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a b s t r a c t

The continuous release of data, also called serial publication is critical for data analytics but it can lead to
severe privacy disclosures via composition attacks. The serial publication often consists of several corpora
and each corpus is an update of the previous one.While each individually published corpusmay be privacy
preserving, when considered together the whole serial publication may be at risk of privacy disclosures.
Existing solutions addressing this problem often afford the privacy guarantees of k-anonymity and l-
diversity which are prone to attribute disclosures via skewness attacks, and they focus only on relational
data. This paper addresses the serial publication problem in the transactional data setting. First, wemodel
the privacy disclosure risks associated with serially published data probabilistically. We then develop a
rigorous privacy guarantee and a serial publication method Sanony that satisfies the privacy guarantee
without excessive utility loss. We evaluate our method on two benchmark datasets and the results show
our framework affords stronger privacywithmuch lower perturbation rates than existing state-of-the-art
techniques.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Serially published data is important for data analytics, however
it can lead to privacy disclosure risks [1,2]. In such publications, the
dataset is updated periodically, old transactions may be removed,
and newonesmay be added. Hence, each corpus in a serial publica-
tion contains only transactions in the period under consideration.
For example, prisoner health data may be released every year for
prisoner health research [3,4]. Table 1 illustrates such a scenario. In
the table, 1b and c are successive updates of 1a involving deletions
and insertions. Each table contains inmates’ convictions and pre-
existing health conditions. While an inmate’s conviction may be
common knowledge e.g. to a neighbour or an employer, his/her
health conditions (in italics), referred to as private terms, must
remain guarded.
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The serial publicationmay not be privacy preserving as awhole,
although each independently published corpus within it may be
privacy preserving. This is illustrated by the following example.

Example 1. Suppose transactions T1, T2 and T3 (Table 1) form a
cluster of similar transactions in each release. Table 2a and b are
l-diverse snapshots of Table 1a and b respectively by anatomy [5].
In the tables, the private and non-private terms are placed into
separate partitions linked through the group IDs (G.ID). The trans-
actions’ IDs are for referencing only and not included in the pub-
lication. The chance for any individual to be linked to a private
term is no more than 1/l (l = 2) making each release privacy
preserving.1 However, when the adversary knows Laura (T1) was
released before year 2, so her record T1 is not in T2 (Table 2b),
her disease can trivially be identified as HIV and the 2-diversity
guarantee is broken. This is a form of attribute disclosure called
the composition attack [2].

1 For simplicity, we use probabilistic l diversity but the conclusions drawn holds
for other instantiations of l-diversity [6].
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Table 1
Serially generated prisoner health records.

Table 2
2-diverse snapshots of prisoner health records.

Existing privacy preserving serial publication techniques such
as [1,7–11] focus only on relational data, and afford traditional pri-
vacy guarantees of k-anonymity and l-diversity [12,13]. However
it is known that these privacy guarantees are prone to attribute
disclosures via skewness attacks [6,14]. We shall use the seminal
concept of m-invariance in [7] to illustrate the skewness attack by
attempting to handle our transactional data scenario in Example 2.

Example 2. In principle, m-invariance ensures that each transac-
tion in a cluster is associated with the same set of private terms
(also called signature) in each release to maintain m-diversity. This
is often achieved through generalisation and the use of counter-
feits. In this example, Table 3 is the 2-invariant publication of
Table 1 by adapting anatomy [5] and foregoing generalisation.

Table 3
2-invariant prisoner health records.

The adaptation of anatomy involves the use of counterfeits, while
foregoing generalisation streamlines our focus on attribute disclo-
sures. In Table 3, each transaction is faithfully associated with its
signature until its expiration. Where multiple private terms exist,
we concatenate them e.g. {HIV + herpes}, and where there is no
private term we replace with NULL. Also T7 and T8 (Table 3b) are
deliberately suppressed for not satisfying them-eligibility criterion
ofm-invariance where at most 1/m (m = 2) of new insertions can
have the same private term [7]. m-invariance is achieved by using
counterfeits (Tc), and from Table 3, we see that composition attack
on Laura (T1) in Table 3a is no longer possible as was the case in
Example 1. This is due to thepresence of the counterfeit transaction
Tc in Table 3b.

Chief among the observations that can bemade from this exam-
ple is that the existing publicationmeasures of [1,7–11] do not pro-
vide sufficiently strong guarantees, particularly against skewness
attacks. From Example 2, comparing the probability 1/2 of John
(T5 in Table 3a) having herpes to the probability of anyone in the
whole table having herpes can lead to an inference. That is, prior to
knowing which group John’s record belongs, his chance for having
herpes is 1/6 (there are 6 transactions in total). After identifying his
group through his non-private terms, the probability has increased
significantly to 1/2 which places him at a higher risk than the rest
of the population. This constitutes the skewness attack and must
also be prevented [6].

Secondly, due to the underlying m-eligibility constraint of m-
diversity adopted by the existing literature [7,8], their applicability
to datasets that may have many common private terms is limited.
This is often the case in transactional data where many transac-
tionsmay have NULL private values. It may be argued that, the case
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of NULL private values does not breach them-eligibility constraint
— simply for being NULL, for this we provide a counter example.

Example 3. Suppose T7 and T8 are published in Table 3b. An
adversary who knows that Martin (T3) and Shane (T4) were re-
leased only after Year 2 infers the following. First, (s)he observes
that T3 and T4 are in group 2 of Table 3a and b only. Then (s)he
observes that since T3 and T4 are associated with NULL and cancer
in Table 3a, theywill also be associatedwith same in Table 3b. Now
(s)he inadvertently learns that T7 and T8 must be associated with
the remaining NULLs in Table 3b. This knowledge can then be used
in the third publication (Table 3c) to breach the privacy of Pam (T9)
and Jane (T10) completely.

Example 3 also illustrates an underlying attack, transitive com-
position attack (details in Section 2). This is a less direct attack and
is different from real world exclusion [8] which relies on a different
set of publication assumptions.

Thirdly, for the case where transactions have multiple private
terms, the existing methods do not apply. Individuals will often
have multiple health conditions and transactional data seamlessly
represents this by allowingmultiple private terms per transaction.
This however leads to very rare combinations of private terms
whose privacy becomes increasingly harder to preserve with the
existingmethods without excessive loss of utility e.g. in Table 3a, it
is impossible to prevent skewness attack on John (T5) unless all the
clusters are merged by adopting swapping and merging techniques
in [15].

It is prudent to mention that the class of differential privacy [16]
definitions affords strong guarantees, however it still faces unre-
solved challenges that creep upwith our serial publishing scenario.
First, the concept of neighbouring datasets is often defined tomean
two datasets that differ in only one record. This implicitly assumes
that the adversary knows everyone else’s information but the
intended victim’s. While this is reasonable under the assumption
that the transactions are generated independently, it has been
demonstrated in [17,18] that this is not always the case and can
actually lead to a degradation of the privacy guarantee. Our serial
publishing scenario may consist of multiple releases and each
releasemaydiffer fromaprevious release onmultiple transactions,
whose generation may not be independent. Some methods [19–
22] have been proposed to partly address some of these issues,
but these focus only on the interactive setting, where there is a
differentially private mechanism sitting between the user and the
dataset, through which the user interacts with the dataset.

Second, applying differential privacy to the non-interactive set-
ting, where an anonymised version of the dataset is released, has
always been challenging. In privacy preserving data publishing,
such techniques often rely on using noised contingency tables
derived from counting queries. However for transactional data,
such a contingency table would require 2|Tρ | − 1 queries (|Tρ | is
the number of terms in the entire publication). Clearly the com-
plexity of such approach is not desirable. In addition, the sparsity
of transactional data leads to cases with small counts and this
results in very low signal-to-noise ratio since the noise added is
independent of the dataset. For example, Fig. 1 shows the applica-
tion of differential privacy to count statistics of the private terms
derived from the original corpus in Table 1a. The published noisy
counts satisfies ϵ-differential privacy (ϵ = 0.12) which shows very
low signal-to-noise ratio. Works including [25,26] have proposed
hybrid methods combining both generalisation and perturbation,
however the exact relationship betweengeneralisation andpertur-
bation with utility is not clear. Yet still, these methods yield signif-
icantly lower utility than other primary non-interactive oriented

2 Typical values for ϵ range from 0.1 (weaker) to 0.01 (stronger) [23,24].

publicationmechanisms [27]. In [28], some further discussions and
experiments are given to illustrate these issues.

To address the challenges, this paper extends the stronger rela-
tive privacy metric of our previous work [14] on transactional data
to serial publication.3 Themetric in [14], inspired by t-closeness [6],
ensures that the probability of linking an individual to a private
term is restricted to be no more than the probability of the private
term in the whole dataset by a factor of rth. This is achieved
via Anony which partitions the transactions of the dataset into
clusters first; and then partitions the transactions of each cluster
C vertically into 3 parts (each is a multiset): a non-private segment
CS̄ , a cluster private segment CS

c , and a global private segment CS
o .CS̄

contains the remainder of each transaction after the private terms
are removed. All copies of all private terms are then put into CS

c .
The number of copies of the private terms in CS

c may be high so as
to cause privacy risks, therefore some copies are further moved to
the global private segment CS

o , to make the cluster safe. CS
o of all

clusters are thenmerged into the global bag Cg , a multiset which is
associated with the whole corpus. This is illustrated by Example 4.

Example 4. Table 4 is the anonymised version of Table 1 for an
rth = 2 by following Anony [14]. In each of Table 4a, b and c,
the probability of linking someone to a private term is no more
than 2 times the population rate. For instance the probability of
linking anyone to herpes in Table 4a remains at 1/6, so there is no
possibility for skewness attack as was observed in Example 2.

We make the observation that there can be no composition
attacks if there are no overlapping transactions across publica-
tions i.e. each corpus is independent of another. Consequently,
existing methods for single publication will suffice. However, the
serial publication problem is not trivial as overlapping transactions
often do exist in reality [1,7–11]. Our proposed method, Sanony
utilises this observation. It compares each newly updated corpus
(to be published) with the previous publications to determine
overlapping transactions; calculates the posterior probability of
each transaction based on the overlapping transactions; and in-
fluences the overlapping transactions to feign their absence and
prevent meaningful inferences. This effectively reduces the risk of
transactions and prevents composition attacks.

The cost for our method, Sanony, to have the right privacy
guarantee is a small loss of utility compared with Anony [14]. Our
experiments in Section 4 show that in the worst case, an average
increase of less than 10% in the utility loss is recorded. Specifically
our contributions are as follows.

1. A probabilistic model to calculate the risk of a serial pub-
lication. This is developed by considering the adversary’s
posterior knowledge upon observing other publications in
the serial publication. Particularly, we make use of combi-
natorial techniques that capture the adversary’s maximal
knowledge. This enables extension of stronger privacy guar-
antees that prevent probabilistic inferences in the single
independent publication of transactional data [14] to the
serial publishing scenario.

2. A novel publication mechanism Sanony that prudently uses
counterfeits to prevent composition attacks is proposed. Our
mechanism prevents composition attacks by using counter-
feits to render the overlapping transactions ineffective for
any inferences. We show theoretically that our publication
mechanism is sound and further demonstrate that it is im-
permeable to minimality attacks.

3 Such a relative metric has been demonstrated to afford differential privacy-like
protection under reasonable assumptions [28,29].
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Fig. 1. Privacy preservation via differential privacy.

Table 4
Anonymised versions of prisoner health records.

3. An empirical evaluation of Sanony on real datasets with
state-of-the-art anonymisation techniques. The results
demonstrates the effectiveness of Sanony in preserving
strong privacy guarantees without entirely diminishing the
utility of the published data.

To the best of our knowledge, this is the first work to extend a such
a relative privacy metric to the serial publication scenario.

The rest of this paper is organised as follows: In Section 2, we
develop, step-by-step, our probabilistic privacy model and then
formulate the problem definition. In Section 3, we present the the-
ory behind our solution and conclude the sectionwith an algorithm

and its analysis. Section 4 presents a rigorous empirical evaluation
on two benchmark datasets and in comparisonwith other state-of-
the-artmethods. In Section 5,we review the relevant literature and
describe some of the pitfalls in existing work. Finally, we present
our conclusions in Section 6.

2. Preliminaries & privacy model

In this section, we develop a privacy guarantee for the serial
publication of transactional data. To develop this guarantee, we
first consider the relative privacy guarantees established in [14]
for the single independent publication scenario and recap the
publication mechanism for satisfying it.

Second, we analyse the privacy risks associated with serial
publication by considering the adversary’s posterior knowledge.
The adversary’s posterior knowledge is the adversary’s belief that
a transaction has a sensitive term after observing other publica-
tions in the serial publication. We propose theoretically sound
approaches for calculating this posterior knowledge by relying on
combinatorics and making use of the Bayes’ theorem. We then
further analyse our approach by considering other potential attack
scenarios.

Finally, we conclude the section by presenting a formal defini-
tion of the privacy preserving serial publication problem that we
seek to address.

2.1. Preliminaries

Let P = [T1, . . . ,Tm] be a serial collection of corpora (Fig. 2)
such that each corpus T ∈ P is a set of transactions {T1, . . . , Tn}
and each transaction T ∈ T is a set of terms, e.g. the transaction
T1 = {theft, arson, fraud,HIV } in corpus T1 of Table 1. A subset C
of transactions in T is called a cluster. A partition C of the corpus
T is a set of clusters C = {C1, . . . , Ck} such that

⋃k
i=1 Ci = T and

Ci ∩ Cj = ∅ (i ̸= j). TP is the set of all terms in the collection P . SP
is the set of all private terms in TP and S̄P = TP \SP is the set of all
non-private terms inP . With SP , a transaction is often divided into
two sets: thenon-private (term) set S̄T containing the non-private
terms and the private (term) set ST containing the private terms. If
a transaction contains s ∈ SP it is called an s-transaction, else it is
an s̄-transaction (non-s). The functionN(s,X ) returns the number
of copies of the s term in the collection X while N(X ) returns the
number of transactions in X . For example, N(s, C) is the number of
s-transactions while N(C) is the cardinality |C|.

Now we wish to publish a new corpus Tm+1 to update P∗ =
[T∗1, . . . ,T

∗
m] which is already published (Fig. 3). We assume the

publication process involves 2 steps: (1) Tm+1 (raw dataset) is
anonymised to Tϑ

m+1 via Anony [14] and Tϑ
m+1 is privacy preserving

by itself; (2) we apply Sanony, our method to be presented in
Section 3, to transform Tϑ

m+1 to T∗m+1 so that P∗ + [T∗m+1] =
[T∗1, . . . ,T

∗
m,T∗m+1] as a whole is privacy preserving. Consequently

the superscript ϑ denotes the independent publication (anonymi-
sation) of Tm+1 and ∗ denotes the final (serial) publication of Tm+1.
Table 5 summarises the frequently used notations.
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Fig. 2. Serial corpora P = [T1, . . . ,Tm,Tm+1].

Table 5
Summary of notations.
Notation Meaning

T A set of terms {t1, . . . , tv} called a transaction
C A subset of transactions {T1, . . . , T|C|} called a cluster
T A set of transactions {T1, . . . , Tn} called a corpus
P A serial corpora [T1, . . . ,Tm]

C A partition {C1, . . . , Ck} of T
TP A set of all terms in P
SP A set of all private terms in P
S̄P A set of all non-private terms in P
ST The private term set of a transaction T
S̄T The non-private term set of a transaction T
X Original version, where X ∈ {T , C,T,C,P}
Xϑ Anonymised version of X
X ∗ Final published version of X
N(s,X ) The support of the term s in X
N(X ) The number of transactions in X

Definition 1 (Adversary). The adversary’s knowledge about a vic-
tim v consists of the victim’s non-private set S̄Tv and some pub-
lished corpora to which S̄Tv belongs, as well as the method used in
publishing the data.

The adversary aims to link the victim to S̄T of transaction T
through S̄Tv like in [1,7–11]. The following example illustrates how
the adversary uses his knowledge to form a composition attack.

Example 5. Consider Table 4, suppose the adversary knows Laura
(victim) was released after year 1 of her theft, arson and fraud
charges (S̄Tv ). The adversary can link S̄Tv to the non-private set S̄T1
in Cϑ

11
(Table 4a). S̄T1 is not in the second release (Table 4b), but

S̄T2 = {theft, arson} is in both Cϑ
11

(Table 4a) and Cϑ
12

(Table 4b). By
considering the two releases, the absence ofHIV in Cϑ

12
reveals that

Laura with S̄T1 must have HIV in Cϑ
11
.

An individual can have a single transaction per corpus but may
have multiple transactions across subsequent publications e.g. an
inmate is released and re-convicted of another charge. This does
not affect our attribute disclosure problem4 because the linkage
between the private and non-private terms of a transaction is

4 We focus on preventing the linkage between private terms and the non-
private terms (attribute disclosure) since it is of more significance [30,31]. If a

unaffected by the number of transactions a single individual has
in multiple publications. At the same time, we are not specific
about the case where values of a transaction are updated over
time because from the adversary’s point of view such updates
are essentially an operation of a deletion and an insertion of a
transaction. For example, supposing an individual has HIV during
a previous data release but is discovered not to have HIV in the
subsequent data release (due to a previous wrong diagnosis), then
the individual’s previous transaction Ti will be associated with the
private term HIV in a previous release. In the subsequent data
release, Ti is updated to Tj without the term HIV. To the adversary,
the updated transaction Tj is just a newly inserted transaction
whose non-private terms happen to match his victim while the
previous transaction Ti has been deleted. In such instances our
work also handles this to prevent the false attribution of HIV to
the victim.

In this work a transparent publication mechanism is assumed
i.e. the public knows the anonymisation technique used. In Sec-
tion 3, we show that the adversary is incapable of using this
knowledge to form anyminimality attack [14,32,33] after Sanony is
applied. In the following, we first define our guarantee on a single
corpus T and then use the guarantee to produce a publication Tϑ

of T. We then formalise the risk associated with publishing Tϑ

in the presence of its previous publications and then present the
problemdefinition. Subsequently,wewillmodifyTϑ to produceT∗
by considering the interaction of Tϑ with its previous publications.

2.2. Single independent publication

We introduce s-preserving guarantee, defined on s-risk, that
prevents attribute disclosures [14]. It requires the relative fre-
quency of a private term s in a cluster C not to exceed that of the
population by more than a user defined threshold rth.

Definition 2 (s-Risk). Given a cluster C ⊆ T and its anonymised
version Cϑ (formally defined later), the s-Risk γs of Cϑ is the ratio
of the probability of s in Cϑ to the probability of s in T:

γs(Cϑ ) =
N(s, Cϑ )/N(Cϑ )
N(s,T)/N(T)

=
ss(s, Cϑ )
ss(s,T)

(1)

N(s, Cϑ ) and N(s,T) are the number of s-transactions in Cϑ and T
respectively; N(Cϑ ) and N(T) are the number of transactions in Cϑ

and T respectively.

The probability ss(s, Cϑ ) = N(s, Cϑ )/N(Cϑ ) is also called the
cluster rate, and ss(s,T) = N(s,T)/N(T) is the population rate as
it is over all the transactions and assumed to be public knowledge
e.g. the HIV rate in a community.

user wishes to prevent the unique identification of non-private terms (identity
disclosure), a k-anonymised dataset [13] can be assumed from this point on.

Fig. 3. Serial Publication of Tm+1 .
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Definition 3 (s-Preserving). Let rth ∈ [1,N(T)] be a user defined
threshold. Given a private term s and an anonymised cluster Cϑ

⊆

Tϑ , Cϑ is said to be s-preserving if its s-risk γs is no more than rth.

γs(Cϑ ) ≤ rth (2)

The cluster Cϑ is said to be privacy preserving if it is s-preserving
for every private term s ∈ SP .

Definition 3 above ensures that the probability for an
anonymised transaction Tϑ

∈ Cϑ to have the private term s
is always bound to the population rate by rth. To satisfy the
s-preserving criterion, we present the anonymisation steps of
Anony [14], already illustrated in Example 4, as follows.

Given a user defined threshold rth, a corpus T and its partition
C, the anonymisation of C has three main steps, segregation, sani-
tisation, and refining, which is applied to each cluster C ∈ C to get
Cϑ .

1. Segregation vertically partitions C into two segments CS̄ , a
multiset of the non-private sets of all transactions in C; and
CS
⊎
, amultiset union of the private sets of all transactions inC.

This breaks the link between non-private and private terms
of a transaction, making it probabilistic.

2. Sanitisation partitions the multiset CS
⊎
of private terms into

twomultisets, the cluster private segment CS
c , and the global

private segment CS
o ; moving any term from CS

o to CS
c will

cause a violation of the criterion γs(Cϑ ) ≤ rth. The calculation
of γs(Cϑ ) when C is partitioned into Cϑ

= {CS̄, CS
c , C

S
o } is

given by Formula (4).
3. Repeat steps 1 and 2 for every cluster C ∈ C. The mul-

tiset union of the global private segment CS
o of all clusters

becomes the global bag of private terms denoted Cg =⨄k
j=1 C

S
oj which is associated with the whole corpus.

4. Refining ensures that if any cluster Cϑ satisfies the exclusion
condition γs(Cϑ ) < rth5 some copies of s are moved from the
global bag Cg into CS

c (of Cϑ ) until the exclusion condition is
violated or no copies of s remain in Cg . It ensures that the
knowledge of the publishing mechanism does not lead to a
minimality attack [14,32]. In particular, the adversary may
use the criterion γs(Cϑ ) < rth derived from the sanitisation
step to exclude some clusters frombeing associatedwith the
private terms in the global bag, and to increase the chance
of other clusters having those private terms. That is, if the
addition of a copy of the private term s from Cg to CS

c does not
violate the preserving criterion γs(Cϑ ) ≤ rth, then CS

c cannot
be the source for any copy of s moved to Cg as otherwise
it will be a violation of the minimality principle [32]. (The
interested reader is referred to [14,32] for more details)

After segregation, the number of s-transactionsN(s, Cϑ ) in Defi-
nition 2 becomes the number of s terms N(s, CS

⊎
). After sanitisation

and refining, the number of s-transactions N(s, Cϑ ) becomes the
number of s terms N(s, CS

c ) plus the number of s terms in the
global private segment N(s, CS

o ). Since all global private segments
are merged into the global bag Cg we use the following formula
Js(Cϑ ) to estimate N(s, CS

o ) and consequently calculate N(s, Cϑ ) as
follows.

N(s, Cϑ ) = N(s, CS
c )+ Js(Cϑ ) (3)

where Js(Cϑ ) = N(Cϑ )×N(s,Cg )
N(T) (see note6).

5 The exclusion condition uses γs(Cϑ ) < rth and NOT γs(Cϑ ) ≤ rth since when
γs(Cϑ ) = rth , it is not possible to add any s terms from the global bag without
violating the privacy guarantee. Consequently Cϑ is not a candidate to be excluded
from owning any of the s terms in the global bag
6 In subsequent sections we shall consider the integer values of Js(Cϑ ) as

Round(Js(Cϑ )) to avoid representing the number of private terms as fractions.

The number of private terms Js(Cϑ ) from Cg is calculated proba-
bilistically from the ratio of the size of the cluster to the size of the
corpus N(Cϑ )/N(T) and the number of copies of s in Cg , N(s, Cg ).
The risk γs(Cϑ ) in Definition 2 becomes:

γs(Cϑ ) =

(
N(s, CS

c )+ Js(Cϑ )
)
/N(Cϑ )

ss(s,T)
(4)

Cϑ
= {CS̄, CS

c , C
S
oJ
} is the anonymised cluster where CS

oJ
, the

multiset of s terms derived from Js(Cϑ ) for every term s ∈ S,
approximates Co i.e. N(s, CS

oJ
) = Js(Cϑ ) (s ∈ S). The anonymisation

of each cluster C ∈ C for every private term s ∈ SP becomes
the anonymised corpus Tϑ . Tϑ is privacy preserving since the
criterion γs(Cϑ ) ≤ rth is satisfied for every cluster Cϑ

∈ Cϑ and
there can be no risk from the Cg since it is globally shared by
all transactions in the corpus so Formula (2) is guaranteed. If the
anonymised cluster Cϑ

= {CS̄, CS
c , C

S
oJ
} is published without any

further modifications, it becomes the published version C∗. It is
obvious that after anonymisation, ss(s,T) = ss(s,Tϑ ) in Formula
(4) since no private terms were added or deleted.

In C∗ = {CS̄, CS
c , C

S
oJ
}, non-private terms and the private terms

of a transaction are only linked probabilistically. This probability
given by Definition 4 is used later to determine the disclosure risk
in a serial publication.

Definition 4 (Random Reconstruction). Given T ∈ C and its pub-
lished cluster C∗ = {CS̄, CS

c , C
S
oJ
}, the reconstruction T r of T from

C∗ is computed by assigning s to S̄T ∈ CS̄ with a probability
N(s, C∗)/N(C∗) where N(s, C∗) = N(s, CS

c )+ N(s, CS
oJ
).

2.3. Privacy disclosures in a serial publication

In a serial publication P∗, composition attacks are possible
only if some transactions of T∗ ∈ P∗7 are common to at least
its preceding (T∗

−1) or succeeding (T∗
+1) publication as previously

noted. The common transactions, called overlap (Definition 6), are
also fundamental for the attack scenarios handled in [1,7–11].

The overlap between any two original clusters C and C′ is their
common transactions C ∩ C′. When they are anonymised and
published as C∗ = {CS̄, CS

c , C
S
oJ
} and C′∗ = {C′S̄, C ′Sc , C ′S

oJ
}, the

common transactionsCS̄
∩C′S̄ involves only the non-private sets. To

increase his/her belief about the private term of any individual, the
adversary must utilise the overlap by linking the private terms s ∈
SP to the common non-private sets. As the links are probabilistic,
(s)he can only identify some possible copies of s to link to the
common non-private sets (Example 6).

Example 6. The common non-private set between Cϑ
11

and Cϑ
12

in
Table 4 is {S̄T2}. By observation, it has no HIV terms i.e. in Cϑ

11
, {S̄T2}

can have 0 or 1 copy of HIV but it can have at most 0 copies of HIV
in Cϑ

12
.

The possible number of copies of a private term that can be
linked to an overlap is formally developed in Proposition 1 by
considering the s-range as follows.

Definition 5 (s-Range). Let C∗ = {CS̄, CS
c , C

S
oJ
} and C′∗ =

{C′S̄, C ′Sc , C ′S
oJ
} be any two published clusters in two different publi-

cations and OS̄(C∗, C′∗) = CS̄
∩C′S̄ (shortened OS̄) be their common

non-private set. Given the private term s ∈ SP , the number of
copies of s shared by OS̄ w.r.t. C∗ is in the range [f1C∗ , f2C∗ ]s:

f1C∗ = f1(C∗,OS̄) = max
{(

N(s, C∗)− N(CS̄
\ OS̄)

)
, 0

}
7 Subsequently, we use T ∗ ∈ P∗ to mean a transaction T ∗ in any published

corpus T∗ ∈ P∗ . Similarly, we use C∗ ∈ P∗ to mean a published cluster C∗ in any
published corpus T∗ ∈ P∗ .
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Fig. 4. s-range of an overlap.

f2C∗ = f2(C∗,OS̄) = min
{
N(OS̄),N(s, C∗)

}
(5)

[f1C′∗ , f2C′∗ ] is also calculated by substituting C∗ with C′∗.

f1C∗ is theminimum copies of s that can be linked toOS̄ w.r.t. C∗.
It is developed by first linking the maximum possible copies of s to
the non-overlapping transactions CS̄

\OS̄ of C∗ given by N(CS̄
\OS̄);

the remainder N(s, C∗) − N(CS̄
\ OS̄) is then linked to OS̄ as the

minimum copies of s that OS̄ can have. The use of max{(N(s, C∗)−
N(CS̄

\ OS̄)), 0} ensures non-negative values only and f1C∗ = 0
means OS̄ may have no copies of s. f2C∗ is the maximum copies of
s that can be linked to OS̄ w.r.t. C∗. It is derived as the maximum
possible copies of s from N(s, C∗) that can be linked to OS̄ . This is
given by the minimum of the number of overlapping transactions
N(OS̄) and the number of s terms N(s, C∗) i.e.min{N(OS̄),N(s, C∗)}.

Proposition 1. Let C∗ and C′∗ be any two published clusters and OS̄

be their commonnon-private sets. Given a private term s ∈ SP and the
s-range [f1C∗ , f2C∗ ]s w.r.t. C∗ and [f1C′∗ , f2C′∗ ]s w.r.t. C′∗ (Definition 5),
the number of copies of s shared by OS̄ is in [r1, r2]s, where [r1, r2]s is
the intersection of [f1C∗ , f2C∗ ]s and [f1C′∗ , f2C′∗ ]s:

[r1, r2]s = [f1C∗ , f2C∗ ]s ∩ [f1C′∗ , f2C′∗ ]s (6)

Given an ordering {f1C∗ ≺ f1C′∗ ≺ f2C∗ ≺ f2C′∗ } of the set
{f1C∗ , f2C∗ , f1C′∗ , f2C′∗ }, r1 and r2 are the 2nd and 3rd values of the
ordered set respectively (Fig. 4).

In Proposition 1, r1 and r2 are the minimum and maximum
number of copies of s shared by OS̄ respectively based on both C∗
and C′∗.

It is possible that [r1, r2]s = ∅when [f1C∗ , f2C∗ ]s and [f1C′∗ , f2C′∗ ]s
do not intersect. This can occur when there is a substitution of
some transactions between subsequent publications e.g. consider
the published cluster C∗ = {{|S̄T = A|}, {|s1|}, {||}} in T∗ representing
CS̄ , CS

c and CS
oJ

respectively; and another published cluster C′∗ =
{{|S̄T ′ = A|}, {||}, {||}} in a different publication T′∗ such that S̄T in T∗
was replaced by S̄T ′ in T′∗. Obviously the overlapping non-private
set is OS̄

= {A} and by calculation, [f1C∗ = 1, f2C∗ = 1]s1 and
[f1C′∗ = 0, f2C′∗ = 0]s1 (Formula (5)). The range [r1, r2]s1 = ∅ and
the adversary is not benefited by observing the overlap.

In the above example, the adversary identifies that S̄T has s1
only because s1 is a trivial private term. Trivial because, prior to
observing the second publication T′∗, the chance of linking s1 to S̄T
in C∗ is 100%. In our s-preserving definition (Definition 3), trivial
private terms occur only if the population rate ss(s,T) and the user
allowed risk threshold rth are sufficiently high i.e. ss(s,T) · rth ≥ 1.

Definition 6 (Overlap). Let C∗ ∈ T∗ and C′∗ ∈ T′∗ be any two
published clusters of P∗, the overlap O(C∗, C′∗) (shortened O) of C∗
and C′∗ is defined to have two parts O = {OS̄,OS

} :

OS̄
= CS̄

∩ C′S̄ OS
= {[r1, r2]s | s ∈ SP} (7)

OS̄ is the (non-empty) common non-private sets in C∗ and C′∗, OS

is a set of integer pairs, each being the range of possible copies of
s ∈ SP shared by OS̄ given by Formula (6).

When r1 = r2 = 0, the overlap O does not have s even
though each of the clusters C∗ and C′∗may contain s. In subsequent
presentation, such ranges are omitted for brevity.

Example 7. By Definition 6, the overlap of Cϑ
11

and Cϑ
12

(Table 4)
is {{S̄T2}, {[0, 1]cancer}} as its cancer-range is [0, 1]cancer each from
Cϑ
11

and Cϑ
12

(Definition 5). Also the overlap between Cϑ
21

and Cϑ
22

is
{{S̄T3 , S̄T4}, {[1, 1]cancer}}.

The overlap {{S̄T2}, {[0, 1]cancer}} in Example 7 leads to a direct
inference that Laura (S̄T1 ) has HIV because S̄T2 certainly has no
HIV , but the overlap {{S̄T3 , S̄T4}, {[1, 1]cancer}} leads to a less direct
inference called transitive composition attack (illustrated in Ex-
ample 3). For clarity, Example 3 is re-presented as follows.

Example 8. From Example 7, it is seen that {S̄T3 , S̄T4} has the
term cancer, therefore S̄T8 cannot have cancer in Cϑ

22
(Table 4b). This

knowledge can then be used to infer that S̄T9 in Cϑ
23

(Table 4c) has
cancer with 100% probability.

Apparently, it is necessary to consider the possibility of derived
clusters leading to composition attacks transitively.

Definition 7 (Derived Cluster). LetO be the overlap of the published
clusters C∗ = {CS̄, CS

c , C
S
oJ
} and C′∗{C′S̄, C ′Sc , C ′S

oJ
} with the range

[r1, r2]s for a given private term s ∈ SP , the derived cluster
d(C∗,O) (shortened d) w.r.t. C∗ has two parts, d = {dS̄, dS

}:

dS̄
= CS̄

\ OS̄ dS
= [r1f , r2f ]s (8)

where r1f = max{(N(s, C∗) − r2), 0} and r2f = max{(N(s, C∗) −
r1), 0}

dS̄ is the non-overlapping transactions of C∗. dS is the range
of possible number of copies of s that can be linked with dS̄ and
it is derived with the range [r1, r2]s of O. The derived cluster
defined above becomes a ‘‘new" cluster which can then be used to
form further overlapswith other clusters for potential composition
attacks. In Example 8 (Table 4b), {{S̄T8}{}} is the derived cluster of
Cϑ
22
.
Determining all derived clusters is computationally expensive

however, our method only requires the derived clusters of the
ultimate corpus of the serial publication (Section 3).

In subsequent sections, we frequently make use of the concept
of coverwhich refers to themultiset of all possible overlaps for any
given cluster C∗. It is formally defined as follows.

Definition 8 (Cover). Let C∗ ∈ T∗ be a published cluster of the
serial publication P∗, the cover Ω(C∗) returns a multiset of all the
overlaps of the cluster C∗ i.e. Ω(C∗) = {|O(C∗, C′∗i )|C

′∗

i ∈ P∗|}.

2.3.1. Prior and posterior probability
For any transaction T ∗ in the published corpusT∗, there are two

levels of probabilities for linking a sensitive term s to T ∗. The first is
the prior probabilitywhich considers the published corpusT∗ to be
a single independent publication i.e. there are no other publications
that can affect the probability of linking a sensitive term s to T ∗
in T∗. The second is the posterior probability which considers the
effect of other serial publications on T∗. These are presented as
follows.

Definition 9 (Prior Probability). Given a private term s ∈ SP , the
published transaction T ∗ ∈ C∗ of T∗, the prior probability α(T ∗, s)
of T ∗ w.r.t. s is the probability that its random reconstruction T r

has s (Definition 4):

α(T ∗, s) = Prob(s ∈ T r ) =
N(s, C∗)
N(C∗)

(9)

The prior probability of an adversary reflects his/her belief that
T r has s before observing the coverΩ(C∗). The posterior probability
is the one that he/she has after observing Ω(C∗).
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Definition 10 (Posterior Probability). Given a private term s ∈ SP ,
the published transaction T ∗ ∈ C∗ of P∗, the posterior probability
β(T ∗, s) of T ∗ w.r.t. s is the probability that its random reconstruc-
tion T r has s given the cover Ω(C∗):

β(T ∗, s) = Prob(s ∈ T r
|Ω(C∗)) (10)

By Bayes’ rule;

Prob(s ∈ T r
|Ω(C∗)) =

Prob(s ∈ T r ) · Prob(Ω(C∗)|s ∈ T r )
Prob(Ω(C∗))

(11)

In Formula (11), Prob(s ∈ T r ) is the prior probability of T ∗ (For-
mula (9)), Prob(Ω(C∗)) is the joint probability of the occurrence of
the overlaps in the cover Ω(C∗) and Prob(Ω(C∗)|s ∈ T r ) is the joint
probability of Ω(C∗) conditioned on T r having s. The occurrence
of any overlap Oi ∈ Ω(C∗) given s ∈ T r is independent of the
occurrence of Oj ∈ Ω(C∗) (i ̸= j) so the conditional independence
assumption applies. By normalisation [34] Formula (11) becomes
Formula (12). The denominator is the normalisation factor since
Prob(Ω(C∗)) = Prob(s ∈ T r ) · Prob(Ω(C∗)|s ∈ T r ) + Prob(s /∈

T r ) · Prob(Ω(C∗)|s /∈ T r ). The probabilities Prob(O|s ∈ T r ) and
Prob(O|s /∈ T ) are calculated by combinatorics in Formulae (13) and
(14).

Prob(s ∈ T r
|Ω(C∗)) =

Prob(s ∈ T r ) ·
∏

Oi∈Ω(C∗) Prob(Oi|s ∈ T r )

Prob(s ∈ T r ) ·
∏

Oi∈Ω(C∗) Prob(Oi|s ∈ T r )+ Prob(s /∈ T r ) ·
∏

Oi∈Ω(C∗) Prob(Oi|s /∈ T r )

(12)

Formulae (13) and (14) represent hypergeometric probabilities
for the selection of the overlap O from the cluster C∗ containing
T ∗;

(A
B

)
is a combination function; and z offsets a double selection

if S̄T r ∈ OS̄ since s ∈ T r or s /∈ T r is given.

Prob(O|s ∈ T r ) =

∑r2
r=r1

(N(s,C∗)−1
r−z

)
·
(N(s̄,C∗)
N(O)−r

)(N(C∗)−1
N(O)−z

) (13)

Prob(O|s /∈ T r ) =

∑r2
r=r1

(N(s,C∗)
r

)
·
(N(s̄,C∗)−1
N(O)−r−z

)(N(C∗)−1
N(O)−z

) (14)

z = 1 if S̄T r is in OS̄ (of O); else z = 0.

In Formula (13),
(N(s̄,C∗)
N(O)−r

)
is the number ofways inwhichN(O)−r s̄-

transactions can be selected fromN(s̄, C∗).
(N(s,C∗)−1

r−z

)
is the number

ofways inwhich r−z s-transactions can be selected fromN(s, C∗)−
1 (‘‘−1’’ because we have assumed s ∈ T r ).

(N(C∗)−1
N(O)−z

)
gives all

possible ways of selecting N(O) − z transactions from N(C∗) − 1
(‘‘−1’’ because T r is no longer available for selection). With the
same intuition Formula (14) can be explained.

Example 9. The prior and posterior probability for T ∗1 (Laura)
is calculated as follows. From Cϑ

11
(Table 4a), α(T ∗1 ,HIV ) =

Prob(HIV ∈ T r
1 ) = 1/2 (Definition 9).

From Example 7 and Definition 8, the cover of Cϑ
11

is{
O
(
{S̄T2}, {[0, 1]cancer , [0, 0]HIV }

)}
. The probability Prob(O|HIV ∈

T r
1 ) is 1 (Formula (13)). In Formula (13), given N(O) = 1, r =

r1 = r2 = 0, z = 0, N(HIV , Cϑ
11
) = 1, N(HIV , Cϑ

11
) = 1 and

N(Cϑ
11
) = 2; in the numerator there is only 1 way to selectN(O)− r

HIV -transactions fromN(HIV , Cϑ
11
) and r−z HIV-transactions from

N(HIV , Cϑ
11
) − 1; in the denominator, there is only 1 way to select

N(O) − z transactions from N(Cϑ
11
) − 1. With similar explanation,

the probability Prob(O|HIV /∈ T r
1 ) is also calculated to be 0 (Formula

(14)). With Prob(HIV ∈ T r
1 ), Prob(O|HIV ∈ T r

1 ) and Prob(O|HIV /∈

T r
1 ) calculated, Formula (12) evaluates to (1/2)·1

(1/2)·1+(1/2)·0 = 1, and

β(T ∗1 ,HIV ) = 1 as expected. Similarly, β(T ∗1 , cancer) is calculated
to be= 1/2.

The following lemma summarises the relationship between the
overlaps and the posterior probability.

Lemma1. Given a transaction T ∗ ∈ C∗ ofP∗, the private term s ∈ SP
and its cover Ω(C∗), the following holds:

1. Each overlap Oi ∈ Ω(C∗) is a subset of C∗ and derives an
inference about the private terms s ∈ SP of T ∗.

2. The overall inference about the private terms s ∈ SP of T ∗
i.e. β(T ∗, s) depends on the collective inferences from all the
overlaps Oi ∈ Ω(C∗).

Proof. See Appendix for proof. □

2.3.2. Global composition
WhenT∗ is published, an adversary can trivially considerT∗ as a

single cluster in conducting an attack. For example, when Table 4a
is wholly compared with Table 4b, we notice that S̄T1 , S̄T5 , S̄T6 , and
the private term herpes are in Table 4a but not in Table 4b. The
adversary concludes that herpes must be associated with the non-
private sets S̄T1 , S̄T5 and S̄T6 which causes a knowledge gain from
the prior probability of 1/6 to a newposterior probability of 1/3. To
capture this global composition, we assumeT∗ to be partitioned into
a single cluster C∗. We set C∗ = {CS̄, CS

c , C
S
oJ
} to T∗ = {TS̄, T S

⊎
, {}}

in the Formulae in Section 2.3.1; where TS̄ is a multiset of all the
non-sensitive sets inT∗ and T S

⊎
is themultiset of all sensitive terms

in T∗. Together, the maximum posterior probability of the global
and cluster composition determines the serial risk of a published
transaction T ∗. This is also illustrated by Example 10.

2.4. Privacy guarantee & problem definition

Definition 11 (Serial s-Risk). Given a private term s ∈ SP , a
published transaction T ∗ ∈ C∗ of P∗ and its cover Ω(C∗), the serial
risk γ ser.

s of T ∗ w.r.t. the sensitive term s is the ratio of the posterior
probability β(T ∗, s) to the population rate:

γ ser.
s (T ∗) =

β(T ∗, s)
ss(s,T)

(15)

Definition 12 (Serially Preserving). Given a published transaction
T ∗ ∈ C∗ of P∗, and a user defined threshold rth ∈ [1,N(T)], T ∗ is
serially preserving if γ ser.

s (T ∗) ≤ rth for every private term s ∈ SP .
P∗ is serially preserving if every transaction T ∗ ∈ P∗ is serially
preserving.

Serially preserving means the s-preserving guarantee of Defini-
tion 3 is always preserved.

Example 10. From Example 9, β(T ∗1 ,HIV ) = 1 and the serial
HIV-risk γ ser.

HIV (T
∗

1 ) of transaction T ∗1 is 1
1/3 = 3. For rth = 2, T ∗1

is not serially preserving since 3 > 2. Notice that, due to global
composition, γ ser.

Herpes(T
∗

1 ) = 2 although it is 0 when only Cϑ
11

and Cϑ
12

(Table 4) are considered.

Our problem now is to find a suitable publicationmechanism π

that satisfies this privacy guarantee (Definition 12).

Definition 13 (Problem Definition). Let P∗ = [T∗1, . . . ,T
∗
m] be seri-

ally preserving. Given the anonymised corpus Tϑ
m+1, the problem

that this paper seeks to address is to find a publication mechanism
π such that the publication P∗ + [π (Tϑ

m+1)] remains serially pre-
serving.
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Fig. 5. Serial publication process.

In this section we developed a privacy guarantee for the serial
publication of transactional data. We first presented a privacy
guarantee for the single independent publication scenario. Then,
we developed this guarantee further by considering the risk of
privacy disclosures based on the posterior knowledge of the ad-
versary in the serial publication setting. The posterior knowledge
of the adversary was defined as the posterior probability of a
transaction having a sensitive term after the adversary observes
other publications in the serial publication. In calculating this prob-
ability, we provided some theoretical reasoningwhichmade use of
combinatorics and the Bayes’ theorem tomaximise the adversary’s
knowledge. We further analysed the risk by considering the possi-
bility of global compositions, where the adversary can make use
the whole of each published corpus to enhance his/her posterior
knowledge about a transaction. Finally, we formally presented the
problem this paper seeks to address.

In the following, we present our proposed publication mech-
anism which addresses the privacy preserving serial publication
problem (Definition 13).

3. Framework of the solution

In this section, we present our solution Sanony to the serial
publication problem (Definition 13). While composition attacks
can occur only in the presence of overlaps, it is not desirable to
remove such overlapping transactions as this would lead to high
utility losses. Instead, a good solution should render the overlaps
ineffective for any meaningful inference without the prohibitive
loss of utility. This is the basis for all existing solutions treating this
problem. However, the special nature of our problem in terms of its
stronger privacy requirement (Definition 12) and the schema-less
nature of our input transactional data requires a tailored solution.

In our solution, we establish theoretically that the presence of
counterfeits reduces the ability of the adversary to increase his/her
knowledge about the transactions. We then develop a two step
approach to protect the privacy of previously published corpora
as well as current and future publications. We conduct further
analysis on our solution and ensure that it is fool-proof against
minimality attacks. Finally we present our algorithm Sanony and
its analysis. Our solution is described as follows.

Given a serially preserving corpora P∗ (previously published)
and the anonymised corpus Tϑ

m+1 (newly anonymised to be pub-
lished corpus), Sanony proceeds in two main steps of perturbation
as follows (Fig. 5).

* Backward Perturbation (BP) adds counterfeits to each cluster
Cϑ ofTϑ

m+1 to alter its coverΩ(Cϑ ) so that the inferences that
can be made from Ω(Cϑ ) is reduced. This removes the risk
of composition attacks from linking Cϑ to the transactions of
the previously published corpora.

* Forward Perturbation (FP1, FP2) adds further counterfeits to
the clusters to be published after BP to ensure that their
derived clusters (Definition 7) cannot lead to transitive com-
position attacks; and each transaction remains serially pre-
serving. This, in addition to BP removes the risk of compo-
sition attacks to the transactions of the newly anonymised
corpus to be published.

Although counterfeits are required in the two stages, the number
of counterfeits added in practice is always observed to be a small

percentage. From our experiments (Section 4), the maximal num-
ber of counterfeits added constitutes less than 4% of the dataset
while the average is less than 1%.

3.1. Backward perturbation

Given a serially preserving corpus P∗ = [T∗1, . . . ,T
∗
m], all

transactions T ∗ ∈ P∗ are guaranteed to be serially preserving (Def-
inition 12). When a newly anonymised corpus Tϑ

m+1 is published,
the overlap O(C∗, Cϑ ) (C∗ ∈ P∗, Cϑ

∈ Tϑ
m+1) may cause an update

to the posterior probabilities of the transactions T ∗ ∈ P∗. Conse-
quently, T ∗ ∈ P∗mayno longer be serially preserving (Section 2.3).
Compelling the updated posterior probability β(T ∗, s) to tend back
to its prior probability α(T ∗, s) when Tϑ

m+1 is published will ensure
that T ∗ ∈ P∗ remains serially preserving.

Given an overlap O(C∗, Cϑ ) of cluster C∗ in the published cor-
pora and cluster Cϑ in the anonymised corpus to be published, this
section shows (1) that the posterior probability β(T ∗, s) reduces
as the interval of the range [r1, r2]s of O increases (T ∗ ∈ C∗);
and (2) how counterfeits should be computed and added to Cϑ

to transform the range [r1, r2]s such that the posterior probability
β(T ∗, s) approaches the prior probability α(T ∗, s). The first point
above is characterised by Lemma 2, while the second point is
characterised by Lemmas 3 and 4 in the following.

Lemma 2. Let O(C∗, Cϑ ) be an overlap where C∗ is in P∗ and Cϑ

is in Tϑ
m+1. Given s ∈ SP and its range [r1, r2]s in O, the posterior

probability β(T ∗, s) approaches the prior probability α(T ∗, s) as the
interval of [r1, r2]s increases.

Proof. See Appendix for proof. □

In the following, Lemma 3 prescribes the ideal range [r1, r2]s for
an overlap O(C∗, Cϑ ) such that for T ∗ ∈ C∗, β(T ∗, s) = α(T ∗, s) is
true.

Lemma 3. Let O(C∗, Cϑ ) be an overlap where C∗ is in P∗ and Cϑ is in
Tϑ
m+1. Given the private term s ∈ SP , β(T ∗, s) = α(T ∗, s) (T ∗ ∈ C∗) if

the s-range [f1C∗ , f2C∗ ]s (Definition 5) lies in the range [r1, r2]s of O.

Proof. See Appendix for proof. □

If the range of an overlap O satisfies Lemma 3, we say it is
safe. Safe overlaps can be achieved by making use of counterfeit
transactions, first we define what a counterfeit transaction is as
follows.

Definition 14 (Counterfeit Transaction). Let Cϑ be an anonymised
cluster, CS̄ its non-private set and C S̄

⊎
a multi-set of its non-private

terms, a counterfeit transaction Tc is a term set containing a ran-
dom sample of the minimal number of terms from C S̄

⊎
such that Tc

is not identical to any transaction in CS̄ .

When a private term s is added to Tc , Tc is called an s-
counterfeit else it is an s̄-counterfeit. The terms of a counterfeit
transaction are generated from the terms within the cluster rather
than arbitrarily to minimise the utility loss impact from the pres-
ence of counterfeits. By ensuring that Tc is not identical to any of
the existing transactions, a reduction in posterior probabilitywhen
counterfeits are added is guaranteed (proof of Lemma 4). Where it
is not possible to obtain a Tc that is not identical to any transaction
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Table 6
Backward perturbation.

in CS̄ i.e.when the cluster contains only one transaction, Tc is sam-
pled from T S̄

⊎
the multiset of all non-private terms of the corpus.

In the extreme case where neither of the above is possible then Tc
is sampled from T S̄

1⊎

⨄
, . . . ,

⨄
T S̄
m⊎ , the multiset union of all non-

private terms in the corpora.
The following Lemma 4 defines how the counterfeits required

to make the overlap O safe should be calculated.

Lemma 4. Let O(C∗, Cϑ ) be an overlap where C∗ is in P∗ and Cϑ is in
Tϑ
m+1. Given s ∈ SP , its range [r1, r2]s inO and the s-range [f1C∗ , f2C∗ ]s

(Definition 5), Cϑ requires at least hs̄ number of s̄-counterfeits and hs
number of s-counterfeits to make O safe:

hs̄ = hs̄(O) = (r1 − f1C∗ ) hs = hs(O) = (f2C∗ − r2) (16)

hs̄ and hs are both non-negative due to Proposition 1.

Proof. See Appendix for proof. □

In Lemma 4, the addition of more counterfeits only maintains
r ′1 ≤ f1C∗ or r

′

2 ≥ f2C∗ , and Lemma 3 remains satisfied.
GivenCϑ , for each s ∈ SP it suffices from the above result, to add

the maximum number of counterfeits required for all overlaps in
the cover Ω(Cϑ ) to make every overlap safe. Let hx(Oi) (x ∈ {s, s̄})
be the number of x-counterfeits required to make Oi ∈ Ω(Cϑ )
safe w.r.t. x. The maximum number of counterfeits required for all
overlaps is given by:

hx(Ω(Cϑ )) = max
Oi∈Ω(Cϑ )

{hx(Oi)} (17)

The maximum number of counterfeits (of both s and s̄) for all
overlaps in Ω(Cϑ ) and all private terms SP is given by:

h(Ω(Cϑ )) = max
s∈SP
{hs̄(Ω(Cϑ ))+ hs(Ω(Cϑ ))} (18)

Definition 15 (Backward Perturbation). Given an anonymised clus-
ter Cϑ

= {CS̄, CS
c , C

S
oJ
} to be published, and its cover Ω(Cϑ ),

backward perturbation BP adds h(Ω(Cϑ )) number of counterfeits
(Definition 14) to CS̄ ; and hs(Ω(Cϑ )) copies of s to CS

c for each
private term s ∈ SP .

After BP (Fig. 5) Cϑ becomes Cϱ , it is illustrated by Example 11.

Example 11. Cϱ

11
, Cϱ

12
and Cϱ

13
(Table 6) is the backward per-

turbation on Cϑ
11

, Cϑ
12

and Cϑ
13

(Table 4) respectively. In the table,
the actual terms of the non-private sets are excluded for brevity.
By Definition 15, one counterfeit and a copy of HIV needs to be
added to CS̄ and C s

c of Cϑ
12

respectively (marked ⋄ for illustration
only). No counterfeits are required to be added to Cϑ

13
. The overlap

between Cϱ

11
and Cϱ

12
is now {{S̄T2}, {[0, 1]cancer , [0, 1]HIV }} and both

ranges satisfies Lemma 3. Also, the overlap between Cϱ

12
and Cϱ

13
is

{{S̄T2 , S̄T7}, {[0, 1]cancer , [0, 1]HIV }}which is also safe.

In global composition, the overlap is between two corpuses as
a whole, therefore the counterfeit is added to the non-private set
of the cluster that is most similar to the counterfeit (e.g. Jaccard

similarity or cosine similarity) and the private terms are added into
the global bag.

After BP every transaction T ∗ in P∗ remains serially preserving
when [Tϱ

m+1] is published due to Lemma 3.

3.2. Forward perturbation

Following the s-preserving definition (Definition 3), every
transaction Tϑ

∈ Tϑ
m+1 to be published is s-preserving, and gen-

erally speaking is serially preserving when Tϑ
m+1 is an independent

publication.However,whenTϑ
m+1 is to bepublished as part of serial

publication P∗ = [T∗1, . . . ,T
∗
m], T

ϑ
m+1 may not be serially pre-

serving. It may also be used to form transitive composition attacks
(Section 2.3), and therefore requires some form of perturbation.

Forward perturbation proceeds in two operational steps, FP1
and FP2 (Fig. 5). In this section, we first present FP1which removes
the possibility of transitive composition attacks by developing (1)
how the range of s ∈ SP in the derived clusters should be calculated
when the number of counterfeits are published (Proposition 2);
and (2) how the counterfeits required in FP1 should be computed
(Lemma 5). Second, we present FP2 which ensures that after FP1
the transactions (to be published) remain serially preserving by
adding some counterfeits. Together, FP1 and FP2 finalise the pub-
lication process of Tϱ

m+1 to T∗m+1.
In the following, the superscript ϱ denotes the result of back-

ward perturbation (Section 3.1) and µ denotes the intermediate
result of FP1.

Proposition 2. Given a private term s ∈ SP and the overlap
O(C∗, Cϱ) (shortened O) where C∗ is in P∗ and Cϱ is in Tϱ

m+1, let
dS̄
= CS̄
\OS̄ (CS̄

∈ Cϱ) be the non-overlapping transactions of Cϱ and
xd be the number of counterfeits added to Cϱ . The number of copies of
s shared by dS̄ is in [r1d , r2d ]s:

r1d = max{r1f −xd, 0} r2d = min{(N(Cϱ)−xd− r1), r2f } (19)

[r1f , r2f ]s is calculated by Formula (8) and [r1, r2]s is the range of s in
O.

r1d is developed as follows. N(s, Cϱ) is the number of copies of
s in Cϱ . In the extreme case, the overlap O has r2 copies of s so the
number of copies of s available for dS̄ is r1f = N(s, Cϱ)−r2(Formula
(8)). For the lower bound r1d the counterfeits added xd must be
assumed to be s-counterfeits, so only r1f −xd number of true copies
of s remain to be shared by dS̄ and max{r1f − xd, 0} in the formula
ensures non-negative values.

r2d is developed as follows. N(Cϱ) is the number of transactions
inCϱ . Of these,Ohas r1 copies of s in the extreme case andN(Cϱ)−r1
possible number of copies of s remain. For the upper bound r2d
the counterfeits added xd must be assumed to be s̄-counterfeits so
N(Cϱ) − r1 − xd copies of s remain to be shared by dS̄ . However,
there are N(s, Cϱ) copies of s in Cϱ , if O has r1 copies of s then r2f =
N(s, Cϱ)−r1 remain to be shared by dS̄ .We compare the two values
to get the minimum because it is possible that (N(Cϱ)− xd − r1) <

r2f or (N(Cϱ)− xd − r1) > r2f , so min{(N(Cϱ)− xd − r1), r2f } gives
the actual maximum number of s available for dS̄ .

The range [r1f , r2f ]s of possible copies of s in the derived cluster
d(Cϱ,O) (Definition 7) becomes [r1d , r2d ]s (Proposition 2). For in-
stance, inC∗ = {{| AB |}, {|s1|}, {||}} andCϱ

= {{|
A
Tc
|}, {|s1|}, {||}}, the overlap

O is {A}, {[0, 1]s1} and xd = 1. [r1f , r2f ]s1 is [0, 1]s1 (Definition 7)
and [r1d , r2d ]s1 is also [0, 1]s1 by Proposition 2 and the derived
cluster d(Cϱ,O) is {{Tc}, {[0, 1]s1}}.

In transitive composition attacks, the adversarywishes to prop-
agate the knowledge obtained from a derived cluster d to infer
the private terms of some non-private set S̄T . When the number
of counterfeits are published, (s)he can use at most N(d) − xd
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Table 7
Forward perturbation Step 1.

‘‘true’’ non-overlapping transactions for the attack. Our aim is to
ensure that for any N(d) − xd non-overlapping transactions in d,
there can be no inference about other non-private sets. Lemma 5
determines the counterfeits to be added to Cϱ via FP1 to prevent
such transitive composition attacks. We denote the true derived
cluster of d(Cϱ,O), prior to the addition of counterfeits, by do =

d(Cϑ ,O) for the lemma as follows.

Lemma 5. Let O(C∗, Cϱ) be an overlap where C∗ is in P∗ and Cϱ is
in Tϱ

m+1, also let d(Cϱ,O) be a derived cluster and do its true derived
cluster. Given s ∈ SP and its range [r1d , r2d ]s in d (Proposition 2), the
addition of ds̄ s̄-counterfeits and ds s-counterfeits to Cϱ , guarantees
there cannot be any transitive attack via d w.r.t. s:

ds̄ = ds̄(O) = N(s, Cϱ)− r2 − xd
ds = ds(O) = N(do)+ r1 − N(s, Cϱ) (20)

xd is the number of counterfeits added after BP. [r1, r2]s is the range of
s in O.

Proof. See Appendix for proof. □

Similar to Formula (17) and (18) also let dx(Ω(Cϱ)) and d(Ω(Cϱ))
be the maximum number of x-counterfeits and the overall maxi-
mum number of counterfeits respectively required for all overlaps
Ω(Cϱ). FP1 is defined as follows.

Definition 16 (FP1). Given a backward perturbed cluster Cϱ
=

{CS̄, CS
c , C

S
oJ
}, and its cover Ω(Cϱ), FP1 adds d(Ω(Cϑ )) number of

counterfeits (Definition 14) to CS̄ ; and ds(Ω(Cϑ )) copies of s to CS
c

for each s ∈ SP .

After FP1, the cluster Cϱ becomes Cµ and it’s transactions are
no longer at risk of transitive composition attacks due to Lemma 5.
The transactions T ∗ of the previously published corporaP∗ are also
safe from transitive composition attacks since they follow the same
publication scheme.

Example 12. Cµ

21
, Cµ

22
and Cµ

23
(Table 7) is the result of BP and FP1

on Cϑ
21

, Cϑ
22

and Cϑ
23

(Table 4) respectively. By Lemma 5, Cµ

22
needs

1 cancer-counterfeit (marked ⋄ for illustration only). The overlap
of Cµ

22
and Cµ

23
is {{S̄T8}, {[0, 1]cancer}} and there can be no transitive

composition attack as previously seen in Example 8.

After BP and FP1 the number of counterfeits added are pub-
lished alongwith the cluster. The aimof publishing the counterfeits
is two fold (1) to add some perceived utility to the clusters; and (2)
to remove the possibility of further transitive attacks due to the
addition of counterfeits after FP1.

The publication of the number of counterfeits prevents ad-
versary from confidently using the derived clusters after the ad-
dition of counterfeits to conduct further transitive composition
attacks. The known number of counterfeits ‘forces’ the adversary
to consider these counterfeits in his/her attack. For instance, if
the number of counterfeits in Cµ

22
(Table 7b) is not known, the

adversary takes the derived cluster {S̄T8 , S̄Tc }, {(1, 1)cancer} of C
µ

22
in good faith. Suppose there are 3 transactions instead of 2 in Cµ

23

i.e. Cµ

23
= {{|

S̄T8 ,S̄T9
S̄T11
|}, {|

cancer
cancer |}, {||}} and S̄T11 is identical to Tc⋄. (S)he

identifies the private term of S̄T9 as cancer by using the derived
cluster {S̄T8 , S̄Tc }, {(1, 1)cancer}. The published number of counter-
feits ironically introduces the uncertainty required to forestall such
privacy disclosure.

At the same time, publishing the number of counterfeits does
not lead to any disclosure risk, since the s or s̄ status of the counter-
feits is not specified; and it cannot be derived from the knowledge
of the publication mechanism because the process of adding s or
s̄ counterfeits is symmetrical. For instance, C∗ = {{| AB |}, {|s1|}, {||}}
and Cϑ

= {{|A|}, {|s1|}, {||}} differ only on B. By Definition 15 one
counterfeit must be added to Cϑ to become {{| ATc |}, {|s1|}, {||}}. Even

when the adversary knows Tc is a counterfeit, (s)he does not know
whether Tc is s or s̄, consequently (s)he cannot breach the privacy
of A and Lemma 3 is still satisfied.

The addition of counterfeits in backward perturbation BP and
forward perturbation FP1 has two unlikable effects; (1) the pop-
ulation rates before and after BP and FP1 are not equal i.e.
ss(s,Tϑ

m+1) ̸= ss(s,Tµ

m+1) due to the addition of counterfeits.
ss(s,Tµ

m+1) becomes the new population rate; (2) the transactions
in Tµ

m+1 may no longer be s-preserving (Definition 3). FP2, defined
in the following, ensures that every transaction Tµ

∈ Tµ

m+1 be-
comes serially preserving.

Definition 17 (FP2). LetTµ

m+1 be the result of applying FP1 toTϱ

m+1.
Given the private term s ∈ SP and the risk threshold rth, if Tµ

∈ Cµ

(Cµ
∈ Tµ

m+1) is found not to be serially preserving (Definition 3),
FP2 is the process of adding xc counterfeits to Cµ to make it serially
preserving.

xc is determined by gradually adding a counterfeit to Cµ until
every transaction Tµ

∈ Cµ is serially preserving. This is repeated
for all transactions Tµ

∈ Tµ

m+1 after which Tµ

m+1 becomes the
published version T∗m+1.

Lemma 6 shows thatwhen Cµ is published to C∗ after FP2, every
transaction T ∗ ∈ C∗ is serially preserving.

Lemma 6. Given a private term s ∈ SP , a risklift threshold rth, and
a transaction Tµ

∈ Cµ of Tµ

m+1 such that Tµ is not serially preserving
w.r.t. s. Tµ becomes serially preserving when xc ≤ θc s̄-counterfeits
are added to Cµ; where θc =

A
ss(s,Tµ)·rth

− B is the upper bound on the
s̄-counterfeits required and A/B is the posterior probability β(Tµ, s).

Proof. See Appendix for proof. □

3.2.1. Further analysis on backward perturbation and forward pertur-
bation

After FP2, we do not publish the number of counterfeits added
in this step to avoid a minimality attack. In an extreme case (e.g.
Tϑ
m+1 is partitioned into a single cluster Cϑ and no counterfeits

were added/needed during BP or FP1), given the published pop-
ulation rate ss(s,Tµ

m+1) after FP1, when Tµ
∈ Cµ is found not

to be serially s-preserving further s̄-counterfeits are added by the
FP2 step. Since only s̄-counterfeits are added in FP2, the adversary
may attempt to use the number of s̄-counterfeits added in FP2 (if
provided), to reverse the process and hence breach privacy of Tµ.

It must be noted that the non-publication of the counterfeits
added in the FP2 step does not increase the chances of a disclosure.
In other words, it is not possible for a persevering adversary to re-
calculate the number of s̄-counterfeits added by FP2 using the pub-
lished population rate ss(s,Tµ

m+1) and the observed population rate
ss(s,T∗m+1) when T∗m+1 is finally published. We consider the worst
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case whereT∗m+1 is partitioned into a single cluster again. From the
observed population rate ss(s,T∗m+1), N(T∗)− ss(s,T∗m+1)× N(T∗)
gives the number s̄-transactions in T∗. But N(T∗) − ss(s,Tµ

m+1) ×
N(T∗) using the published population rate ss(s,Tµ

m+1) does NOT
give the number of s̄-transactions in Tµ (remembering that T∗ but
NOTTµ is published ). Therefore the error introduced bypublishing
the pair ss(s,Tµ

m+1) andT∗ allows us tomitigateminimality attacks
and privacy is protected.

Backward and forward perturbation form the publication
π (Tϑ

m+1) for the serial corpus Tϑ
m+1. The algorithm Sanony is de-

scribed in the following section.

3.3. Algorithm

Sanony is shown in Algorithm 1. In the algorithm, a new
corpus Tm+1 to be published is first anonymised to Tϑ

m+1 via
Anony (Section 2.2). With the overlaps between the clusters of the
anonymised corpus Tϑ

m+1 and the previously published corpora P∗

computed, each cluster Cϑ
i ∈ Tϑ

m+1 is backward perturbed to pro-
duce Cϱ

i (Lines 1–3). The overlaps are recomputed and each cluster
Cϱ

i ∈ Tϱ

m+1 is forward perturbed (FP1) (Lines 4–6) to produce Cµ

i .
Finally the risk of every transaction in Tµ

m+1 is computed and FP2
applied (Lines 7–9). The publication π (Tϑ

m+1) is returned as T∗m+1
which is serially preserving (Theorem 1).

Algorithm 1 Sanony (π )

Input: A serially preserving corporaP∗; the anonymised corpus Tϑ
m+1;

the privacy parameter rth.
Output: The serially preserving corpus T∗m+1

1: for every anonymised cluster Cϑ
i ∈ Tϑ

m+1 do
2: Cϱ

i ← Call backward perturbation BP (Definition 15).
3: end for
4: for every backward perturbed cluster Cϱ

i ∈ Tϱ

m+1 do
5: Cµ

i ← Call forward perturbation FP1 (Definition 16).
6: end for
7: for all transactions Tµ

i ∈ Tµ

m+1 do
8: T ∗i ← Call forward perturbation FP2 (Definition 17).
9: end for
10: Return T∗m+1

The time complexity of Sanony is O(Q · |SP |+N(Tϑ
m+1) · |SP | ·θc)

where Q is the total number of overlaps O(C∗, Cϑ ) for all pairs of
C∗ in P∗ and Cϑ in Tϑ

m+1; |SP | is the number of s terms; N(Tϑ
m+1)

is the number of transactions in Tϑ
m+1; and θc is the number of

counterfeits required in FP2 (worst case).
In both BP and FP1, each overlap is scanned once for every

private term s ∈ SP to compute the counterfeits and this com-
plexity is O(Q · |SP |). In FP2, every transaction is scanned once
for every s term. For each transaction at risk, θc counterfeits are
added iteratively in the worst case to its cluster. Its complexity is
O(|SP | · N(Tϑ

m+1) · θc). Together, the complexity of the algorithm
is O(Q · |SP | + N(Tϑ

m+1) · |SP | · θc). Most of this cost comes from
the pairwise computation of the overlaps Q which is proportional
to N(T∗) × N(Tϑ

m+1) (T∗ ∈ P∗) for each pair of corpora. In our
experiments we demonstrate an extreme case where Tϑ

m+1 and T∗
both increase and in this case our algorithm performs no worse
than a quadratic time complexity w.r.t. the corpus size. While this
could be seen as a potential drawback, it must be contextualised
that most privacy preserving algorithms affording strong guaran-
tees including [15,35] often have high time complexities.

Theorem1. Given a risklift threshold rth, a set of private terms SP , the
serially preserving publication P∗, the anonymised corpus Tϑ

m+1 and
our mechanism Sanony (π), the serial publication P∗ + [π (Tϑ

m+1)] is
serially preserving.

Proof. See Appendix for proof. □

In this section we presented a sound publication mechanism
for solving the privacy preserving serial publication problem. We
made the observation that composition attacks are only possible if
there exists some overlapping transactions between publications.
The adversary uses these overlapping transactions to increase the
probability of some of the transactions having sensitive terms by
excluding others. The new probability of the transactions having
a sensitive term upon observing the overlapping transactions is
the posterior probability. In order to prevent such knowledge gain
without removing the overlapping transactions we introduced a
two step approach which makes use of counterfeits. The idea
is that in the presence of counterfeits, the chances of excluding
some transactions from having a sensitive term is significantly
reduced. We demonstrated theoretically that if reasonably small
number of counterfeits are added, then the presence of overlapping
transactions makes no difference and the posterior probability
becomes the same as the prior probability. Our presented approach
consists of two main steps, backward perturbation and forward
perturbation. Backward perturbation ensures that all transactions
of previous publications are at no risk of composition attacks.
Forward perturbation has two further parts FP1 which ensures
that the current publication cannot be used to conduct any further
attacks called transitive composition attacks; and FP2 which en-
sures that the current publication is serially preserving. We then
performed further analysis on our method and showed that it is
free from minimality attacks.

In the following, we demonstrate the effectiveness of our pro-
posed method by performing an empirical study.

4. Empirical study

In this section, we demonstrate (1) the susceptibility of trans-
actional data to composition attacks; (2) the perturbation rates of
Sanony; (3) its utility in count queries; and (4) performance.

4.1. Experimental setup and datasets

Three algorithms were implemented; (1) Anony, the non-serial
transactional data publication method with a relative risk guaran-
tee as described in Section 2.2 [14]; (2) Inv, the serial publication
method for relational data with m-invariance guarantee as intro-
duced in Section 1 [7]; and (3) Sanony, our proposed solution for se-
rial publication of transactional data with a relative risk guarantee.
Wealso developed SeGen, a lightweight serial data generatorwhich
samples, with repetition, from a large corpus of transactional data
in a serial manner to produce a serial corpora. SeGen has tunable
parameters such as repeat rate (rep) and sample size (sz) to allow
characterisation of composition attacks within the datasets. All
implementations were done in Java and run on an Intel Core i5-
4300M CPU @ 2.60 GHz laptop with 8.00 GB RAM and Windows 7
operating system.

Two real world datasets introduced in [36], specifically BMS-
Webview-1(B1) and BMS-Webview-2(B2) were used. Each contains
click streams from two online retailers (Table 8). Clicks are repre-
sented as terms, and for each dataset we randomly selected 10% of
the terms in the corpus as private terms and randomly generated
5 serial corpora [T1, . . . ,T5] to represent a 5-year serial corpora
with SeGen. We considered the following parameters:

(1) Sample Size (sz): It is the number of transactions in each
serial corpus. sz was varied between 1.25% and 10% of the original
dataset, with a default of 5%.

(2) Repeat Rate (rep): It is the percentage of transactions of the
previous corpus that is also in the subsequent corpus. It was varied
between 10% and 80% with a default of 40%.
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Table 8
Datasets.

No. of Trans. No. of terms Max Trans.
length

Avg. Trans.
length

Avg. sparsity

B1 59,602 497 267 2.5 99.49%
B2 77,512 3340 161 5.0 99.86%

(3) Risklift Threshold (rth): It is our privacy parameter (Defini-
tion 3). It was varied between 2 (strongest) and 16 (weakest) with
a default of 8.

4.2. Composition attacks

This experiment demonstrates the susceptibility of transac-
tional data to composition attacks. For each anonymised corpus
in [Tϑ

1 , . . . ,Tϑ
5 ], the number of transactions at risk was calculated

(Definition 12) under varying parameters.
Fig. 6 has 3 pairs of plots (6a, 6b, 6c), each pair has 2 sets of bars

corresponding to B1 and B2, and each bar is the total number of
transactions at risk for the whole publication. Fig. 6a shows that as
the sample size increases, the number of transactions at risk also
increases along with it uniformly for both datasets. In general, B2
hasmore risk compared to B1 because it hasmore transactions and
number of private terms than B1.

Fig. 6b is the results of varying the repeat rate for the serial cor-
pora. As more transactions of the previous corpus Ti are repeated
in the subsequent release Ti+1, there is more risk. With more
transactions being repeated, there is more chance for overlaps
between clusters of different corpora, leading to more inferences.
This trend continues until the clusters become identical in both the
previous and subsequent corpora and there is no risk. i.e. rep =
100% (not shown in the diagram) there is no risk, as expected.

Fig. 6c shows how the number of transactions at risk relates
to the privacy parameter rth. Interestingly, with a stricter privacy
parameter of rth = 2, the number of transactions at risk is lower.
This is also true for further smaller values of rth (i.e. rth ∈ [1, 2],
not shown in Fig. 6c). As rth becomes bigger, the risk increases
until rth = 8. This seems counter intuitive but it is explained as
follows. At lower (stricter) rth, there is a higher tendency for the
anonymisation Anony to put more private terms into the global
bag in order to satisfy the s-preserving guarantee (Definition 3).
In doing so, there are less s terms left in the clusters and fewer
overlapswill have any potential to lead to a risk. However as the rth
increases (becomes weaker) more s terms remain in their clusters
and it is easier for overlaps to result in a higher risk due to the
presence of the s terms. This trend continues until rth becomes
sufficiently large (around rth = 16) such that, even when the risk
increases, it no longer breaches the serially preserving criterion
i.e. γ ser.

s (T ∗) ≤ rth (Definition 12). This characteristic is more
pronounced in B1, but is subtle in B2 due to the differences in the
datasets (Table 8).

4.3. Perturbation rate

This experiment shows the perturbation rates, i.e. the percent-
age of counterfeits, of Sanony in comparison to Inv [7]. In Inv, the
privacy parameter m was set to 2, practically the weakest guar-
antee of Inv, and so lower perturbation rates were expected [7].
In transactions with multiple private terms, the terms were con-
catenated into one term. The perturbation rate in the resulting
2-invariant publication was then calculated after applying Inv to
the serial corpora [T1, . . . ,T5]. Similarly, the perturbation rate of
Sanony was also calculated. In this comparison we do not involve
Anony since it does not make use of counterfeits.

Fig. 6. Susceptibility to composition attacks.

Fig. 7 which is the results has 3 pairs of plots (7a, 7b, 7c),
each pair has 2 sets of bars corresponding to B1 and B2. Each bar
represents the perturbation rate of the method, Sanony (darker
bars) and Inv (lighter bars). In Fig. 7a, the perturbation rate w.r.t.
sample size is shown. For both datasets B1 and B2, Sanony results in
much lower perturbation rate. Typically, Sanony has a perturbation
rate of around 0.2% while Inv has 5% for B1. In B2 the average
perturbation rate of Sanony is 0.5% and it stands at 25% for Inv.

Fig. 7b is the perturbation rate w.r.t. varying repeat rates. For
both datasets and methods, the perturbation rates generally in-
crease with the repeat rate due to increasing risk as repeat rate
increases (Fig. 6b). However, Sanony has significantly lower per-
turbation rates than Inv.

In Fig. 7c, rth was varied in Sanony while comparing each result
to Inv for the fixed privacy parameter ofm = 2. In the figure, even
at its highest perturbation rate (rth = 8), Sanony performs much
better than Inv, at least 25 times less perturbation for B1 and 50
times less for B2.

4.4. Utility

This section shows theminimal utility impact of the addition of
counterfeits in Sanony for actual queries when compared to Anony.
We note that this is not to compare the utility of Inv with Sanony,
but to show the trade off in using counterfeits to ensure the right
privacy guarantee in terms of utility loss. Furthermore, our com-
parison of perturbation rates in Section 4.3 already demonstrates
that Inv requires amuch higher number of counterfeits. As a result,
we compare the error levels of queries for Anony and Sanony i.e.
before and after the counterfeits are added respectively.

In the experiment, first the serial corpora [T1, . . . ,T5] was
anonymised via Anony. Next, for each original corpus Ti, 3 groups
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Fig. 7. Perturbation rates.

of term associations with respective low (1–10), medium (20–
40), and high (70–200) supports in the dataset were randomly
selected as queries. The same associations were searched for in
their respective anonymised corpus Tϑ

i to find their supports. The
utility loss of an association (a, b) was measured by the relative
error re [27]:

re =
abs(so(a, b)− sp(a, b))
AVG(so(a, b), sp(a, b))

(21)

where so(a, b) and sp(a, b) are the supports of (a, b) in the original
and the anonymised datasets respectively and abs() returns the
absolute value. The absolute value ensures false associations that
did not exist in the original corpus are captured. The denominator
uses an average instead of the original support to avoid division
by 0 when there are spurious transactions, and it normalises the
re values to [0, 2]. We consider only term pairs because we believe
they are representative of themore complex term associations that
may also be lost by the publication. This is analogous to the a priori
rule on frequent itemsets [37] i.e. if a complex term association is
lost, then its term pairs are also lost; and for infrequent complex
termassociations, the lowcategory of termpairs sufficiently covers
them.

10 different queries were used for each category and the results
averaged. For each query, the support from the anonymised data
was derived from their reconstructed transactions generated by
randomly linking entries in the vertical segments of a cluster (Def-
inition 4). Thesewere generated 20 times and the results averaged.
The same experiment was repeated for Sanony.

Fig. 8 which is the result has 3 pairs of plots (8a, 8b, 8c), each
pair has 2 sets of bars corresponding to B1 and B2. Each bar in a plot
is the relative error for a method Sanony (darker bars) and Anony
(lighter bars). In all 3 pairs of plots,we aim to observe the difference

Fig. 8. Utility in queries.

between the light and dark bars in each plot. We note that, the
actual heights of each compared bar group (light and dark) are not
pertinent to our discussion here i.e. how the use of counterfeits in
Sanony to ensure the right privacy guarantee affects utility. The ac-
tual heights relate to the cluster formations. For example, different
repeat rates may result in different clusters which impacts how
Anony and Sanony perturb the data and subsequently the utility of
each bar group [14,38]. The results show only marginal difference
in the relative error between Anony and Sanony. This indicates the
impact on utility by Sanony is very minimal. In the worst case of
Fig. 8b (repeat rate = 80%), the average increase in utility loss is
less than 10%. From the results we notice that in some instances
(rth = 2 of B1 in Fig. 8c) Sanony performs slightly better. This is
attributed to the randomness in the reconstruction stage as there
is the potential that the reconstructed transactions from Sanony are
closer to the original transactions than Anony when Tϑ

i and π (Tϑ
i )

are similar.
It must be stressed that, this experiment focuses on how much

deterioration in utility is caused by Sanonywhen applied on top of
Anony andmay not represent the optimal utility for both methods.
It is natural to expect that under optimised utility the same results
will hold since the methods employ the same privacy semantics.
The interested reader is pointed to [38] for some methods to
improve utility in the partitioned based methods.

4.5. Performance of Sanony

This experiment verifies the performance of Sanony. For the
same corpora, the runtime of Sanony and Invwas noted.
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Fig. 9. Performance.

Fig. 9 which is the results has 3 pairs of plots (9a, 9b, 9c), each
plot has 2 lines for Sanony and Inv respectively. In Fig. 9a, increasing
the sample size sz for each corpuses in [T1, . . . ,T5] shows Sanony
performs no worse than quadratic. As discussed in Section 3.3, this
is as a result of the pairwise computation of the overlaps between
the corpora. In Inv, no such pairwise computation is done and
therefore it has a linear time performance. The computation cost
associated with Sanony is a fair price to pay for its stronger privacy
and better perturbation rates. In future, we will investigate the
tracking of transactions across publications to reduce the pairwise
computations required for determining the overlaps and further
establish how our proposal extends to the big data environment as
described by [39].

Fig. 9b shows the time behaviour w.r.t. the repeat rate. The
results show that for both datasets, the performance is linear w.r.t.
the repeat rate for both Sanony and Inv. This is because, the repeat
rate is directly related to the number of transactions at risk (Fig.
7b). Overall, B2 has higher computation cost than B1 because it has
more private terms and transactions than B1.

In Fig. 9c, it is seen that rth has no appreciable effect on the
performance of Sanony for both datasets. Obviously Inv is constant
since it’s privacy parameter is fixedm = 2 and this is independent
of rth.

5. Related work

Privacy preservation in multiple data publishing has been con-
sidered under 3 settings namely multiple independent publishing,
collaborative publishing and coordinated publishing [2]. In multiple
independent publishing each publisher operates independently of
other publishers without referencing their datasets. Often, the
distribution of private terms in other unknown datasets that may

be used for a composition attack is assumed, and used to calculate
the risk of any publication [40–42]. In collaborative publishing each
member of a group of publishers controls a part of the dataset and
together wish to jointly publish the overall dataset. Techniques
such as secure multiparty computation (SMC) is often used [43–
47]. In coordinated publishing, a centralised repositorywhere data is
updated periodically with new records or attributes is assumed [1,
7–11,48–52].

Our work focuses on coordinated publishing and there are two
types of publishing schemes [31]; (1) sequential publishing consid-
ers updates in the form of projections on new attributes; and (2)
serial publishing considers updates in the formof deletion/insertion
of records. In sequential publishing, [48] uses the negative prop-
erty of lossy joins to hide the re-identification of records. [49] ex-
tends [48] by considering a local recoding called cell generalisation
to improve utility. Further [50] improves on [49] by considering a
fully dynamic setting.

In serial publishing, [9] and [10] use a delayed publication
approach to guarantee k-anonymity for newly inserted records. [1]
improves utility by utilising both historical and current data in
publishing the current release. [7] introduces persistent invariance
in which a record is associated with the same set of private terms,
called a signature until it is removed. This effectively preserves
m-diversity in the serial publication. In [8], role composition pro-
vides l-diversity guarantee under a different set of assumptions.
Primarily, [8] assumes some values in a record are permanent and
do not change while others can be updated arbitrarily. We do not
make this assumption as it does not allow updates of some private
terms e.g. if a person hasHIV and later develops T.B., his/her record
cannot be updated not even with a concatenation {HIV + T .B.}
i.e. it becomes a new private term and defeats the purpose of
the permanent private value assumption. In [51], the possibility
of privacy risks associated with transient private terms is fully
analysed. Further, [11] attempts to solve the problem in [51] by
extendingm-invariance. [11] assumes, the adversary can track the
changes in a transaction via an event list to form a τ -attack.

The techniques for serial publishing seen so far adopt relatively
weaker privacy guarantees, and they focus on relational data.
Recently [52] focussed on spontaneous reporting systems (SRS)
under the specific assumption of the presence of follow-up keys to
link transactions of an individual across publications. Their metric
PPMS(k, θ∗) bounds the probability of any private term s to be
linked to an equivalence class of size k to be less than θs ∈ θ .
Unfortunately, its satisfiability cannot be guaranteed e.g. given k
and θ , there are cases where the probability bound cannot be
satisfied. Subsequently, skewness attacks cannot also be prevented
when there are rare or combined private terms.

Some elegant utility aware differentially private techniques,
which are stronger, also focus mostly on the interactive setting
[22,53]. Although [54] presents a formal discussion on differential
privacy and composition attacks in the non-interactive setting,
how the proposal works in practice is uncertain. The noise re-
quired in datasets with rare private values is often prohibitively
high [2,28], even for methods such as [55–58] (Fig. 1). Moreover,
in [56], IncTDPart is proposed to preserve differential privacy in
a serial publishing scenario where the dataset updates involves
insertions only. [57] also proposes a differentially private counter
over binary data streams which does not suitably adapt to the
dataset release scenario described in this paper. [58] proposes
two techniques DSFT and DSAT, which produce a differentially
private histogram of the current dataset only if it is sufficiently
different from the previous dataset to reduce the error introduced
by the privacy mechanism. [55] also proposes a hybrid method
that makes use of generalisation to reduce the amount of noise
added in the case of a mixed relational and set-valued dataset.
More recently, [59] consideredhow temporal correlations between
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data valuesmay affect the guarantee of differential privacy, but this
solves a different problem.

6. Conclusion

In this work, we considered the privacy preserving serial pub-
lication problem of transactional data. When transactional data is
published for data analytic applications without care, it can lead
to serious privacy disclosures. This problem is further exacerbated
in the serial publishing scenario where there are multiple data
releases e.g.periodic release of prisoner health data [3,4]. Thiswork
developed a privacy preserving guarantee for the serial publication
of transactional data and then proposed a publication mechanism
to satisfy the guarantee.

In developing our privacy guarantee, we first presented the rth-
preserving privacy guarantee for the single independent publica-
tion scenario [14]. Then, we developed this guarantee further by
considering the risk of privacy disclosures (composition attacks)
based on the posterior knowledge of the adversary. The posterior
knowledge of the adversary was defined as the posterior proba-
bility of a transaction having a sensitive term after the adversary
observes other publications in the serial publication. In calculating
this probability, we provided some theoretical reasoning which
madeuse of combinatorics and the Bayes’ theorem tomaximise the
adversary’s knowledge. We further analysed the risk by consider-
ing the possibility of global compositions, where the adversary can
make use the whole of each published corpus to enhance his/her
posterior knowledge. Finally, we formally presented the problem
this paper sought to address.

We then presented a sound publication mechanism for solving
the privacy preserving serial publication problem. We made the
observation that composition attacks are only possible if there
exists some overlapping transactions between publications. The
adversary uses these overlapping transactions to increase the
probability of some of the transactions having sensitive terms by
excluding others. The new probability of the transactions having
a sensitive term upon observing the overlapping transactions is
the posterior probability. In order to prevent such knowledge gain
without removing the overlapping transactions we introduced a
two step approach which makes use of counterfeits. The idea is
that in the presence of counterfeits, the chances of excluding some
transactions from having a sensitive term is significantly reduced.
Wedemonstrated that if a reasonably small number of counterfeits
are added, then the presence of overlapping transactions makes
no difference and the posterior probability becomes the same as
the prior probability. Our presented approach consists of twomain
steps, backward perturbation and forward perturbation. Backward
perturbation ensures that all transactions of previous publications
are at no risk of composition attacks. Forward perturbation has
two further parts FP1 which ensures that the current publication
cannot be used to conduct other attacks such as the transitive
composition attacks; and FP2 which ensures that the current pub-
lication is serially preserving. We then performed further analysis
on our method and showed that it is free from minimality attacks.

Finally, we demonstrated the effectiveness of our method on
real datasets and in comparison with state-of-the-art methods. In
particular, it was seen that single independent publication mech-
anisms are prone to composition attacks and our method effec-
tively defends against such attacks.We also demonstrated that our
method gave significantly better results in terms of lower pertur-
bation rates than other methods such as m-invariance [7] which
also makes use counterfeits. In addition, when we compared our
method to the single independent publication method Anony that
does not use counterfeits, we saw that the effect of the counterfeits
added in our method Sanonywas marginal (less than 10% increase

in utility loss in the worst case). These experiments were based on
the error rate of actual queries.
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Appendix

A.1. Proof of Lemma 1

Proof. In Formula (12) it is clear that each overlap Oi ∈ Ω(C∗)
derives an inference about the private term s of T ∗; and the effect
of all the overlaps must be considered to avoid a bias in calculating
the true posterior probability of T ∗. □

A.2. Proof of Lemma 2

Proof. This lemma holds because of Formulae (13) and (14). In the
formulae, Prob(O|s ∈ T r ) −→ 1 (1∼) and Prob(O|s /∈ T r ) −→ 1
(1∼) as the interval of [r1, r2]s increases. Formula (12) becomes
Prob(s ∈ T r

|O) = Prob(s∈T r )·1∼
1∼·Prob(s∈T r )+1∼·Prob(s/∈T r ) . Clearly, Prob(s ∈

T r
|O) −→ Prob(s ∈ T r ) since the denominator (1∼ · Prob(s ∈

T r )+ 1∼ · Prob(s /∈ T r )) −→ 1. □

While the overlap relates to both C∗ and Cϑ , Lemma 2 applies
only to C∗ because the proof is true for fixed cluster i.e. for T ∗ ∈ C∗
if β(T ∗, s) = α(T ∗, s) is true due to Lemma 2 and an s-transaction
is added to C∗ then β(T ∗, s) = α(T ∗, s) may NO longer be true.
However, C∗ is already published and no new transactions can be
added to it, so Lemma 2 is correct.

A.3. Proof of Lemma 3

Proof. In Formula (13) Vandermonde’s identity [60] implies that:
|O−z|∑
r=0

(
N(s, C∗)− 1

r − z

)
·

(
N(s̄, C∗)
N(O)− r

)
=

(
N(C∗)− 1
N(O)− z

)
since (r−z)+(N(O)−r) = N(O)−z and (N(s, C∗)−1)+N(s̄, C∗) =
N(C∗)− 1 for all their non-negative values. The identity is also true
for all values r ∈ [f1C∗ , f2C∗ ]s i.e.

f2C∗∑
r=f1C∗

(
N(s, C∗)− 1

r − z

)
·

(
N(s̄, C∗)
N(O)− r

)
=

(
N(C∗)− 1
N(O)− z

)

For any value r /∈ [f1C∗ , f2C∗ ]s an impossible combination of
(N(s̄,C∗)
N(O)−r

)
or

(N(s,C∗)−1
r−z

)
results which evaluates to 0 so the identity is trivially

satisfied. The probability Prob(O|s ∈ T r ) in Formula (13) then
becomes 1. Similarly it can also be shown that Prob(O|s /∈ T r ) in
Formula (14) also becomes 1; and Prob(s ∈ T r

|O) = Prob(s ∈ T r )
in Formula (12). □

A.4. Proof of Lemma 4

Proof. We need to show that, the addition of hs̄ s̄-counterfeits and
hs s-counterfeits to Cϑ transforms the range [r1, r2]s to [r ′1, r

′

2]s such
that f1C∗ ≥ r ′1 and f2C∗ ≤ r ′2 to satisfy Lemma 3. Let the s-range of
O w.r.t. Cϑ be [f1Cϑ

, f2Cϑ
]s. hs̄ > 0 implies r1 = f1Cϑ

> f1C∗ (Formula

(6)). In Formula (5), f1Cϑ
reduces as s̄-counterfeits are added since

N(Cϑ
\OS̄) increases but N(O) never increases due to Definition 14.

So adding hs̄ = r1 − f1C∗ s̄-counterfeits to Cϑ makes f1Cϑ
≤ f1C∗
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true and r ′1 = f1C∗ . When hs > 0 it implies r2 = f2Cϑ
< f2C∗

(Formula (6)). As f2Cϑ
depends solely on N(s, Cϑ ) (Formula (5)),

adding hs = f2C∗−r2 s-counterfeit toN(s, Cϑ )makes f2Cϑ
= f2C∗ and

r ′2 = f2C∗ = f2Cϑ
. Lemma 3 is satisfied so Lemma 4 is correct. □

A.5. Proof of Lemma 5

Proof. Let [r1, r2]s be the range of s in O and [f1Cµ =

f1(Cµ, dS̄
o), f2Cµ = f2(Cµ, dS̄

o)] be the s-range of the true non-
overlapping transactions do after FP1 (Formula (5)). Also let xc =
ds + ds̄ be the number of counterfeits added in FP1. We need to
show that the addition of xc counterfeits, transforms [r1d , r2d ]s to
[r ′1d , r

′

2d
]s so that f1Cµ ≥ r ′1d and f2Cµ ≤ r ′2d and there can be

no inference (Lemma 3). We begin with the following formulae
derived from Formulae (19) and (5) respectively.

r ′1d = max{r1f − (xd + xc), 0}

r ′2d = min{(N(Cµ)− (xd + xc)− r1), r2f }

f1Cµ = max
{(

N(s, Cµ)− N(CS̄
\ dS̄

o)
)
, 0

}
f2Cµ = min

{
N(do),N(s, Cµ)

}
The addition of xc makes r ′1d = 0. In r ′1d , r1f = N(s, Cµ) − r2
(Formula (8)) and xc = (N(s, Cϱ)− r2− xd)+ds so r ′1d = N(s, Cµ)−
r2 − (xd + N(s, Cϱ)− r2 − xd + ds) = 0 as N(s, Cµ) = N(s, Cϱ)+ ds.
So f1Cµ = r ′1d is true. The addition of xc makes f2Cµ = N(do). In f2Cµ ,
N(s, Cµ) = N(s, Cϱ) + ds and ds = N(do) + r1 − N(s, Cϱ) (Formula
(20)) soN(s, Cµ) = N(do)+r1 and f2Cµ = min{N(do),N(do)+r1} =
N(do). In r ′2d , r2f = N(do) + r1 − r1 = N(do) as N(s, Cµ) =
N(do) + r1. Also (N(Cµ) − (xd + xc) − r1) = N(Cµ) − r1 and
r ′2d = min{(N(Cµ) − r1),N(do)} = dS̄

o since N(Cµ) − r1 ≥ N(do)
(dS̄

o = CS̄
\ O (CS̄

∈ Cϑ ) & r1 ≤ N(O)), so f2Cµ = r ′2d and Lemma 5 is
proved. □

From the proof, it is seen that the addition of more counterfeits
(both s and s̄) does not affect f1Cµ = r ′1d or f2Cµ = r ′2d , Lemma 3
remains satisfied and Lemma 5 is correct.

A.6. Proof of Lemma 6

Proof. We focus on the transactions in the derived clusters since
those in the overlap are serially preserving due to Lemma 3. We
need to show that the addition of s̄-counterfeits causes the poste-
rior probability to decrease up to a pointwhere T ∗ becomes serially
preserving; and the number of counterfeits added xc is maximally
θc .

We simplify the notation for this proof as follows: PŌ =

Prob(O|s /∈ T r ) and PO = Prob(O|s ∈ T r ). ns = N(s, C∗) and
ns̄ = N(s̄, C∗). Also, Prob(s ∈ T ∗|O) = 1/(1+ PŌ·Prob(s/∈T r )

PO·Prob(s∈T r ) ) (Formula

(12)), we focus on the ratio PŌ·Prob(s/∈T r )
PO·Prob(s∈T r ) =

ns̄
N(C∗) ·

∑r1
r=r1 (nsr )·(

ns̄−1
|O|−r−z)

ns
N(C∗) ·

∑r1
r=r1 (ns−1r−z )·(

ns̄
|O|−r)

(Formula (13) and (14)). For r ∈ [r1, r2]s and z = 0 (since we focus
on the derived cluster and T ∗ /∈ O), the ratio simplifies to ns̄−o+r

ns−r

by factorial expansion. Let PŌ′·Prob(s/∈T r )′
PO′·Prob(s∈T r )′ =

ns̄+1
N(C∗)+1 ·(

ns
r )·(

(ns̄+1)−1
|O|−r−z )

ns
N(C∗)+1 ·(

ns−1
r−z )·(

ns̄+1
|O|−r)

be

the new ratio after an s̄-counterfeit is added. It also simplifies to
ns̄−O+r+1

ns−r which is greater than ns̄−o+r
ns−r . Therefore, the posterior

probability reduces since PŌ′·Prob(s/∈T r )′
PO′·Prob(s∈T r )′ >

PŌ·Prob(s/∈T r )
PO·Prob(s∈T r ) .

The number xc of s̄-counterfeits required can be shown to be
maximally equal to θc , by considering the worst case scenario
where the overlapO and the cluster Cµ differ on one transaction i.e.
N(Cµ) = N(O)+ 1 and it is associated with the minimum copies of
s, i.e. r = r2 = r1 so the derived cluster has the maximum copies of
s (Proposition 2). If the posterior probability is A/B, reducing A/B to

satisfy the serially preserving conditionA/B ≤ ss(s,T∗)·rth requires
θc =

A
ss(s,Tµ)·rth

− B by algebraic manipulation. □

It isworthmentioning that, as expected,when T ∗ ∈ O, i.e. z = 1,
then PŌ·Prob(s/∈T r )

PO·Prob(s∈T r ) =
PŌ′·Prob(s/∈T r )′
PO′·Prob(s∈T r )′ is always true in the above proof

(for both s and s̄ counterfeits). This confirms that the transactions
in the overlap are always serially preserving due to Lemma 3.

A.7. Proof of Theorem 1

Proof. After BP, each transaction in the previous publication is
serially preserving due to Lemma 3. After FP1, there can be no
transitive attacks because of Lemma 5. And due to Lemma 6, FP2
ensures that all the transactions of π (Tϑ

m+1) are serially preserving,
and the addition of further counterfeits does not affect Lemmas 3
and 5. Theorem 1 is correct. □
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