding (stomach ulcers) [2] . ADRs

re among the top five causes of hospitalizations and deaths in

he U.S., costing billions of dollars annually [3,4] . Therefore, ADRs

hould be detected early to minimize consequences on health and

ost. Clinical trials, however, are unable to identify all possible

DRs due to limited population sizes [5] . Thus, post- marketing

rug safety surveillance, or pharmacovigilance, is necessary to con-

inue the detection of ADRs in larger populations. Pharmacovigi-

ance has mainly relied on spontaneous reporting systems (SRSs),

https://doi.org/10.1016/j.cmpb.2018.03.021
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Table 1 

An example of the PBS medication dispensing dataset. (Note that this is for illus- 

tration only). 

Patient ID Transaction ID Drug ATC code Supply date 

1 1 tramadol N02AX02 21/03/2014 

1 2 aspirin B01AC06 21/03/2014 

1 3 candesartan C09CA06 17/04/2014 

2 6 aspirin B01AC06 14/02/2012 

2 7 candesartan C09CA06 06/03/2012 

2 8 metoclopramide A03FA01 08/04/2012 

3 10 lisinopril C09AA03 09/01/2014 

3 11 codeine R05DA04 13/02/2014 
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e.g., U.S. Food and Drug Administration Adverse Event Reporting

System. SRSs allow drug consumers, health professionals and phar-

maceutical companies to report suspected ADRs. However, detect-

ing ADRs from SRSs has several limitations. First, SRSs suffer from

significant under-reporting. In fact, approximately 90% of ADRs

may not have been reported to SRSs [6] . Second, the passive na-

ture of SRSs may lead to reporting bias [5,7] . 

Given the limitations of SRSs, medication dispensing data have

been utilized as a complementary source for ADR detection. Medi-

cation dispensing data contain all records of prescribed drugs with

corresponding dates of supply generally collected for substantial

populations, and thus are less likely to suffer from under-reporting

or reporting bias [8] . An example of medication dispensing data is

the Pharmaceutical Benefit Scheme (PBS) dataset in Australia [9] .

Table 1 presents an example of the PBS dataset with three pa-

tients. While medication dispensing data do not usually include

any record of health outcomes, drugs can be used as proxies for

adverse events that they treat. For instance, the initiation of can-

desartan may indicate the treatment of emergent hypertension as

an ADR whereas metoclopramide may indicate emergent nausea.

Assuming that the time at which a drug is prescribed is close to

the time the drug is taken by the patient, a patient’s sequence of

prescriptions approximately reflects the temporal order that the

patient takes these drugs. Thus, medication dispensing data can

be utilized to gain insights into the temporal relationships be-

tween prescriptions for detecting signals of ADRs. A prescription

sequence 〈 drug 1 → drug 2 〉 may signal a potential adverse event in-

dicated by drug 2 and potentially induced by drug 1 or it could be

intended coadministration. For example, 〈 raloxifene → frusemide 〉
signals that raloxifene potentially induces oedema that is indicated

by frusemide [10] . 

SSA has been used previously as an ADR signal detection tool

for medication dispensing data. The principle behind SSA is to

identify the asymmetry in the sequence of first prescriptions be-

tween two drugs within a time period [11,12] . The advantage of

SSA is the consistent performance across different datasets [8,13] .

While SSA has been shown to be robust, it is subject to several

limitations. First, SSA was found to have a moderate sensitivity for

detecting ADRs [10] , i.e., tends to miss some ADR signals. In addi-

tion, to date, SSA has been used mainly for case-by-case assess-

ment, i.e., the input signal candidate has been filtered and sus-

pected to be potential ADR signal by medical experts [14] . The vi-

sual output of SSA allows domain experts to review the output and

use their knowledge of drug indications, mechanism and onset of

action and side effects to assess potential ADR signals [14] . The ad-

vent of extensive domain knowledge bases such as DrugBank and

MedDRA provides the potential to automate the selection or fil-

tering of potential ADR signals based on prespecified domain at-

tributes. 

With successful applications in various areas, supervised ma-

chine learning (SML) methods are promising in detecting ADR sig-

nals. In fact, SML has demonstrated effectiveness in many real-

word applications of healthcare, marketing, spam detection, etc.
15] . Available gold standards of known ADRs and non-ADRs from

revious studies [10,16] create opportunities to take into account

dditional domain knowledge such as drug indications from Drug-

ank and MedDRA to improve ADR detection with SML. Known

DRs are adverse events listed in the product information leaflets

f particular drugs [16] or have been detected in clinical trials [10] .

on ADRs are those not listed in the product information of a

rug and considered unlikely to be ADR signals by domain ex-

erts. Given a gold standard of known ADRs and non-ADRs, SML

earns to differentiate between known ADRs and non-ADRs using

heir combined predictive features from linked sources, and then

redicts whether a new case is a potential ADR signal. 

In this study, we investigate the utility of SML and domain

nowledge bases in detecting signals of ADRs from medication dis-

ensing data. We model the ADR signal detection problem as a su-

ervised machine learning problem by linking medication dispens-

ng data with domain knowledge bases. We utilize the PBS dataset

hat contains medication dispensing records of all patients subsi-

ized by the Australian government from 2013 to 2016 [9] . Our

bjective is to identify all sequences of the form 〈 drug 1 → drug 2 〉
hat signal potential ADRs. We construct predictive features for

ach signal candidate based on the temporal relationships between

rug 1 and drug 2 in the PBS dataset as well as their pharmaco-

ogical properties. For instance, the number of patients with the

rst prescription of drug 2 K weeks after the first prescription of

rug 1 was shown to be a useful temporal feature for ADR detec-

ion as its distribution over K tends to be similar for ADR signals

12] . Pharmacological features may also help improve the detection

f ADRs by reducing spurious signals. For example, if drug 1 and

rug 2 share many similar indications, this is likely to be coadmin-

stration or medication switching rather than a potential ADR sig-

al. To utilize pharmacological features, we augment drugs in the

BS dataset with their pharmacological information from DrugBank

17] and MedDRA [18] via their anatomical therapeutic chemical

ATC) codes [19] and indication names. 

We evaluate the performance of six commonly used SML meth-

ds using two gold standards containing known ADRs and non-

DRs [10,16] and one exploration set of known ADRs and unknown

otential ADR signals [8] . While SML was employed in previous

tudies for ADR signal detection in the health improvement net-

ork (THIN) data [20,21] , only random forests classifier [22] was

tudied and the data contain records of both prescriptions and

ealth outcomes instead of just prescriptions as in our case. To the

est of our knowledge, the performance of SML has not been stud-

ed on medication dispensing data. We found that gradient boost-

ng classifier consistently outper- form SSA and other SML methods

i.e., logistic regression, decision tree, support vector machine, neu-

al network, random forest) in most of the metrics across differ-

nt gold standards. The average sensitivity, specificity, positive pre-

ictive values and negative predictive value, area under precision-

ecall curve, and area under receiver operating characteristic curve

f gradient boosting classifier are 77%, 81%, 76%, 82%, 81%, and

2% respectively. Particularly, gradient boosting classifier has 21%

igher sensitivity and comparable specificity with SSA. This sug-

ests that gradient boosting classifier can be employed as an ADR

ignal detection tool to complement SSA and other existing meth-

ds. 

. Data 

.1. Medication dispensing dataset 

We utilize the PBS medication dispensing dataset in Australia

9] . The data covers a random 10% sample of patients subsidized

y the Australian government with their routinely updated records

f prescribed drugs and corresponding dates of supply from 2013
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Table 2 

Statistics of our PBS medication dispensing dataset. 

Statistics Value 

Total number of prescription transactions 7,294,244 

Total number of patients 1,807,159 

Total number of drugs 728 

Total timespan of the data 4 years (Jan 2013–Dec 2016) 
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p  
o 2016. An example of the dataset is shown in Table 1 . Each pa-

ient has a set of transactions in ascending order of supply dates,

.e., from earliest to latest. Each transaction consists of a drug pre-

cribed to a patient at a particular date of supply. Each drug is

dentified by a unique ATC code, e.g., C09CA06 for candesartan.

or each drug prescribed to a patient, we only utilize its first pre-

cription transaction and ignore the subsequent non-first transac-

ions. To ensure all the drugs are newly prescribed, we also remove

ransactions with drugs dispensed between July 2012 and Decem-

er 2012 as this was the start of the data and we were unable

o distinguish new use from prevalent use in this period. Table 2

ummarizes the statistics of our PBS medication dispensing dataset

fter the preprocessing. The dataset contains 7,294,244 prescrip-

ion transactions from 1,807,159 patients, constituting a total of 728

nique drugs. In this study, we assume that the time at which a

rug is prescribed to a patient is close to the time that drug is

aken by the patient. As a result, a patient’s sequence of prescribed

rugs approximately reflects the temporal order that the patient

akes these drugs. 

.2. Pharmacological knowledge bases 

To utilize pharmacological features in the signal detection of

DRs, we need to access the information regarding drug indica-

ions, i.e., the medical conditions that can be treated by a partic-

lar drug. Each drug in the medication dispensing data was inte-

rated with Structured Indications from DrugBank [17] via its ATC

ode. Furthermore, we enriched the drug indications by linking

tructured Indications to hierarchies in the medical dictionary for

egulatory activities (MedDRA) 19.0 [18] . In particular, each indi-

ation in structured indications was mapped to lowest level terms

LLTs), preferred terms (PTs), high level terms (HLTs), and high level

roup terms (HLGTs) in MedDRA. If there is an exact match be-

ween an indication’s name (e.g., coughing) and a term in LLTs or

Ts, the indication was firstly linked to the LLT term or PT term.

ince each LLT term or PT term has corresponding terms in LLT,

Ts, HLTs, and HLGTs, the indication is also linked to terms in all

evels of MedDRA. 

.3. ADR gold standards 

We evaluate our methods using two gold standards extracted

rom previous studies. The details of the gold standards are sum-

arized in Table 3 . The first gold standard, named Wahab13, con-

ists of 67 known ADRs and 83 non-ADRs [10] . The details of Wa-

ab13 can be found in the Appendix 2 and Appendix 3 of Wahab

t al [10] . Known ADRs refer to those adverse events of particu-

ar medicines that were identified in randomized controlled trials.

on ADRs are those not listed in the product information leaflet of

 medicine and any other medicine in the same therapeutic class

nd considered unlikely to be ADR signals by domain experts. Wa-

ab13 can be used to both train and test SMLs. The second gold

tandard, Harpaz14, contains 58 known ADRs and 65 non-ADRs

16] . Similar to Wahab13, Harpaz14 is usable for both training and

esting. The details of Harpaz14 can be found in the supplementary

aterial of Harpaz et al. [16] . 
We choose Harpaz14 and Wahab13 for evaluation for three rea-

ons. First, they are the two most recently published studies that

nclude gold standards for known ADRs and non-ADRs. Second,

he drugs in Wahab13 and Harpaz14 are diverse. Wahab13 covers

rugs with high usage volume in Australia [10] , while Harpaz14

ontains diverse drugs of multiple types from the US Food and

rug Administration [16] . Lastly, the natures of known ADRs in

ahab13 and Harpaz14 are different. Known ADRs in Wahab13 are

etrieved from randomized controlled trials, whereas known ADRs

n Harpaz14 are listed in product labels of the US Food and Drug

dministration. The differences between two datasets allow us to

est the generalizability of our methods. 

Besides the two gold standards, we also utilize an exploration

et, Wahab16, to assess the ability of our methods in picking up

nknown potential ADR signals. Wahab16 contains 41 known ADRs

isted in the medicine product information leaflets and 65 un-

nown potential ADR signals [8] . Unknown potential ADRs are nei-

her known ADRs nor non-ADRs. Unlike Wahab13 and Harpaz14,

ahab16 is used only for testing and exploration. All the known

DRs, non-ADRs and unknown potential ADR signals are encoded

nto the form 〈 drug 1 → drug 2 〉 by domain experts to be compatible

ith the medication dispensing dataset. 

. Methods 

.1. Overview 

Fig. 1 presents the workflow of our approach. Since the medi-

ation dispensing dataset does not contain any record of adverse

vent or health outcome, drugs are used as proxies for adverse

vents that they treat. Given the medication dispensing dataset,

ur main goal is to identify a set of sequences of the form 〈 drug 1 
 drug 2 〉 that signal potential ADRs. Particularly, the adverse event

s indicated by drug 2 and potentially induced by drug 1 . Our signal

etection process consists of two main steps. First, we extracted all

he sequences 〈 d 1 → d 2 〉 from the medication dispensing dataset

uch that for each of them, the drug d 2 occurs within the T ADR time

eriod after the drug d 1 in at least one patient. We set T ADR = 1

ear by default as it has been shown to be an appropriate time

eriod for ADR signal detection in previous studies [8,10,23] . We

howed empirically that one-year time period is the best option

n the Results section. After the extraction of sequences, we com-

uted the values of heterogeneous features for each sequence. The

etails of features will be discussed in a subsequent section. Given

he sequences and their features, we employed a supervised ADR

lassifier (i.e., SML) to predict whether each sequence is a potential

DR signal. Lastly, we excluded signals that are known ADRs and

etain unknown potential ADR signals for experts’ further investi-

ation. 

The core of our approach is the supervised ADR classifier. We

tilized the gold standards containing known ADRs and non-ADRs

i.e., Wahab13 and Harpaz14) to build the ADR classifier. Each gold

tandard was split into two parts. One part of the gold standard

as used to train the classifier and the remaining part to test the

erformance of the trained classifier. The split was repeated mul-

iple times to reduce the variance in the performance, which is re-

erred to as cross validation [15] . Before the training and testing

teps, the features of sequences were computed in a similar way

s in the signal detection process. The following section describes

he supervised ADR classifier in more detail, while the Results sec-

ion presents its performance. 

.2. Supervised ADR classifiers 

In this section, we describe the principles behind using SML to

redict potential ADR signals. Suppose we have a training set of N
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Table 3 

Statistics of our gold standards. 

Gold standard Number of 〈 drug1 → drug2 〉 indicating known ADRs Number of 〈 drug1 → drug2 〉 indicating non-ADRs 

Wahab13 [10] 67 83 

Harpaz14 [16] 58 65 

Extracting d1 -> d2 sequences

Medication Dispensing Data

Patient ID Drug ATC Code Dispensing Date

… … … …

Signal Detection Process Classifier Building Process

Sequence

d1 -> d 2

Computing d1 -> d2 features

Sequence Feature 1 … Feature K

d1 -> d 2 … … …

Predicting ADR signals

Sequence Feature 1 … Feature K Prediction

d1 -> d 2 … … … ADR

Supervised 
ADR 

Classifier

Sequence Label

d1 -> d 2 Known ADR

Reference Set

Computing d1 -> d2 features

Sequence Feature 1 … Feature K Label

d1 -> d 2 … … … Known ADR

Sequence … Label

d1 -> d 2 … Known ADR

Splitting data

Training SetTesting Set

Training Algorithm

ADR Classifier

Testing classifier

Performance

Excluding known ADRs

Unknown potential ADR signals

Sequence … Label

d1 -> d 2 … Known ADR

Medication Dispensing Data

Patient ID Drug ATC Code Dispensing Date

… … … …

Fig. 1. The workflow of our approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

observations {( x 1 , y 1 ),…, ( x N ,y N )} where x i is the feature vector of

the i-th sequence 〈 d (i ) 
1 

→ d (i ) 
2 

〉 and y i ∈ {0, 1} indicates whether

〈 d (i ) 
1 

→ d (i ) 
2 

〉 is a known ADR or non-ADR. The goal of classifier

learning is to find the best estimate of the prediction function f ̂( x )

mapping an input feature vector x to the binary output y by min-

imizing the expectation of some loss function L ( y, f ( x )) over the

join distribution of { x i ,y i } 
N 

i = 1 [15,24] (training phase). 

ˆ f ( x ) = argmin 

f (x ) 

E y,x L (y, f ( x ) ) (1)

The prediction function f ( x ) combines values of features in a

particular way. Different classifiers have different forms of f ( x ).

The estimated function f ̂( x ) can be used to predict y on observa-

tions where only the feature vectors x are available (testing phase).

In this study, we compared the performance of six widely used

classifiers in detecting signals of ADRs: logistic regression [25] , de-

cision tree [26] , support vector machine [27] , neural network [28] ,

random forests [22] , and gradient boosting [29,30] . We employed

the Scikit-learn library [31] in Python to provide the implemen-

tations for all the classifiers. In the following, we briefly describe

each classifier and its best configuration in our study. 

• Logistic regression: logistic regression classifier is one of the

most widely used classification methods. Logistic regression

classifier utilizes logistic function as the prediction function f

( x ) to linearly combine features for prediction. 

• Decision tree: decision tree classifier uses the tree structure to

represent the prediction function f ( x ) for decision making. Each

internal node in the tree indicates a test on the value of a fea-

ture while each outgoing branch from the node indicates the
outcome of the test. Each leaf node tells whether the preced-

ing path of feature tests indicates a potential ADR signal or not.

The idea of constructing a decision tree is to iteratively select

an unused feature whose values best split the sub-dataset in a

path into two classes based on certain criterion. In this study,

we use the Gini impurity criterion [32] to select the feature at

each node. 

• Support vector machine: support vector machine classifier rep-

resents known ADRs and non-ADRs as points in space according

to their feature values. The idea of support vector machine is to

identify f ̂( x ) that well separates known ADRs from non-ADRs

in space. Support vector machine can be categorized into linear

support vector machine and non-linear support vector machine.

In this study, we utilize linear support vector machine. 

• Neural network: neural network classifier is a classification

method whose structure f ( x ) contains layers of neurons. There

are three types of layers: input layer, hidden layer, and out-

put layer. There is one input layer containing all the features

for ADR classification. There is one output layer that holds the

value of prediction function f ̂( x ). Between input and output

layer are zero or multiple hidden layers. There are one or mul-

tiple neurons in each hidden layer. Features and the output are

special types of neurons. For our study, we only consider feed-

forward neural network [33] , in which a neuron in each layer

is connected to neurons in the next layer. Information from the

input layer is propagated through the hidden layers to the out-

put layer. Each neuron is the output of an activation function

taking the weighted linear summation of neuron values in the

previous layer as input. Various activation functions including
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t  
identity function, logistic function, etc. have been utilized. Here

we use 1 hidden layer with 100 neurons and rectified linear

unit function as the activation function. 

• Random forests: random forests classifier is an ensemble

method that combines multiple ADR decision tree classifiers.

The intuition is to obtain a strong ADR classifier out of many

weak ADR classifiers. Each ADR decision tree classifier in ran-

dom forests is trained using a different subset of training data

that are randomly sampled with replacement. Random forests

classifier then outputs the prediction that has the most votes

based on all the ADR decision tree classifiers. We empirically

build the ADR random forests classifier with 100 ADR decision

tree classifiers. Each ADR decision tree classifier uses the Gini

impurity criterion to select the feature at each node. 

• Gradient boosting: gradient boosting classifier is another en-

semble classifier with similar intuition as random forests clas-

sifier. Gradient boosting aggregates many weak ADR classifiers

into a strong ADR classifier. Gradient boosting begins with

learning a base weak ADR classifier and then iteratively learn-

ing additional weak classifiers that focus on observations dif-

ficult to predict in previous iterations. Different from random

forests classifier, a weak ADR classifier in gradient boosting

classifier can be any supervised machine learning classifier such

as logistic regression, decision tree, etc. [15] , which alone does

not achieve high predictive per- formance. Another fundamen-

tal difference between gradient boosting classifier and random

forests classifier is that gradient boosting classifier focuses on

specific difficult-to-predict observations after each iteration in-

stead of randomly sampled observations as in random forests

classifiers. In this study, we empirically utilize 10 0 0 decision

tree classifiers as weak ADR classifiers. Since gradient boosting

classifier achieves the best ADR prediction performance as we

shall see in the Results section, we describe more details about

gradient boosting classifier in the Appendix. 

.3. Sequence features 

We now describe the features based on which each sequence

 d 1 → d 2 〉 is classified as whether it signals an ADR. The features

re categorized into three groups: (1) statistic features, (2) group-

ased statistic features, and (3) pharmacological features. 

.3.1. Statistic features 

This group of features captures the prevalence of different con-

gurations of the sequence in the medication dis- pensing dataset.

• Sequence support: the number of patients to whom the first

prescription of d 2 occurs within T ADR = 1 year after the first pre-

scription of d 1 . 

• Reverse sequence support: the number of patients to whom the

first prescription of d 1 occurs within T ADR = 1 year after the first

prescription of d 2 . 

• d 1 ’s support: the number of patients to whom d 1 was pre-

scribed. 

• d 2 ’s support: the number of patients to whom d 2 was pre-

scribed. 

• 1st-week sequence support: the number of patients to whom

the first prescription of d 2 occurs in the 1st week after the first

prescription of d 1 . 

• 2nd-week sequence support: the number of patients to whom

the first prescription of d 2 occurs in the 2nd week after the first

prescription of d 1 . 

• …

• 52nd-week sequence support: the number of patients to whom

the first prescription of d 2 occurs in the 52nd week after the

first prescription of d . 
1 
• 1st-week reverse sequence support: the number of patients to

whom the first prescription of d 1 occurs in the 1st week after

the first prescription of d 2 . 

• 2nd-week reverse sequence support: the number of patients to

whom the first prescription of d 1 occurs in the 2nd week after

the first prescription of d 2 . 

• …

• 52nd-week reverse sequence support: the number of patients

to whom the first prescription of d 1 occurs in the 52nd week

after the first prescription of d 2 . 

Note that the features were computed up to the 52nd week as

ne year corresponds to 52 weeks. When T ADR changes, the num-

er of features also changes accordingly. For instance, if T ADR = 9

onths then the features are up to 39 weeks. 

.3.2. Group-based statistic features 

Some drugs are so rarely prescribed in the medication dis-

ensing dataset that it is difficult to pick up ADR signals asso-

iated with them. For instance, betaxolol was prescribed to only

43 patients and the sequence support of 〈 betaxolol → frusemide 〉
s only 7. While 〈 betaxolol → frusemide 〉 signals a known ADR

 betaxolol → oedema 〉 [8] , it is not detected by SSA due to the lack

f data. To alleviate the data rarity, we utilized additional features

elated to groups of drugs. Drugs having the same ATC fourth level

i.e., first five letters) belong to the same chemical subgroup and

hus share many essential properties [19] . Let D 1 and D 2 repre-

ent the groups of drugs having the same ATC fourth levels with d 1 
nd d 2 respectively. Statistic features of 〈 D 1 → D 2 〉 might be help-

ul for detecting 〈 d 1 → d 2 〉 . The group of drugs having the same

TC fourth level with betaxolol has the support of 11,523 patients. 

• Group-based sequence support: the number of patients to

whom the first prescription of D 2 occurs within T ADR = 1 year

after the first prescription of D 1 . 

• Group-based reverse sequence support: the number of patients

to whom the first prescription of D 1 occurs within T ADR = 1 year

after the first prescription of D 2 . 

• D 1 ’s support: the number of patients to whom D 1 was pre-

scribed. 

• D 2 ’s support: the number of patients to whom D 2 was pre-

scribed. 

• Group-based 1st-week sequence support: the number of pa-

tients to whom the first prescription of D 2 occurs in the 1st

week after the first prescription of D 1 . 

• Group-based 2nd-week sequence support: the number of pa-

tients to whom the first prescription of D 2 occurs in the 2nd

week after the first prescription of D 1 . 

• …

• Group-based 52nd-week sequence support: the number of pa-

tients to whom the first prescription of D 2 occurs in the 52nd

week after the first prescription of D 1 . 

• Group-based 1st-week reverse sequence support: the number

of patients to whom the first prescription of D 1 

• occurs in the 1st week after the first prescription of D 2 . 

• Group-based 2nd-week reverse sequence support: the number

of patients to whom the first prescription of 

• D 1 occurs in the 2nd week after the first prescription of D 2 . 

• …

• Group-based 52nd-week reverse sequence support: the number

of patients to whom the first prescription of 

• D 1 occurs in the 52nd week after the first prescription of D 2 . 

.3.3. Pharmacological features 

This group of features helps identify sequences that are likely

o represent coadministration or medication switching rather than
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potential ADR signals. If 〈 d 1 → d 2 〉 is coadministration or medica-

tion switching, d 1 and d 2 tend to share similar indications or over-

laps in prefixes of ATC codes. We employed DrugBank [17] to pro-

vide the indica- tions for each drug in the medication dispens-

ing data. We also utilized hierarchy-based indications in MedDRA

[18] as discussed in the Data section. 

• Overlapping ATC prefixes: the number of prefixes shared by d 1 
and d 2 in their ATC codes. 

• Overlapping DrugBank indications: the number of DrugBank in-

dications shared by d 1 and d 2 . 

• Overlapping MedDRA LLT indications: the number of MedDRA

lowest level terms shared by d 1 and d 2 . 

• Overlapping MedDRA PT indications: the number of MedDRA

preferred terms shared by d 1 and d 2 . 

• Overlapping MedDRA HLT indications: the number of MedDRA

high level terms shared by d 1 and d 2 . 

• Overlapping MedDRA HLGT indications: the number of Med-

DRA high level group terms shared by d 1 and d 2 . 

3.4. Evaluation measures for ADR classifiers 

We evaluated the performance of supervised ADR classifiers us-

ing sensitivity, specificity, positive predictive value, and negative

predictive value [10] . Sensitivity measures the proportion of known

ADRs in the gold standard that are predicted as potential ADR sig-

nals by the classifier. Specificity is the proportion of non-ADRs in

the gold standard that are not predicted as potential ADR signals

by the classifier. Positive predictive value measures the proportion

of ADR signals predicted as potential ADR signals by the classifier

that are actually known ADRs in the gold standard. Negative pre-

dictive value is the proportion of ADR signals not predicted as po-

tential ADR signals by the classifier that are actually non-ADRs in

the gold standard. All four measures are important to evaluate the

methods. While sensitivity and specificity measure how well the

methods correctly detect known ADRs and non-ADRs in the gold

standard, positive predictive value and negative predictive value

measure the ability of the methods in predicting whether a pair

is a potential unknown ADR or spurious. These four measures have

been used in previous studies on ADR signal detection such as Wa-

hab et al [10] . 

Furthermore, we utilized the receiver operating characteristic

curve (ROC curve) and the precision-recall curve (PR curve) to

compare different classifiers. Each SML classifier predicts an ADR

with a probability, and the most intuitive and widely used prob-

ability threshold to determine whether a sequence is a potential

ADR signal is 0.5. ROC curve is generated by plotting the sensi-

tivity against 1-specificity at different probability thresholds of the

classifier (e.g., 0, 0.01, 0.02, . . . , 1). PR curve is created by plot-

ting the precision (i.e., positive predictive value) against the recall

(i.e., sensitivity) at different thresholds. The area under ROC curve

(ROC–AUC) indicates the balance between sensitivity and speci-

ficity, while the area under PR curve (PR–AUC) the balance be-

tween precision and recall. These two curves have been intensively

utilized for evaluating classification models [34] . 

3.5. SSA–baseline ADR signal detection tool 

We compared the performance of SML methods with SSA, a

current ADR signal detection tool in medication dispensing data

[10–12,35–55] . Petri et al. was the first to introduce SSA in 1988

[11] . Hallas then conceptualized SSA to test the association be-

tween cardiovascular medications and depression in 1996 [12] . The

principle behind SSA is to identify the asymmetry in the sequence

of first prescriptions between two drugs d 1 and d 2 within a time

period T . If d induces the prescription of d as a result of
ADR 1 2 
n ADR, patients with the first prescription of d 1 before the first

rescription of d 2 are expected to outnumber patients for whom

 2 are firstly prescribed before d 1 are firstly prescribed. As a re-

ult, the crude sequence ratio was defined as the ratio between

he number of patients with 〈 d 1 → d 2 〉 and the number of patients

ith 〈 d 2 → d 1 〉 [12] . The crude sequence ratio could be utilized as

n estimate of the incident rate ratio of the ADR when d 1 is ex-

osed versus when d 1 is not exposed [12,14] . While the crude se-

uence ratio is not affected by confounders that are stable over

ime, it is sensitive to changes in prescription trends [13] . For in-

tance, if the use of d 2 increases due to changes in reimburse-

ent, the number of patients with 〈 d 1 → d 2 〉 rises. In this case,

he crude sequence ratio overestimates the true incident rate ra-

io and may be biased [14] . To eliminate this bias, Hallas proposed

o divide the crude sequence ratio by the null-effect sequence ratio

hat captures the prescription trends in the background population

12] . The null-effect sequence ratio is computed as the expected

equence ratio of d 2 being firstly prescribed after d 1 is firstly pre-

cribed if d 1 and d 2 are independent. Tsiropoulos et al. later mod-

fied the null-effect sequence ratio to restrict the time period be-

ween the first prescriptions of d 1 and d 2 [35] . Thus, the adjusted

equence ratio was defined as the ratio between crude sequence

atio and null-effect sequence ratio. SSA relies on the adjusted se-

uence ratio to predict potential ADR signals. If the 95% confidence

nterval lower limit of the adjusted sequence ratio exceeds one,

 d 1 → d 2 〉 is considered a potential ADR signal. The advantage of

SA is its consistent performance across different datasets [8,13] . 

. Results 

.1. Validation against known ADRs and non-ADRs 

In this section, we compare the performances of six supervised

DR classifiers upon detecting known ADRs and non-ADRs in the

old standards Wahab13 and Harpaz14. First, we describe the vali-

ation setting. Then we study the effect of varying the probability

hresholds, time periods T ADR and the set of features. 

.1.1. Validation settings 

We designed the following four settings to validate the perfor-

ances of supervised ADR classifiers in this study: 

• Wahab13 (Cross Validation): the gold standard Wahab13 is split

into a training set (75%) and a testing set (25%). The perfor-

mances of each ADR classifier are averaged over 100 random

splits. 

• Harpaz14 (Cross Validation): the gold standard Harpaz14 is split

into a training set (75%) and a testing set (25%). The perfor-

mances of each ADR classifier are averaged over 100 random

splits. 

• Wahab13 (Train) + Harpaz14 (Test): each ADR classifier is

trained using Wahab13 and tested with Harpaz14. 

• Harpaz14 (Train) + Wahab13 (Test): each ADR classifier is

trained using Harpaz14 and tested with Wahab13. 

.1.2. The performances of supervised ADR classifiers in validation 

Table 4 presents the performances of six supervised ADR classi-

ers and SSA in terms of sensitivity, specificity, positive predictive

alue and negative predictive value under various validation set-

ings. Figs. 2 and 3 show the PR curves and ROC curves with cor-

esponding AUCs for different supervised ADR classifiers. Overall,

radient boosting classifier achieves the sensitivity of 77%, speci-

city of 81%, positive predictive value of 76%, negative predictive

alue of 82%, PR-AUC of 81%, and ROC-AUC of 82%, most of which

re highest among other supervised ADR classifiers and SSA across

ifferent settings. In com parison with SSA, gradient boosting clas-

ifier improves the sensitivity by 21%, specificity by 3%, positive
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Table 4 

Performances of supervised ADR classifiers and SSA in validation. 

Setting Method Sensitivity Specificity Positive predictive value Negative predictive value 

Wahab13 (Cross validation) Logistic regression 66% 78% 72% 74% 

Decision tree 71% 79% 74% 78% 

Support vector machine 56% 60% 59% 59% 

Neural network 64% 50% 52% 62% 

Random forests 66% 90% 85% 77% 

Gradient boosting 84% 87% 85% 87% 

Harpaz14 (Cross validation) Logistic regression 73% 72% 74% 74% 

Decision tree 74% 70% 72% 74% 

Support vector machine 53% 49% 51% 51% 

Neural network 49% 48% 44% 49% 

Random forests 68% 82% 80% 72% 

Gradient boosting 77% 80% 81% 79% 

Wahab13 (Train) + Harpaz14 (Test) Logistic regression 51% 63% 59% 55% 

Decision tree 74% 54% 63% 67% 

Support vector machine 67% 41% 55% 55% 

Neural network 70% 24% 49% 43% 

Random forests 44% 80% 70% 58% 

Gradient boosting 76% 75% 65% 83% 

Harpaz14 (Train) + Wahab13 (Test) Logistic regression 59% 73% 64% 69% 

Decision tree 48% 63% 51% 59% 

Support vector machine 67% 20% 41% 43% 

Neural network 52% 69% 58% 64% 

Random forests 49% 89% 79% 68% 

Gradient boosting 70% 80% 72% 79% 

Wahab13 (Test) SSA 64% 75% 68% 72% 

Harpaz14 (Test) 47% 80% 61% 71% 

Average Logistic regression 62% 72% 67% 68% 

Decision tree 67% 67% 65% 70% 

Support vector machine 61% 43% 52% 52% 

Neural network 59% 48% 51% 55% 

Random forests 57% 85% 79% 69% 

Gradient boosting 77% 81% 76% 82% 

SSA 56% 78% 65% 72% 
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redictive value by 11%, and negative predictive value by 10% on

verage. This shows that gradient boosting classifier is able to de-

ect additional potential ADR signals that might be unobserved by

SA without picking up more spurious signals. While the same

old standard Wahab13 is used in Wahab et al. [10] and in this pa-

er, the performance of SSA is different for two reasons. First, the

eriods of medication dispensing data are different. Wahab et al.

10] used the records between 20 0 0 and 2010, whereas we used

he records between 2013 and 2016. Second, Wahab et al. [10] uti-

ized hospitalization records in addition to medication dispensing

ecords as in our case. 

In addition, we observe that gradient boosting classifier con-

istently outperforms all other supervised ADR classi- fiers except

andom forests classifier in all six measures. Compared to random

orests classifier, on average, gradient boosting classifier has 20%

igher sensitivity, 13% higher negative predictive value, 5% higher

R-AUC, and 4% higher ROC–AUC, but 4% lower specificity and

% lower positive predictive value. The slight trade-offs in speci-

city and positive predictive value allows gradient boosting clas-

ifier to detect more potential ADR signals than RF classi- fier,

hich result in much higher sensitivity and negative predictive

alue. Figs. 2 and 3 also demonstrated that gradient boosting clas-

ifier outperforms random forests classifier and other supervised

DR classifiers under dif- ferent probability thresholds. These re-

ults show that gradient boosting classifier is a promising ADR sig-

al detection tool in medication dispensing data. Furthermore, in

eal-world applications, a supervised ADR classifier would al- ways

e trained on one gold standard but used to detect unknown ADR

ignals, which are completely different from those on which it is

rained. Thus, the encouraging performance of gradient boosting

lassifier when training on one gold standard and testing on an-

ther reflects its likely real-world applicability. 
t  

b  
.1.3. The e ffect of di fferent probability thresholds 

Table 5 presents the performance of gradient boosting classi-

er under different probability thresholds from 0.5 to 0.9. As the

hreshold increases, the sensitivity decreases and the specificity in-

reases consistently. This is because fewer sequences are classified

s potential ADR signals with higher thresholds. Thus, the number

f true positives either remains unchanged or decreases, making

he sensitivity unchanged or decrease. Likewise, as the number of

alse positives is either the same or reduced, the number of true

egatives stays still or rises, and so is the specificity. In addition,

e observe that the positive predictive value rises while the nega-

ive predictive value drops as the threshold increases. This demon-

trates that higher thresholds can eliminate many false positives

ut at the same time introduce many false negatives. Furthermore,

he results show that gradient boosting classifier still outperforms

SA on average under higher thresholds. For instance, when the

hreshold is 0.9, the gradient boosting classifier achieves the sensi-

ivity of 64%, specificity of 87%, positive predictive value of 79%,

nd negative predictive value of 76%, which is higher than SSA

ith sensitivity of 56%, specificity of 78%, positive predictive value

f 65%, and negative predictive value of 72%. 

.1.4. The effect of time period T ADR 

Table 6 demonstrates how the performance of gradient boost-

ng classifier changes when the time period T ADR varies from

2 months to 3 months. The results show that gradient boost-

ng classifier obtains the best balance between sensitivity, speci-

city, positive predictive value, and negative predictive value when

 ADR = 12 months across different settings. On average, gradi-

nt boosting classifier also achieves the best performance when

 ADR = 12 months. In addition, as the time period T ADR decreases,

he sensitivity of the method also drops in each setting. This is

ecause fewer sequences are extracted from the medication dis-
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Logistic 
regression Decision tree Support vector 

machine Neural network Random 
forests

Gradient 
boosting

Average PR-AUC 72% 68% 57% 65% 76% 81%

Fig. 2. Precision-recall curves for all validation settings. 

Table 5 

Performance of gradient boosting classifier under different probability thresholds. 

Setting Probability threshold Negative Specificity Positive predictive value Negative predictive value 

Wahab13 (Cross validation) 0.5 84% 87% 85% 87% 

0.6 82% 88% 86% 86% 

0.7 81% 89% 86% 86% 

0.8 80% 91% 88% 86% 

0.9 78% 91% 89% 84% 

Harpaz14 (Cross validation) 0.5 77% 80% 81% 79% 

0.6 76% 81% 81% 79% 

0.7 75% 81% 82% 77% 

0.8 74% 82% 82% 77% 

0.9 72% 86% 85% 76% 

Wahab13 (Train) + Harpaz14 (Test) 0.5 76% 75% 65% 83% 

0.6 75% 76% 66% 82% 

0.7 71% 76% 66% 81% 

0.8 71% 78% 66% 81% 

0.9 61% 82% 68% 77% 

Harpaz14 (Train) + Wahab13 (Test) 0.5 70% 80% 72% 79% 

0.6 63% 80% 72% 73% 

0.7 55% 82% 72% 70% 

0.8 51% 83% 73% 68% 

0.9 45% 88% 75% 67% 

Average 0.5 77% 81% 76% 82% 

0.6 74% 81% 76% 80% 

0.7 71% 82% 77% 79% 

0.8 69% 84% 77% 78% 

0.9 64% 87% 79% 76% 
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Logistic 
regression Decision tree Support vector 

machine Neural network Random 
forests

Gradient 
boosting

Average PR-AUC 72% 70% 55% 53% 78% 82%

Fig. 3. Receiver operating characteristic curves for all validation settings. 

Table 6 

Performance of gradient boosting classifier across different time period T ADR . 

Setting TADR (months) Sensitivity Specificity Positive predictive value Negative predictive value 

Wahab13 (Cross validation) 12 84% 87% 85% 87% 

9 83% 87% 85% 86% 

6 82% 88% 85% 86% 

3 82% 88% 86% 86% 

Harpaz14 (Cross validation) 12 77% 80% 81% 79% 

9 20% 80% 47% 49% 

6 19% 81% 47% 49% 

3 17% 83% 48% 50% 

Wahab13 (Train) + Harpaz14 (Test) 12 76% 75% 65% 83% 

9 40% 66% 55% 51% 

6 35% 66% 52% 49% 

3 33% 71% 54% 50% 

Harpaz14 (Train) + Wahab13 (Test) 12 70% 80% 72% 79% 

9 65% 77% 70% 73% 

6 61% 64% 58% 67% 

3 61% 65% 59% 67% 

Average 12 77% 81% 76% 82% 

9 52% 78% 64% 65% 

6 49% 75% 61% 63% 

3 48% 77% 62% 63% 
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Table 7 

Performance of gradient boosting classifier for different features. 

Setting Features Sensitivity Specificity Positive predictive value Negative predictive value 

Wahab13 (Cross validation) All features 84% 87% 85% 87% 

No statistic features 82% 87% 84% 86% 

No group-based statistic features 74% 84% 80% 80% 

No pharmacological features 82% 86% 84% 86% 

Harpaz14 (Cross validation) All features 77% 80% 81% 79% 

No statistic features 75% 75% 76% 76% 

No group-based statistic features 69% 58% 63% 65% 

No pharmacological features 75% 73% 75% 75% 

Wahab13 (Train) + Harpaz14 (Test) All features 76% 75% 65% 83% 

No statistic features 74% 44% 58% 62% 

No group-based statistic features 49% 76% 68% 58% 

No pharmacological features 70% 44% 57% 58% 

Harpaz14 (Train) + Wahab13 (Test) All features 70% 80% 72% 79% 

No statistic features 69% 72% 67% 74% 

No group-based statistic features 75% 48% 54% 71% 

No pharmacological features 56% 68% 59% 65% 

Average All features 77% 81% 76% 82% 

No statistic features 75% 70% 71% 75% 

No group-based statistic features 67% 67% 66% 69% 

No pharmacological features 71% 68% 69% 71% 
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pensing data. Furthermore, it can be observed that the gradient

boosting classifier is generally more sensitive to time period T ADR 

in Harpaz14 rather than in Wahab13. When T ADR decreases from

12 months to 9 months, the performance of gradient boosting

classifier drops significantly from 77% to 20% in Harpaz14 (Cross

validation) while only 84% to 83% in Wahab13 (Cross validation).

This suggests that Wahab13 is a better training set than Harpaz14,

which may be because the known ADRs in Wahab13 comes from

randomized controlled trials instead of product information leaflets

as in Harpaz14. 

4.1.5. The effect of different features 

First, we examined the effect of different f eature groups, i.e.,

statistic features, group-based statistic features, and pharmacologi-

cal features. Table 7 shows the changes in the performance of gra-

dient boosting classifier as different groups of features are missing

in various settings. On average, across different settings, the per-

formance of gradient boosting classifier drops when any type of

feature is excluded. When statistic features are missing, the sensi-

tivity, specificity, positive predictive value and negative predictive

drop by 2%, 11%, 5%, and 7% respectively. When there is no group-

based statistic features, the sensitivity, specificity, positive predic-

tive value and negative predictive are reduced by 10%, 14%, 10%,

and 13%. When pharmacological features are absent, the sensitiv-

ity, specificity, positive predictive value and negative predictive de-

crease by 6%, 13%, 7%, and 11%. These results show that all three

types of features are essential in distinguishing between known

ADRs and non-ADRs. Among three types of features, the perfor-

mance of gradient boosting classifier changes most significantly

when group-based statistic features are excluded. In other words,

group-based statistic features are most important in the signal de-

tection of ADRs. This may be because that drugs within the same

group (i.e., same ATC fourth level) often have common ADRs and

thus group-based statistic features are essential in signaling ADRs

in which drugs are rarely prescribed. 

Furthermore, we examined the effects of different individual

features. Fig. 4 presents the top 50 features with highest relative

feature importance in predicting potential ADR signals by gradient

boosting classifier. The features are sorted by their relative impor-

tance descendingly. How to compute feature importance are dis-

cussed in [56] and implemented by the Scikit-learn library [31] .

In brief, for each ADR decision tree classifier in gradient boosting

classifier, we computed the importance of a feature as the propor-

tion of observations it can be used to differentiate between known
DRs and non-ADRs. Then the importance of each feature is av-

raged over all ADR decision tree classifiers. Feature importance

s in the range [0,1] with higher scores indicating more impor-

ant features. Features belonging to different groups are colored

ifferently. It can be observed that most features in the top 50

re group-based statistic features, i.e., orange bars. This is consis-

ent with our earlier results in Table 7 , meaning that group-based

tatistic features play the most important role in differentiating be-

ween known ADRs and non-ADRs. In particular, D 2 ’s support and

 1 ’s support are the two most important features. Intuitively, large

alues of D 2 ’s support and D 1 ’s support show that D 1 and D 2 are

ommonly prescribed to patients, and thus the signal 〈 d 1 → d 2 〉 is
ikely to be spurious. The same intuition applies for d 1 ’s support

nd d 2 ’s support and therefore they are also in the top 5. In addi-

ion, we observe that the group-based 1st-week sequence support

nd group-based 1st-week reverse sequence support are very im-

ortant features (i.e., in the top 5). This most likely reflects the

cute ADR response soon after initiating treatment. Two pharma-

ological features in the top 50 are overlapping ATC prefixes (rank

th) and overlapping MedDRA HLT indications (rank 50th). Since

rugs sharing similar indications often have a first few overlapping

TC letters, the overlapping ATC prefixes feature is important in

istinguishing known ADRs from coadministrations or drug switch-

ng. The importance of the overlapping MedDRA HLT indications

eature shows that high level terms in MedDRA are most appropri-

te to represent drug indications in ADR signal prediction. 

.2. Comparison of ADR signals detected by gradient boosting 

lassifier and SSA 

In this section, we compared the ADR signals detected by gra-

ient boosting classifier and SSA from the testing set Wahab16.

mong 106 signals in Wahab16, 41 are known ADRs and 65 are

nknown potential ADRs. Fig. 5 depicts known ADRs and unknown

otential ADR signals with their adjusted sequence ratios (by SSA)

nd probabilities (by gradient boosting classifier). Blue circles rep-

esent known ADRs while red squares indicate unknown potential

DR signals. A signal is picked up by SSA if the 95% confidence

nterval lower limit of its adjusted sequence ratio exceeds 1 and

icked up by gradient boosting classifier if its probability is greater

han 0.5. ADR signals of higher confidence are assigned higher ad-

usted sequence ratios (rightward) by SSA and higher probabilities

upward) by gradient boosting classifier. It can be observed from

ig. 5 that most known ADRs and unknown potential ADR signals
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Fig. 4. Top 50 features with highest relative importance in predicting potential ADR signals by gradient boosting classifier. 

Table 8 

Comparison of known ADRs detected by SSA and gradient boosting classifier. 

Predicted as potential signals by SSA? 

Yes No Total 

Predicted as potential Yes 31 7 38 

signals by gradient No 1 2 3 

boosting classifier? Total 32 9 41 

Table 9 

Comparison of unknown potential ADR signals detected by SSA and gradient 

boosting classifier. 

Predicted as potential signals by SSA? 

Yes No Total 

Predicted as potential Yes 50 10 60 

signals by gradient No 3 2 5 

boosting classifier? Total 53 12 65 
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etected by both SSA and gradient boosting classifier are located

n the top left corner, i.e., higher probabilities and lower adjusted

equence ratio. This demonstrates that gradient boosting classifier

s more confident about these signals than SSA although previous

tudies [10–12,35–55] show that it is empirically rare for a signal

o have an adjusted sequence ratio above 2. 

In addition, Tables 8 and 9 present more detailed comparisons.

able 8 compares the known ADRs detected by gradient boosting

lassifier and SSA. Among 41 known ADRs, gradient boosting clas-

ifier and SSA both detect the 31 same known ADRs (76%). Gradi-

nt boosting classifier is able to identify 7 known ADRs that are

ot detected by SSA (17%). On the other hand, gradient boosting
lassifier fails to detect 1 known ADR that is picked up by SSA

2%). Both methods are not able to identify 2 known ADRs (5%).

able 9 compares the unknown potential ADR signals detected by

radient boosting classifier and SSA. Both gradient boosting clas-

ifier and SSA identify 50/65 same signals (77%). Gradient boost-

ng classifier detects 10 unknown potential ADR signals that are

ot picked up by SSA (15%). In contrast, gradient boosting classifier

oes not pick up 3 signals detected by SSA (5%). Both methods con-

ider 12 signals as not potential ADR signals. These results show

hat gradient boosting classifier not only identifies more known

DRs (15%) but also more unknown potential ADR signals (10%)

han SSA. 

. Discussion 

It can be observed from the results that gradient boosting

lassifier has a higher sensitivity than SSA, i.e., is able to detect

ore known ADRs as well as unknown potential ADR signals. We

ave also shown that gradient boosting classifier has a comparable

pecificity with SSA, which means gradient boosting classifier does

ot pick up more spurious signals than SSA. These results sug-

est that gradient boosting classifier is a promising signal detection

ethod for ADRs to complement SSA using medication dispensing

ata. Besides, Wahab et al. [54] found that SSA could detect ADR

ignals such as the association between rofecoxib and heart attack

arlier than spontaneous reports. Thus, gradient boosting classifier

as the potential to enhance the timeliness of safety signal detec-

ion which will reduce harm and translate to improved health out-

omes. 
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Fig. 5. Comparison of ADR signals detected by SSA (95% confidence interval lower 

limit of adjusted sequence ratio > 1) and gradient boosting classifier (probability 

> 0.5). ADR signals of higher confidence are assigned higher adjusted sequence ra- 

tios (rightward) by SSA and higher probabilities (upward) by gradient boosting clas- 

sifier. 
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Random forests classifier has been commonly utilized in other

settings due to its high predictive performance and very few pa-

rameters to tune [22] . In fact, random forests classifier was used in

previous studies [20,21] to predict potential ADR signals from the

health improvement network (THIN) data in the United Kingdom.

One empirical study found that gradient boosting classifier per-

forms better than random forest classifier in eight different metrics

[57] . Another empirical study shows that gradient boosting classi-

fier has the best performance among all when the number of fea-

tures is below 40 0 0 [58] . Our results confirm these observations

by showing that gradient boosting classifier outperforms random

forests classifier in balancing between all four metrics when there

are 247 features. 

Supervised ADR classifiers in general and gradient boosting

classifier in particular, however, are subject to certain limita-

tions. First, the performance of gradient boosting classifier de-

pends greatly on the quality of training data. Gradient boosting

classifier can well detect ADR signals whose combinations of fea-

tures approximately match those known ADRs in the training set.

As such, the deployment of gradient boosting classifier requires

firstly building a high quality training set that covers many dif-

ferent types of known ADRs and non-ADRs, and extensive test-

ing on many additional datasets. Second, gradient boosting clas-

sifier is difficult to understand by stakeholders. The basic princi-

ples of gradient boosting classifier are based on complicated statis-

tical modeling and often viewed as a black-box. Since signal detec-

tion tools would be used and assessed by clinicians or medical ex-

perts rather than mathematicians, gradient boosting classifier will

have lower acceptability than SSA or self-controlled designs whose

mechanisms are more straightforward to understand [13] . Another

limitation of gradient boosting classifier is the lack of interpretabil-

ity of results. While each potential ADR signal detected by gradi-

ent boosting classifier is associated with a probability, this does not

correspond to a risk estimate, which is often expected by clinicians

to determine which signals should be further investigated [13] . 

One way to address these limitations in future work is to com-

bine gradient boosting classifier and SSA in a complementary man-
er for ADR signal detection. The group of ADR signals detected by

oth methods should be investigated first, followed by those iden-

ified by one method but not picked up by another. The adjusted

equence ratio provided by SSA can then be utilized as a risk es-

imate to prioritize the ADR signals in each group. Moreover, the

utput from SSA can be used as a reference to guide and alleviate

he dependency of gradient boosting classifier on the training data.

Furthermore, the efficiency of training gradient boosting classi-

er can be improved to facilitate routine signal detection. At the

oment, gradient boosting classifier needs to be re-trained on the

hole training data to take into account additional training exam-

les. This process will take longer time as the training data grows

igger, which affects the signal detection. Online gradient boosting

59] could potentially solve this problem by learning new training

xamples in an incremental manner. 

Lastly, a major limitation of using medication dispensing data

or ADR signal detection is that only ADRs whose adverse events

re treated by medications can be picked up. This limitation can

e potentially addressed by relying on additional sources such as

nstructured data to provide adverse events. Recent studies have

emonstrated the feasibility of detecting ADR signals from unstruc-

ured data sources. Wang et al. [60] proposed a method to detect

DRs from clinical notes while White et al. [61] investigated the

DR detection from search log data. 

. Conclusion 

ADRs have been creating substantial burden for patients and

ealthcare systems. Thus, early detection of ADRs could reduce

arm and improve peoples health outcomes. In this study, we have

emonstrated the utility of SML as a signal detection tool for ADRs

n medication dispensing data. We found that gradient boosting

lassifier achieves the best performance among all the supervised

DR classifiers. In addition, gradient boosting classifier has higher

ensi- tivity and comparable specificity in comparison with SSA,

 current signal detection method in medication dispensing data.

hus, gradient boosting classifier is a promising ADR signal detec-

ion tool to complement SSA. 
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ppendix 

Gradient boosting ADR classifier 

In this section, we provide some further details of how to learn

 gradient boosting ADR classifier. Formally, let h ( x ; αk ) represent

he weak ADR classifier added at iteration k , where αk is the set

f parameters. The gradient boosting ADR classifier represented by

 ( x ) is the weighted combination of weak classifiers added over K

terations. 

f (x ) = X 

K 

k =1 
βk h (x ;αk ) (2)

here βk denotes the weight of classifier added at iteration k . 

As a result, the goal of learning the gradient boosting ADR clas-

ifier is to estimate the parameters { α∗, β∗} K such that: 

 α ∗
k 
, β ∗

k 
} K 

k =1 
= argmin 

{ αk , βk } K 

k =1 

X N 
i =1 

L ( y i , f ( x i )) = argmin 

{ αk , βk } K 

k =1 

X N 
i =1 

L y i , X N 
i =1 

K 

βk 

h ( x i ,

(3)

The process of estimating the parameters is summarized in

lgorithm 1 [24] . There are two main steps in each iteration k .

http://dx.doi.org/10.13039/501100000923
http://dx.doi.org/10.13039/501100000925
http://dx.doi.org/10.13039/501100000925
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Algorithm 1 Learning algorithm for gradient boosting ADR classifier. 
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irst, the algorithm estimates the parameters αk by fitting the

eak ADR classifier h ( x ; αk ) to the negative gradient of the loss

unction using least-squares regression (lines 3–5). The insight be-

ind this step is to let the weak ADR classifier correct the pre-

iction errors made in the previous iterations. Then in the second

tep, the algorithm determines the optimal value of parameters βk 

y minimizing the objective loss function specified in Eq. (3 ). In

his study, we empirically set the maximum number of iterations

 = 10 0 0, employ decision tree as our base weak ADR classifier,

nd adopt deviance loss function. 
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