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A B S T R A C T

Adverse drug events (ADEs) may occur and lead to severe consequences for the public, even though clinical trials
are conducted in the stage of pre-market. Computational methods are still needed to fulfil the task of phar-
macosurveillance. In post-market surveillance, the spontaneous reporting system (SRS) has been widely used to
detect suspicious associations between medicines and ADEs. However, the passive mechanism of SRS leads to the
hysteresis in ADE detection by SRS based methods, not mentioning the acknowledged problem of under-re-
porting and duplicate reporting in SRS. Therefore, there is a growing demand for other complementary methods
utilising different types of healthcare data to assist with global pharmacosurveillance. Among those data sources,
prescription data is of proved usefulness for pharmacosurveillance. However, few works have used prescription
data for signalling ADEs. In this paper, we propose a data-driven method to discover medicines that are re-
sponsible for a given ADE purely from prescription data. Our method uses a logistic regression model to evaluate
the associations between up to hundreds of suspected medicines and an ADE spontaneously and selects the
medicines possessing the most significant associations via Lasso regularisation. To prepare data for training the
logistic regression model, we adapt the design of the case-crossover study to construct case time and control time
windows for the extraction of medicine use information. While the case time window can be readily determined,
we propose several criteria to select the suitable control time windows providing the maximum power of
comparisons. In order to address confounding situations, we have considered diverse factors in medicine utili-
sation in terms of the temporal effect of medicine and the frequency of prescription, as well as the individual
effect of patients on the occurrence of an ADE. To assess the performance of the proposed method, we conducted
a case study with a real-world prescription dataset. Validated by the existing domain knowledge, our method
successfully traced a wide range of medicines that are potentially responsible for the ADE. Further experiments
were also carried out according to a recognised gold standard, our method achieved a sensitivity of 65.9% and
specificity of 96.2%.

1. Introduction

An adverse drug event (ADE) is an “unfavourable medical event that
occurs in association with the use of a certain medication” [1]. In the
United States, medicine-related adverse events (both morbidity and
mortality) were estimated to cost $76.6 billion annually [2], and the
U.S. Food and Drug Administration (FDA) receives approximately 0.25
million reports of suspected ADEs per year [3]. As one of the leading
concerns of medicine safety issues, ADEs have already raised attention
from both regulatory agencies and research communities.

To assess the efficacy and safety of a new medicine, clinical trials
are normally undertaken before introducing it to the market. However,
clinical trials suffer from insufficient samples and limited durations for

ADE detection. Clinical trials may not include all subgroups of patients
who eventually will use the medicine in the real world because sub-
populations such as elderly, children, pregnant women, patients with
multiple diseases are usually excluded from the trials [3]. This limits
the capacity of clinical trials to detect infrequent and rare ADEs. The
short observation period in a trial may also limit its ability to detect
ADEs with a longer latency. Therefore, post-market surveillance is still
needed for monitoring ADEs and discovering medicines that are re-
sponsible for ADEs.

As an important resource for post-market surveillance, spontaneous
reporting system (SRS) has been used by many regulatory authorities
such as the adverse event reporting system (AERS) from the U.S. FDA.
SRS encourages health professionals to report suspected ADEs along
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with the specific medicines involved. Many methods have been devel-
oped to determine the associations between reported ADEs and sus-
pected medicines using SRS databases. Those methods are mostly based
on measures of disproportionality (which quantify the extent to which
an ADE is reported disproportionately with a certain medicine in
comparison to other medicines from the whole SRS database [4]), such
as proportional reporting ratio (PRR) [5], reporting odds ratio (ROR)
[6], the information component (IC) used by Bayesian confidence
propagation neural network (BCPNN) [7]. In general, those methods
project data onto contingency tables to calculate the measures ac-
cording to different equations and further determine whether an asso-
ciation exists by comparing to a pre-defined threshold.

It is widely acknowledged that SRS suffers from the problems of
under-reporting and duplicate reporting [8]. Thus the findings could be
biased towards highly reported cases and rare cases tend to be over-
looked. Furthermore, the procedure of reporting heavily relies on the
suspicion that a medicine has caused a corresponding ADE, which in-
volves subjective judgement and may result in varying quality, incon-
sistency or incompletion of reports. SRS based methods are passive ADE
discovery, which also limit the discovery power of the methods. The
procedure of reporting an ADE to SRS, to some extent, is the procedure
of generating a hypothesis that the suspected medicine causes the
corresponding ADE. So those SRS-based ADE discovery methods are
mainly meant to evaluate the hypotheses according to the designed
criteria. Such characteristic of SRS leads to the hysteresis in ADE de-
tection while millions of patients have already been exposed [9].

To complement the SRS which suffers from the above-mentioned
limitations, there is a growing demand for other methods utilising
different types of healthcare data to assist with global pharmaco-
surveillance. Previous research has shown that the diversity of signal-
ling methods and data sources facilitates more ADEs being detected and
can potentially strengthen post-market surveillance of medicine safety
[10]. Prescription data is such a data source with proved usefulness for
pharmacosurveillance [11]. In contrast to SRS, prescription data does
not suffer from the bias of subjective reporting as it faithfully records
every dispensation of prescribed medicines irrespective of whether or
not an ADE is suspected. Compared to other electronic health records
(EHRs), prescription data covers a diverse range of populations and is
more accessible [12]. Furthermore, as a longitudinal observational data
source, prescription data facilitates data-driven ADE discovery that
automatically generates and evaluates the hypotheses from data re-
garding ADEs without human involvement. Therefore, some previously
ignored or unknown ADEs may be discovered [13].

There is only a handful of methods mainly relying on prescription
datasets containing no additional information for ADE discovery, due to
the uncertainty regarding the outcomes of medicines. As a prescription
dataset does not explicitly record any occurrence of ADEs, it is chal-
lenging to signal ADEs from a prescription dataset. The prescription
sequence symmetry analysis (PSSA), which was introduced in 1988 and
further developed by Petri et al. [14] and Hallas [15], is one of the few
methods which prescription data. To impute the outcomes of medi-
cines, PSSA uses specific medicines for treating ADEs as indicators of
corresponding ADEs. For example, the dispensation of doxycycline, an
antibiotic medicine, indicates that the patient is most likely to suffer
from a bacterial infection while the type of infection is unknown. Some
case studies have been conducted with PSSA [16–18], but they were all
done by pairs of medicine-event (examining a medicine with an event at
one time). However, due to its low cost, effectiveness and simplicity,
PSSA is still an important tool for pharmacosurveillance.

In this paper, we aim to detect medicines that are responsible for a
given ADE from pure prescription data. For this purpose, we develop a
logistic regression based method to evaluate the associations between
multiple medicines and the ADE spontaneously. To prepare data for
training the logistic regression model, we follow the design of the case-
crossover study [19] to construct case time (immediately before an ADE
occurs) and control time (when no ADE occurs) windows for the

extraction of medicine use information. Therefore, the confounding si-
tuation raised by fixed characteristics of patients, such as gender can be
eliminated. While the case time window can be easily determined, we
propose several criteria to select the suitable control time windows and
ensure that medicine use information in the control time windows can be
effectively compared with that in the case time windows. In practice, a
considerable number of candidate medicines are taken by patients subject
to a specific ADE. Most of the candidate medicines do not have an obvious
effect on the ADE of interest while only a few do. Hence, we provide a
sparse solution to select the candidate medicines with the most significant
associations via Lasso (least absolute shrinkage and selection operator)
[20] regularisation. While the basic logistic regression uses binary in-
dicators which can only distinguish whether a medicine is used or not,
thereby fails to address the additional confounding situations, we further
propose a weight function to consider the various factors in medicine
utilisation, including the temporal effect and the frequency of prescrip-
tion. We also consider the individual effect of patients on the occurrence
of the ADE to eliminate the unrelated medicines from the candidates.

To assess the performance of the proposed method, we conducted a
case study using frusemide initiation as the indicator of the ADE (heart/
cardiac failure and/or peripheral oedema) with a real-world prescrip-
tion dataset from the Pharmaceutical Benefits Scheme of Australia.
Validated by the existing database of product information, our method
successfully traced a wide range of medicines that are potentially re-
sponsible for the ADE with a precision between 50% and 80%. Further
experiments were also carried out according to a recognised gold
standard of 20 ADEs along with 41 positive and 53 negative medicines
which can cause the ADEs or unlikely to cause the ADEs respectively,
our method achieved a sensitivity of 65.9% and a specificity of 96.2%.

The major novelty of this paper is summarised as follows:

• Given an ADE of interest, our method specifically focuses on spon-
taneous signalling as many ADE-causing medicines as possible. As a
complement to other signal detection methods for ADEs, our work
can potentially strengthen the global pharmacosurveillance.
• In order to overcome the confounding situation raised by time-in-
variant characteristics of patients, we use the design of the case-
crossover study to extract medicine use information for data pre-
paration.
• While the basic logistic regression uses binary indicators which can
only distinguish whether a medicine is used or not, our method
considers the various factors of medicine utilisation, including the
temporal effect of a medicine and the frequency of a prescription, as
well as the individual effect of patients on the occurrence of an ADE.

The rest of this paper is organised as follows. In Section 2, we in-
troduce the necessary background regarding the case-crossover study
and define the research problem. Section 3 presents the proposed
method in details, including data preparation, the basic logistic re-
gression model with a sparse solution and the two improvements to it.
Section 4 introduces the settings of experiments and presents the re-
sults. In Section 5, we discuss some interesting findings in relation to
the developed method. Finally, Section 6 concludes the paper and
suggests future work.

2. Problem definition

2.1. Case-crossover study

Randomised controlled trials (RCTs) are the widely acknowledged
golden standard for causal inference. However, RCTs are not always
feasible because of the cost and ethical concerns; e.g. it will be un-
ethical to require an experiment participant to expose himself/herself
to risk factors which could be life-threatening. Therefore, various
methods have been developed for inferring strong associations or pos-
sible causal relationships between an exposure and the outcome from
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observational data. It has been shown that well-designed observational
studies can achieve comparative results to those of RCTs [21].

The case–control study [22] is a commonly used type of retro-
spective observational study. In a case-control study, two groups are
defined on the basis of observational data, one including the cases, i.e.
samples with the outcome of interest (e.g. lung cancer) and the other
including the controls, i.e. samples without the outcome. By assuming
that the exposure between the two groups can represent each other if
their outcome states were exchanged, then a significant difference be-
tween the two groups in the level of exposure to a risk factor (e.g.
smoking) will suggest a strong association between the risk factor and
the outcome.

A case-crossover study [19] could be considered a crossover version
of a case–control study, where each case serves as its own control. In a
case-crossover study, all the subjects who experienced the outcome
(event) of interest are cases and thus are included in the study. Instead
of conducting comparisons between two different groups, the case-
crossover study compares the difference in the levels of exposure to the
risk factor of the cases from the same group but during different time
windows, i.e. case time windows and control time windows. Hence, the
case-crossover study is immune to a selection bias. The case-crossover
study was introduced by Maclure [19] to answer the question “Was this
event triggered by something unusual that happened just before?” [23].
The assumption is that if the risk factor potentially causes the outcome,
the risk factor should appear, at least, more frequently immediately
prior to the occurrence of the outcome (case time windows) than at any
similar period distant from the occurrence of the outcome (control time
windows). To identify such associations given a specific ADE, the
concept of case-crossover study is utilised in our method to prepare a
raw prescription dataset for a logistic regression model.

2.2. Research problem

In epidemiology, given that the other conditions are fixed, if an ADE
“would not occur at all or would not occur until some later time” [24]
without the antecedent use of a medicine, then the ADE might be
caused by the specific medicine. Therefore, the proposed research
problem addressed in this paper can be defined as follows.

Research Problem. For a given ADE of interest and a prescription
dataset containing dispensing records of prescription with timestamps,
we aim to find such associations between a medicine and the ADE that
satisfy Condition (1) the medicine was dispensed prior to and not
distant from the occurrence of the ADE, Condition (2) a dispensation of
the medicine is frequently co-occurred with the ADE, and Condition
(3) when the ADE does not occur, the medicine is most likely absent.

3. Method

In this section, we will first present the data preparation process
from the prescription dataset according to the design of a case-crossover
study. Then, we will introduce the basic logistic regression model with
Lasso regularisation. Furthermore, we propose two improvements to
the basic model by taking more factors into account.

3.1. Data preparation

3.1.1. Case and control time windows on ADE
In the following text, according to the design of a case-crossover

study [19], we propose the definition of the case and the control time
windows in the context of discovering medicines that might lead to a
given ADE.

Let represent a given ADE of interest. We use y to indicate whe-
ther occurs ( =y 1) or not ( =y 0). In the prescription dataset, the
occurrence of could be imputed on the basis of the prescription of the
specific medicines used to treat . We call these medicines ADE-

indicator medicines in this paper. From SIDER [25], a well-known da-
tabase for marketed medicines and their recorded adverse reactions, we
collect the list of ADE-indicator medicines for . The temporal ordering
of a medicine suspected to have caused the ADE, the ADE and the ADE-
indicator medicine is illustrated in Fig. 1. The ADE occurs after the
dispensation of a suspected medicine and the ADE-indicator medicine is
dispensed shortly after the occurrence of the ADE as its treatment.
While the occurrence of an ADE is unobserved in the prescription da-
taset, the dispensation of an ADE-indicator medicine can be used as the
indication of the occurrence of the ADE. Here, we only use the initial
prescription of ADE-indicator medicine as the proxy of the occurrence
of . The initial prescription reflects the status of the patients accu-
rately with less interference (while the following prescriptions could be
attributed to other reasons, e.g. resupply of the previous prescription).

Based on the principle that a cause happens prior to its consequence
[26], the medicines responsible for must be dispensed within a time
window that is immediately before the occurrence of . Therefore, for
the case-crossover study in the context of ADEs, we define the case time
window as follows.

Definition 1. Case Time Window: Given an ADE of interest, , the
case time window for a patient is a period of days immediately before
the day when occurs to the patient. Here, is the pre-defined length
of time (in days) based on the maximum induction time of the
prescribed medicine during which the medicine keeps exerting its
effect on patients.

Note that in this paper, we only use the initial prescription of ADE-
indicator medicine to impute the occurrence of the ADE to the patient,
this ensures there is one unique case time window specific to each
patient and avoids possible conflicts during constructing different time
windows. While the case time windows contain prescription records of
the suspected medicines potentially responsible for the occurrence of ,
control time windows are needed to provide a comparison for verifying
the suspected medicines and eliminating the unrelated medicines.

Definition 2. Control Time Window: Given the case time window
constructed for a patient according to the occurrence of the ADE , his/
her control time window is the time window prior to and not
overlapping his/her case time window. Furthermore, during the
control time window, the patient is not affected by .

To achieve the maximum statistical power of the logistic regression
model and prevent the possible statistical bias towards the oversized
sample, we construct the same number of control time windows as that
of the case time windows for each patient in the analysis (i.e. one case
time window versus one control time window for one patient).

The two types of time windows contain the information regarding
medication use, such as which medicine was dispensed, the number of
prescriptions with this medicine, and the dates of these dispensations.
We refer to these as the medicine use information in the rest of this paper.
The case time window is constructed immediately before the occur-
rence of ; therefore, it corresponds to the outcome that =y 1.
Similarly, the control time window corresponds to =y 0 as no ADE
occurs when the control time window ends.

3.1.2. Candidate medicines
By locating the initial prescription of the ADE-indictor medicines in

the dataset, we could include all patients who have experienced in
the analysis and index them by …i N{1, , }. For each patient, the case

Fig. 1. Temporal ordering of suspected medicine, ADE and ADE-indicator
medicine.
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time window could be readily determined according to Definition 1. We
presume that all the medicines dispensed within the case time windows
are suspected of causing , and any medicines dispensed outside case
time window are unrelated to (Condition 1 in the definition of
Research Problem). Hence, as defined below, we obtain the set of
candidate medicines that might lead to the ADE .

Definition 3. Set of Candidate Medicines: A candidate medicine (i.e.
a risk factor for the case-crossover study) is any medicine that is
dispensed to a patient in the analysis during his case time window. Let
Di denote the set of medicines dispensed during the case time window
of patient i in the prescription dataset, then the set of all candidate
medicines, denoted as D*, is defined as =D D* i i.

3.1.3. Selecting control time windows
In the case-crossover study, for a given patient, the exposure state

(medicine use information) in his/her control time window should
impute that in his/her case time window if the outcome ( ) is removed.
To ensure this, the control time window needs to be carefully selected
in terms of both the length and the starting point. Hence, specific to
signalling potential ADEs, we propose the following criteria for se-
lecting the appropriate control time windows:

1. The control time window should have an equal length as the
case time window, i.e. days for every patient in the analysis.
This is the fundamental criterion to eliminate bias during sampling
medicine use information. The equal length of the control time
window and the case time window ensures a fair comparison that a
given medicine has the same probability of being dispensed in the
control time window and in the case time window if it is unrelated
to .

2. The control time window should not overlap with the case time
window.
During the case time window, the patient is exposed to the sus-
pected medicines that might be responsible for the given ADE. As
the control time window is selected to provide comparisons to the
case time window, the control time window cannot be contaminated
by exposures in the case time window. Hence, the control time
window should not overlap with the case time window.

3. The control time window should be constructed sufficiently
close to its case time window.
The case-crossover study is immune to the selection bias as each
patient in the analysis serves as his/her own control. Hence, it

eliminates the confounding factors which are the patient char-
acteristics that remain constant over time. However, as some of the
patient characteristics might change over time, which may in-
troduce certain confounding factors. To eliminate (or minimise)
such confounding factors, the control time window should be con-
structed sufficiently close to its case time window so that the change
in the patient characteristics is negligible.

4. The control time window which contains the maximum medi-
cine use information of candidate medicines should be chosen.
In practice, there might be several suitable time windows that can
be chosen as the control time window for a case time window. These
suitable time windows contain different numbers of records re-
garding candidate medicine use. Naturally, a time window during
which the patient did not take any medicine and thus no ADE oc-
curred can be assigned as the control time window. Discovering
medicines that are potentially responsible for the ADE requires us to
efficiently rule out medicines that are unrelated to the ADE. If we
choose such a control time window containing no dispensations of
medicines, then we would not have the information to eliminate the
unrelated medicines from the set of candidate medicines. To sample
as much medicine use information in the control time window as
possible, we choose the control time window that contains the
maximum use information of the candidate medicines from all the
suitable time windows.

We use the example shown in Fig. 2 to demonstrate all of the above
criteria. Suppose that a patient experienced the ADE of interest, as the
red arrow above the timeline shows, and a case time window could be
constructed by tracing back days (the maximum induction time of
medicines) immediately before the ADE occurs, as shown by the green
area along the timeline. In the case time window, three medicines
(D D,1 2 and D3) were dispensed and hence are suspected of leading to
the ADE. Before the ADE occurred, the patient was dispensed with D1
and D2. This suggested that D1 and D2 are less suspicious for leading to
the ADE. The blue area is the range of pre-defined “sufficient closeness”
to the occurrence of the event. Therefore, the control time window
should be selected from the range of “sufficient closeness” and any time
window beyond this range should not be selected as control. The four
time windows of equal length as the case time window were indicated,
and all of them could be chosen as the control time window based on
Definition 2. However, the third time window was the best selection, as
it captured more prescriptions than the others. It is also worth men-
tioning that, if there are multiple time windows containing the

Fig. 2. Example of selecting the best control time window for a case time window. (For interpretation of the references to colour in this figure citation, the reader is
referred to the web version of this article.)
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maximum medicine use information within the range of “sufficient
closeness”, we should choose the one closest to the ADE.

3.1.4. Extracting medicine use information
Instinctively, a medicine frequently appears in the case time win-

dows (frequently co-occurs with the ADE) is suspicious of causing the
ADE (Condition 2 in the definition of Research Problem). While no
ADE occurs (during control time windows), the suspected medicine is
most likely to be absent (Condition 3 in the definition of Research
Problem). If a medicine violates Condition 3, i.e. being dispensed in
the control time windows, then the suspicion on it becomes question-
able as its presence leads to no ADE. To determine which medicines in
the candidate set are potentially responsible for the ADE, we need to
extract the use information of the candidate medicines from both the
case time windows and control time windows. Therefore, the use in-
formation of these medicines can be compared and analysed.

We use indicator d {0, 1}m to represent whether a candidate
medicine D D*m was used in a specific time window ( =d 1m ) or not
( =d 0m ). Thus, we obtain a vector of indicators = … …d d dV { , , , , }m M1
for each time window, where =M D| *| is the total number of candidate
medicines.

The flow chart in Fig. 3 summarises the steps of the data preparation
process.

3.2. Logistic regression model with Lasso regularisation

3.2.1. Basic logistic regression model
Considering that there are only binary outcomes in our analysis, i.e.

=y 0 (no ADE occurs immediately after the control time windows) or
=y 1 (ADE occurs immediately after case time windows), the logistic

regression model [27] could be used to estimate the effects of the
medicines on the ADE of interest.

To estimate the effects of the candidate medicines, we assign a
coefficient m to each medicine Dm in the candidate set D* accordingly.
Thus, given the vector = … …d d dV { , , , , }m M1 of the medicine use in-
formation from D*, we represent the probability of outcome y given the
vector V regarding the medicine use information as follows:

=

=
+ +=

y f z

e

VPr( | ) ( )
1

1

k k

d( )m
M

m m1 (1)

where k indexes the time windows (case and control time windows)
that were constructed for all the patients in the analysis and K is the
total number of time windows.

In this setting, fitting the logistic regression model is equivalent to
solving the following optimisation problem:

= +
=K

y eVargmin 1 [ * log(1 )]
k

K

k k
V

1

( )k

(2)

where = …{ , , , }M1 2 is the vector of the effect parameters.
In this equation, the parameters …m M| {1, , }m are of interest.

They can be interpreted as the effects of the corresponding candidate
medicine D D*m on ADE . In [28], such “effects” were explained as
the “general capacities to transmit changes among variables” (i.e. the
use of candidate medicines and the occurrence of ADE). More specifi-
cally, if the coefficient m is evaluated to be positive, exposure to
medicine Dm would contribute to the occurrence of ADE to some
extent.

3.2.2. Feature selection via Lasso regularisation
In practice, patients often take several medicines concurrently be-

fore an ADE occurs. Considering that a large number of patients are
included in the analysis, there could be a considerable number of
medicines in the candidate set. This poses a considerable challenge to
detect the medicines responsible for the ADE. Suppose there are M
candidate medicines; then, we will obtain 2M possible combinations
(subsets) of the medicines. For this large number, it is computationally
prohibitive to evaluate each subset to find all the medicines responsible
for the ADE. To achieve a sparse result and select medicines that are the
most likely to be responsible for the ADE, we introduce Lasso regular-
isation into the logistic regression as follows:

= + +
=K

y eVargmin 1 [ * log(1 )]
k

K

k k
V

1

( )
1k

(3)

Lasso was first formulated by Robert Tibshirani in 1996 [20]. Lasso
not only fulfils the task of model regularisation to prevent overfitting
problem but also conducts feature selection. Its reliability has been
proved in many studies across different research areas, including
pharmacoepidemiology [29]. By constraining the sum of the absolute
value of the coefficients, Lasso forces many coefficients to zero and
allows only relevant features to have nonzero coefficients. Therefore,
most components of will be evaluated as zero due to the ignorable
associations between these medicines and the ADE. As the output of our
method, a small proportion of medicines with non-zero (positive)
coefficients will be selected from the set of candidate medicines. We
further rank these medicines according to their coefficients m in the
descending order as the coefficients indicate the strength of the asso-
ciation.

3.3. Considering various factors in medicine utilisation

The variety of medicine utilisation before the ADE occurs results in
different levels of exposure to the medicines. Such variety not only

Fig. 3. Flow chart of data preparation.
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comes from using different medicines but also from different situations
in terms of using the same medicine, i.e. the temporal effect and the
frequency of prescription. Considering various factors facilitates ad-
dressing additional confounding situations in medicine utilisation,
thereby achieving more accurate estimation of the effects of medicines
on the ADE. However, in the basic solution, those two kinds of in-
formation regarding medicine use is ignored, thus limiting the perfor-
mance of the method. Therefore, we introduce a function to measure
the levels of exposure by weighting the temporal and frequency effects
of prescribed medicines.

3.3.1. Temporal effect and frequency of prescription
First, we will explain why the temporal effect and the frequency of a

prescription are essential in leading to the ADE with three examples. In
the first example, a medicine was dispensed before the ADE of interest
occurred, as shown in Fig. 4, where the red arrow indicates the oc-
currence of the ADE and the green area represents the maximum in-
duction period. The medicineD1 was dispensed roughly in the middle of
the maximum induction period, marked by the yellow arrow. Let us set
this as a common situation of medicine use regarding D1. However, the
situations may vary in two ways in general, i.e. the frequency of pre-
scriptions of dispensing D1 and the time gap between the prescription of
dispensing D1 and the occurrence of the ADE, as illustrated in the fol-
lowing.

During the maximum induction period immediately before the ADE,
a patient may be dispensed with several prescriptions of the same
medicine. As shown in Fig. 5, within the time window before the oc-
currence of the ADE, the patient was dispensed with D1 twice. Unlike
the situation in Fig. 4, twice the frequency of prescriptions brings ad-
ditional exposure to the medicine. Obviously, the frequency of pre-
scriptions reflects the degree of exposure, which results in the different
incidences of the ADE, and we refer to it as the effect of frequency of
prescription on the ADE.

Furthermore, the time gap between the dispensation of a prescrip-
tion and the occurrence of ADE might vary. As shown in Fig. 6, the time
gap between the prescription and the ADE is longer than that in Fig. 4.
According to the previous research regarding the relative risk (RR) of
ADEs [30], presuming that the patients will keep taking the medicine
after the prescription is dispensed (until all the pills are consumed), the
RR fluctuates over time rather than remaining constant. Fig. 7 shows
the curve of the RR with respect to the occurrences of the ADE, which
were estimated from seven exposed cases aligning the occurrence of the
ADE on the timeline (“E” represents the start points of exposure when a
prescription is dispensed, “O” represents the occurrence of the ADE and
the solid lines imply the induction time of the medicine). As the curve
indicates, RR increases from when the patients start being exposed to
the medicine and reaches the peak after certain days. Once the patient
survives this time point, the RR begins to drop until the maximum in-
duction period ends. A shorter time gap between the prescription and
the ADE represents less exposure to the medicine and the following ADE

may be caused by other reasons. A time gap of an appropriate length
indicates that the influence of the medicine has accumulated to a cer-
tain level, thereby causing the ADE. In contrast, a prolonged time gap
implies the patient might have already got rid of the influence of the
medicine, and hence the association between this medicine and the
ADE becomes questionable. In summary, the time gap between the
prescription and the ADE reflects the suspicion of this medicine use on
the ADE. Therefore, such time gaps are crucial to the differentiation of
ADE-associated situation of medicine utilisation from other con-
founding situations, and we refer to the time gap as the temporal effect
of a prescription attributing to the occurrence of the ADE.

Clearly, these three examples (Figs. 4–6) are different. The temporal
effect and the frequency of a prescription are related to the levels of
exposure, which eventually affects the occurrence of the ADE. How-
ever, the basic solution uses binary values (0 or 1) to indicate whether a
candidate medicine has been dispensed or not irrespective of the fre-
quency of prescriptions and the time gap between the prescription and
the ADE. Thus, it only enables the recognition of the existence of ex-
posure by treating all the above-mentioned situations as the same ra-
ther than measuring the degree of exposure. This limits the accuracy of
the basic solution in estimating the effects of the candidate medicines
on the ADE and results in the a false discovery.

3.3.2. Weight function
Therefore, we propose a weight function to measure the degrees of

exposure by taking the temporal effect and the frequency of the pre-
scription into account; thus, a more accurate estimation of the effects of
medicines on the ADE can be achieved.

The first step in creating the weight function for a candidate med-
icine is to learn how the RR of ADE fluctuates over different days after
the prescription is dispensed. Therefore, for each medicine in the can-
didate set D*, we conduct a statistical analysis of all the time gaps

Fig. 4. Common situation wherein medicine is dispensed and the outcome
event occurs. (For interpretation of the references to colour in this figure ci-
tation, the reader is referred to the web version of this article.)

Fig. 5. Situation in which multiple prescriptions dispense the same medicine
and the outcome event occurs.

Fig. 6. Situation in which the time gap between the prescription and the out-
come event is longer than that in the common situation.

Fig. 7. Curve of relative risk regarding the occurrence of ADE in the case-
crossover study.
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between the exposure (a prescription dispensing that medicine) and the
outcome (the occurrence of the ADE) and calculate the counts of these
time gaps (from day 1 to day in an ascending order). For example,
Fig. 8 shows the counts of the time gaps between adjacent prescriptions
that dispense vinblastine and aprepitant sequentially. Vinblastine is
known for causing the adverse reactions of nausea and vomiting, which
leads to the use of aprepitant for relief. Fig. 8 shows that the curve of
the counts increase and drop, which is consistent with the curve of the
previous research shown in 7 . The counts reach a peak on day 28,
which implies that the maximum incidence of the ADE (nausea and
vomiting) roughly occurs at day 28 after being exposed to vinblastine.

The purpose of the weight function is to facilitate the recognition of
ADE-associated situation of medicine utilisation by rewarding correct
patterns whose time gap between the antecedent medicine use and its
succeeding ADE is of an appropriate length and penalising the false
patterns with the time gaps of extreme lengths (too long or too short).
More specifically, while the binary indicators ({0, 1}) in the basic so-
lution can only distinguish whether the exposure (to a medicine) exists
or not, the weight function measures the extents of exposure by con-
verting binary indicators into continuous values between 0 and 1. To
measure the varying RR of the ADE with different time gaps, i.e. the
temporal effect, the weight function has to simulate the curve of the RR.
Whereas being weighted as 1 represents the estimated maximum ex-
posure to a medicine when the curve of RR of the ADE reaches its peak
on a specific day, and the weights are scaled depending on the counts of
the different time gaps.

Definition 4. Weight function: For medicine Dm and ADE , let f t( )m
be the count of ADE that occurs to patients on the tth day after
receiving the prescription of Dm. The weight function w t( )m weights the
temporal effect with respect to t , the length of time gaps between the
prescription dispensing medicine Dm; and the end of the time window,
and is defined as =w t( )m

f t
f t t

( )
max( ( )) | [1, ]

m
m

, where is the maximum
length of the induction time regarding medicine use.

By substituting w t( )m for the medicine indicator dm in both the case
and the control time windows, the vector = … …d d dV { , , , , }k m M1 is re-
placed with = … …w t w t w tW { ( ), , ( ), , ( )}k m M1 . Therefore, the final opti-
misation problem of Eq. (3) is as follows:

= + +
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For the situation that there are multiple prescriptions dispensing the
same medicine (Dm) in a time window, i.e. the frequency of prescrip-
tion, we calculate the weight for each prescription and sum them all as
the final value of the function, i.e.

… … =

=

=

=

w t t t w t
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1 (5)

where P is the number of prescriptions dispensing Dm in the time
window and tp

i is the length of the time gap between the pth prescrip-
tion and the end of the time window for patient i.

Proof. Suppose that there are P sampled prescriptions in a time window
denoted as …d d, , P1 , respectively; then, by using the weight function we
can calculate weights for each record, i.e. …w w, , P1 . According to the
setting of the logistic regression model, we assign the coefficients p to
each weight of the prescription to quantify their effects on the ADE of
the outcome; hence, the z in Equation (1) can be expressed as follows:

= + + + + +

= +
=

z W w w w

w

N

( )

,

(0, )

p p P P

p

P

p p

1 1

1
2 (6)

Presuming the effect of the same medicine on the ADE of the outcome is
fixed (denoted as ), when the above-mentioned prescriptions dispense
the same medicine, we obtain = = = =P1 2 . Therefore, z can be
written as = +=z W w( ) p

P
p1 , which is the coefficient times the

sum of all the weights regarding each prescription. In conclusion, the
weight function for multiple prescriptions dispensing the same
medicine is equal to the sum of the weight functions for all the
individual prescription. □

We use the situation in Fig. 5 as an example to illustrate the process
of applying the weight function. Suppose that the time gap between the
first prescription dispensing D1 and the occurrence of the outcome even
is 35 days, and the gap between the second prescription dispensing D1
and the event is 28 days. According to the statistic of delays of the ADE
occurring to the patients after the dispensation of D1 from historical
data, the count of patients encountering the ADEs on day 28 reaches the
peak, and then, drops to the half of the peak on day 35. Therefore, the
second prescription should be weighted as 1 and we weight the first

Fig. 8. Counts of time gaps between adjacent prescriptions that dispense vinblastine and aprepitant sequentially.
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prescription as 0.5. The final value of the weight function in terms of
this example is the sum of weights of these two prescriptions, i.e.

+ =1 0.5 1.5.
In the meantime, medicines tend to be dispensed successively and

comply with different resupply cycles. This results in medicines with
shorter resupply cycles to have more prescriptions in the same time
window. To adjust such an imbalance and avoid a possible bias towards
the infrequently used medicines, we normalise the final values of the
weight function into the same range (i.e. [0, 1]) by medicines. More
specifically, for each candidate medicine dm and final values w t( )m p

i that
the weight function calculated for patient …i N{1, , }, we map w t( )m p

i

from w t w t[min( ( )), max( ( ))]m p
i

m p
i to [0, 1] by scale.

3.4. Considering individual effect on ADE

In the case-crossover study, by each patient serving as his/her own
control, we actually conduct a self-matching on each patient. In other
words, a patient in the analysis is a stratum that consists of sampled
medicine use information with both positive and negative outcomes. In
the basic solution, the model does not distinguish medicine use in-
formation from different patients/strata. However, patients might re-
spond differently to the same medicine, resulting from the varying
characteristics among the patients. Thus, the patients have different
baseline probabilities of encountering the corresponding ADE. To
model such difference between patients, we propose to consider the
individual effects that contribute to the occurrence of ADE by adding an
additional parameter to the basic model. Hence, after the addition of
the individual parameter, the probability of Equation (1) can be ex-
pressed as follows:

=
+ + +

y
e

VPr( | ) 1
1

i
j

i
j

V( )i i
j (7)

The additional parameter i can be interpreted as the reference log
odds of patient i upon encountering the ADE ( =y 1) versus not en-
countering it ( =y 0) when all candidate medicines are absent
( = …d m M0| {1, , }m ). As the individual parameters i vary across
patients, to distinguish among different patients, we organise all the
constructed time windows (both the case and the control time win-
dows) by patients and use j to index the corresponding vectors of the
medicine use information for each patient. Therefore, Vi

j represents the
vector of the medicine use information that was sampled from the jth
time windows of patient i. As we only use the initial prescription of
dispensing the ADE-indicator medicine as the occurrence of ADE, for
each patient, there is only one case time window and hence only one
control time window are constructed, i.e. j {1, 2}.

Therefore, the final optimisation problem can be expressed as fol-
lows:
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+ +
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where = ==K N2 2i
N

1 and yi
j is the outcome of the corresponding

time window ( =y 1i
j if the j-th time window for patient i is a case time

window and =y 0i
j when it is a control time window), which indicates

whether an ADE occurs.
However, the parameter is of our primary interest, while is the

nuisance parameter. To eliminate from the equation, inspired by the
work in [31], we let
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+ +

= =

+

K
y

e

V( , ) 1 [ *( )

log(1 )]

i

N

j
i
j

i i
j

V

1 1

2

( )
1i i

j
(9)

We consider that,

= =
y

y
V( , ) 0 log
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1 ¯

¯i
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where = =y y y¯ | {0, 1}i j i
j

i
j1

2 1
2 , which is the average outcome of all

the case and the control time windows regarding patient i. And V̄i is a
vector of M elements, whose each element is equal to the average value
of the corresponding element from the vectors of the medicine use in-
formation jV | {1, 2}i

j that belong to patient i.
As we balanced the number of case and control time windows (i.e.

one case time window versus one control time window), the average
outcome =ȳ 0.5i , and thus, =log 0y

y
¯

1 ¯
i

i
. Therefore, i can be written as

follows:

= V̄i i (11)

By substituting Eq. (11) into (9), we can express the final optimi-
sation problem which eliminated as follows:
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Note that this improvement could be used together with the weight
function. In such a case, V̄i will be replaced with W̄i , which is a vector of
M elements, each of which is equal to the average value of the corre-
sponding element from the vectors of the weighted medicine use in-
formation jW | {1, 2}i

j , and the final optimisation problem can then be
expressed as follows:
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4. Experiments and results

The dataset utilised in the present paper is sourced from the claims
of prescriptions under the Pharmaceutical Benefits Scheme (PBS) of
Australia [32]. For each patient eligible for the PBS scheme, the PBS
dataset records all the prescriptions of the patient without exception.
All of the claims of the prescriptions in the PBS dataset are recorded
using patient IDs and the dispensing date of the medicine, along with its
generic name, Anatomical Therapeutic Chemical (ATC) classification
code, and the PBS item code (an Australian code identifying the for-
mulation). We applied the proposed method to a segment of the PBS
dataset from 1 January 2013 to 31 December 2017.

4.1. Case study: signalling ADEs of heart failure and/or peripheral oedema

As the first part of the experiments, we conducted a case study by
setting heart/cardiac failure and/or peripheral oedema as the target
ADE. We choose the initial prescription dispensing frusemide (ATC
code C03CA01) as the indicator of ADE. The use of furosemide is spe-
cific to the target ADE with less interference, and the previous study has
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already shown that furosemide performs as a good proxy of heart
failure [17]. In all, 48,984 patients in the dataset who had been dis-
pensed with frusemide were included in the analysis.

To determine the length of (the estimated maximum exposure
period of a medicine), we conducted a survey of the cycles of patients
receiving the resupplied prescriptions by analysing the time gaps be-
tween the adjacent prescriptions dispensing the same medicine. A pa-
tient remained under the influence of a medicine as long as he/she kept
taking it. Once the medicine ran out, the patient sought a prescription
resupply if the medicine was still necessary. Therefore, this cycle of
resupply indicates the length of the exposure period. According to our
previous work, every seven days, there is a peak for patients getting the
resupply, and it reaches the maximum frequency on day 28 (roughly 1
month). Within 42 days, a considerable proportion (90%) of the pa-
tients sought a resupply after the previous prescription. Therefore, for
this case study, to include as many medicines into the candidate set as
possible, we set the length of as 42 days. It is worth mentioning that
we do not recommend to set as an extremely long length, e.g. 180
days. Such a setting violates the hypothesis of case time window as we
can hardly blame the ADE to medicine that patients have taken a half
year ago.

For locating the occurrences of the ADE by the initial prescription of
frusemide, we constructed the case time windows accordingly, and in
all, 804 medicines were assessed to be the candidate medicines. Relying
on the criteria proposed in Section 3.1.3, we further selected a time
window as the control time window for each patient. We sampled the
medicine use information from both the case time windows and the
control time windows for all the patients. Furthermore, as stated in
Section 3.3, we calculated the counts of time gaps for each pair of a
medicine in the candidate set and the indicator medicine from the en-
tire dataset. Therefore, we customised the weight function wm for each
medicine in the candidate set and added them to the model. We also
introduced the individual effects of the patients by adding the para-
meter to the model. Eventually, we used these two improvements in
combination and applied them together in the model. Then, we trained
the logistic regression model with the Lasso regularisation from the
sampled medicine use information. In the experiments of this work, the
Lasso regression was implemented by glmnet [33], a sophisticated
package on R. The glmnet package does not require users explicitly
input the value of regularisation parameter lambda. It automates the
process of regularisation parameter tuning by passing a grid of values
for lambda and fits many models at once. When the model fitting and
regularisation parameter tuning process ends, the glmnet package will
also highlight the most well-trained and regularised model for users.
Eventually, our method selected roughly 10% significant medicines
from the candidate set and ranked them by coefficient in the des-
cending order as the output.

4.1.1. Results evaluation
Considering that it is impractical to find a benchmark database as

“ground truth”, we extracted the Australia approved product informa-
tion (PI) from the Australian Therapeutic Goods Administration (TGA)
website to review whether heart/cardiac failure and/or peripheral oe-
dema were listed as an adverse event in the PI of the detected medicine.
The information in a PI document was written by the pharmaceutical
companies responsible for the medicine and has been approved by the
TGA. It provides objective information about the quality, safety and
effectiveness of the medicine, as demonstrated in the data provided to

the TGA by the pharmaceutical companies [34]. If the PI explicitly
listed heart/cardiac failure and/or peripheral oedema as the ADEs of a
detected medicine, this medicine was considered a positive result. If the
PI mentioned other heart/cardiac problems (other than heart/cardiac
failure, such as heart/cardiac disorders) as an ADE of a detected med-
icine, this medicine was considered a neutral result. The medicines
belonging to neutral results potentially suggest the new signals of the
unknown relationships between the detected medicines and the heart
failure, and our manual review shows that a great proportion of med-
icines in neutral results also have listed oedema (other than peripheral
oedema) as an ADE in their product information. Besides, if the product
information has not included any heart/cardiac problem or peripheral
oedema (even other oedemas were mention), we have considered the
corresponding medicine as a negative result.

In all, 86 signals of the medicine were detected, among which
48.84% (42/86) of the medicines were validated as positive results,
33.72% (29/86) were reviewed as neutral results, while only 17.44%
(15/86) were negative results. We have listed the details of the detected
signals of the positive results in Table 1.

4.1.2. Comparison with PSSA and SRS-based method
Currently, the PSSA is one of the most famous methods using pre-

scription data for ADE detection. It can be considered as good baseline
method. We compared the performance of our method with that of the
PSSA via the same case study conducted by a by previous study [17]. In
this study, authors have used PSSA as a signal detection tool in pre-
scription claims data from Australia for detecting medicines with po-
tential heart failure adverse event signals. They also used frusemide
initiation as an indicator of heart failure. A signal was considered to be
detected if the lower limit of the 95% confidence interval for the ad-
justed sequence ratio (the measurement of PSSA) was greater than one.

A total of 691 medicines were tested, and 22% (153/691) medicines
were considered to be heart failure adverse event signals when using
frusemide initiation as an indicator of heart failure. Their result eva-
luation was also conducted by referring product information provided
by the Australian Therapeutic Goods Administration (TGA). Their sta-
tistics show that 60.78% (93/153) detected medicine whose product
information listed heart failure or oedema as an ADE.

In summary, we have adapted stricter criteria for result evaluation
in our work than the previous study did [17]. Approximate to the cri-
terion used to verify the detected signals in [17], a total of 71 (42+29)
medicines, in the prevalence of 82.56%, can be considered as valid ADE
signals of heart/cardiac failure, peripheral oedema or other heart/car-
diac problems. Therefore, our method outperformed the PSSA in the
precision of detecting valid ADE signals of heart failure and/or per-
ipheral oedema. Table 2 shows the comparison of the prevalence of
valid signals detected by PSSA and our method.

To prove that our method complements the SRS, we have conducted
an additional experiment to illustrate some ADE signals previously
missed by SRS-based methods can be detected by our method.

We have implemented the proportional reporting ratios (PRRs) [5],
a well-known SRS-based method, for the same case study, i.e. detecting
medicines that might lead to heart/cardiac failure and/or oedema
peripheral from FDA's SRS database. The SRS data is extracted from the
FDA's database and we choose the exact time range as we did for
evaluating our method, i.e. from 2013Q1 to 2017Q4. We also adapt the
same minimum criteria for detecting a signal as used in the previous
study [5], i.e. 3 or more cases, PRR at least 2 and 4 for the critical value
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of the chi-squared test. From this experiment, we have summarised the
total of 620 signals detected by PPRs.

By comparing the signals detected by our method with the signals
detected by PPRs, half (50%) of the signals detected by our method are
overlapped with signals detected by PPRs, which indicates the relia-
bility of our method. Besides, our method has detected 43 new signals
(50% of signals detected by our method) which are not detected by
PPRs. Among these 43 signals detected by our method only, 13 signals
were evaluated as positive results, 20 signals were evaluated as neutral
results and 10 signals were negative results. The details of the com-
parison of the signals are listed in Table 3.

4.2. Comprehensive ADE signal detection: gold standard-based experiments

As the second part of the experiments, to thoroughly assess the
performance of the proposed method, we have conducted more com-
prehensive experiments according to a gold standard from a previous
study [35]. According to the study, these 19 medicines were carefully
selected by domain experts. The domain experts ensured these medi-
cines were available for the Australian market consecutively between

Table 1
Detected signals of positive results.

ATC code Generic name Num in a Num in controlsb Exclusive num in c

Proton pump inhibitors A02BC02 Pantoprazole 6177 5978 1458
A02BC05 Esomeprazole 6853 7075 1333

Antithrombotic agents B01AB01 Heparin sodium 423 91 409
B01AB05 Enoxaparin sodium 1702 855 1422
B01AC16 Eptifibatide 3 0 3
B01AC24 Ticagrelor 316 221 147
B01AE07 Dabigatran 475 433 105
B01AF01 Rivaroxaban 1634 1374 505
B01AF02 Apixaban 1111 846 389

Antiarrhythmic medications C01BD01 Amiodarone 925 620 436
Antihypertensives medications C02AC05 Moxonidine 970 993 118

C02KX04 Macitentan 15 10 7
Beta blocking agents C07AB07 Bisoprolol 1282 982 437

C07AB12 Nebivolol 287 202 121
Calcium channel blockers C08CA01 Amlodipine 3542 3680 672
Antibacterials for systemic use J01CR03 Ticarcillin and clavulanic acid 78 23 75

J01DD04 Ceftriaxone 434 143 421
J01FA06 Roxithromycin 1406 1368 1142

Antineoplastic agents L01AA09 Bendamustine 4 1 3
L01CB01 Etoposide 78 57 45
L01CD01 Paclitaxel 228 186 86
L01DB06 Idarubicin 5 0 5
L01XC03 Trastuzumab 69 52 20
L01XX32 Bortezomib 91 58 52

Analgesics N02AA55 Oxycodone and naloxone 2041 1780 959
N02AB03 Fentanyl 653 538 247
N02AE01 Buprenorphine 1552 1407 464

Antiepileptics N03AE01 Clonazepam 59 48 39
N03AX16 Pregabalin 3371 3225 913

antipsychotic N05AD01 Haloperidol 165 130 121
N05AH03 Olanzapine 516 504 110
N05AX08 Risperidone 656 631 221

Psychoanaleptics N06AX11 Mirtazapine 1736 1718 389
Antifungal medications J02AC04 Posaconazole 33 19 25

A01AB04 Amphotericin B 254 224 218
Other medications A12BA01 Potassium chloride 603 414 480

B03XA02 Darbepoetin alfa 172 140 104
C09DX03 Olmesartan, amlodipine and hydrochlorothiazide 136 128 29
H02AB09 Hydrocortisone 138 65 108
J05AB14 Valganciclovir 41 15 38
R03AL04 Indacaterol and glycopyrronium bromide 165 142 61
V03AF01 Mesna 27 15 17

a Number of patients who used the suspected medicine in their case time windows.
b Number of patients who used the suspected medicine in their control time windows.
c Number of patients who exclusively used the suspected medicine in their case time windows (not in their control time windows).

Table 2
Comparison between valid signals detected by the proposed method and the
PSSA.

PSSA Proposed method

Valid signals 60.78% 48.84% (Positive results) 82.56% in total
33.72% (Neutral results)

Invalid signals 39.22% 17.44% (Negative results)

Table 3
Details of signal comparison detected by the proposed method and the SRS-
based baseline method.

Signals consistent
with PPRs

Signals newly
detected

Total Prevalence (newly
detected/total)

Positive results 29 13 42 30.95%
Neutral results 9 20 29 68.67%
Negative

results
5 10 15 66.67%

Total 43 43 86 50%
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1995 and 2010. These medicines have a relatively high usage volume in
the population, and this ensures an adequate sample size for research
studies. Besides, the domain experts also ensured that these medicines
were not predominantly used in a specific subpopulation. Eventually,
this gold standard listed 19 medicines involving a great diversity in
their anatomical, therapeutic and chemical properties. Benefited from
such a selection, the gold standard contains 43 positive events which
can be caused by these medicines and 114 negative events which are
unlikely to be caused by these medicines. For example, perindopril
indeed causes cough and dizziness, but considering seizure and colitis
as ADEs of perindopril is not necessarily correct. From this gold stan-
dard, we have summarised a new standard containing 20 adverse
events, along with their indicator medicines, 41 positive medicines
which are capable of causing corresponding ADEs in the 20 adverse
events and 53 negative medicines which are not. For example, cough,
indicated by the use of pholcodine linctus, can be caused by perindopril
and ramipril, while it is unlikely to be caused by strontium ranelate.
Comparing to the previous case study, these comprehensive experi-
ments cover a broader range of ADEs, including common ADEs such as
nausea and rare ADEs such as seizure.

The same PBS prescription dataset was utilised for these experi-
ments. Our method successfully detected 65.9% (27/41) positive
medicines, while only 3.8% (2/53) negative controls were mistakenly
detected (i.e. false positives). The sensitivity, specificity, positive pre-
dictive value and negative predictive value are listed in Table 4, and
more details along with the gold standard are provided in Table 5 in
Appendix A.

4.2.1. Comparison to state-of-the-art methods
We compared the performance of the proposed method with two

previous studies using the same prescription dataset and conducting the
evaluation according to the same gold standard. The first study [36] is
the validation of effectiveness of the PSSA on Australia Prescription
data (PBS data). The PSSA achieved a sensitivity of 61% and a speci-
ficity of 93%. Another study [37] is a supervised machine learning
methods for detecting ADEs from prescription data, published by 2018.
They spilt the standard for training and testing, and their results ranged
from 56% to 84% (average 67.8%) in sensitivity and 50% to 90%
(average 74%) in specificity, depending on different machine learning
techniques (such as logistic regression, decision tree, SVM, random
forest, Neural network). When they used another standard for training
and the above-mentioned standard for testing, the results ranged from
48% to 70% (average 50.8%) in sensitivity and 20% to 89% (average
65.7%) in specificity. In summary, with a sensitivity of 65.9% and
specificity of 96.2%, the proposed method has achieved a promising
performance comparing with existing methods.

5. Discussion

In this section, we plan to discuss some interesting things that are
related to our method, experiment results and other existing researches.

First of all, we would like to discuss the confounding problem related
to this study. First, as the PBS dataset provides a complete chain of pre-
scription for each patient without missing records, we are less concerned
about unobserved confounders raised from additional medicines. Second,
the use of case-crossover study as data preparation for logistic regression
analysis eliminates the confounding situations raised from time-invariant
characteristics of patients. The criterion of “sufficient closeness” for the
selection of control time windows also reduces the influence of con-
founding situations raised from time-variant patient-specific confounders.
Third, although the dispensation of an ADE-indicator medicine could be
caused by a new indication/disease other than the development of an
ADE, this would not cause a confounding situation in utilising prescrip-
tion data. Despite that the association between the new disease and the
ADE-indicator medicine is certain, the dispensation of investigated med-
icine is independent of the new disease. Therefore, a new disease would
not influence the detection of ADE-causing medicine in prescription data
because it would not generate any spurious associations between the in-
vestigated medicine and the ADE-indicator medicine. Fourth, the co-ex-
posures [38] problem may introduce a confounding situation to our
study, i.e. one medicine is frequently co-prescribed with another medi-
cine, if any of them causes an ADE then its effect on the ADE may be
masked by the other. Such a situation might lead to false discovery (the
signal of co-prescribed medicine), it never prevents the true signal of ADE
from being detected by our method. Fifth, there may exist the con-
founding situation raised from acute indication [38], i.e. an earlier dis-
ease/symptom leads to the dispensation of a medicine as the treatment
and after that, the earlier disease/symptom develops into another dis-
ease/symptom which can be mistakenly considered as the ADE of the

Table 4
Sensitivity, specificity and predictive values of our method and improvements.

Associations Gold standard Total

Positive medicine Negative medicine

Positive prediction 27 2 29 Positive predictive value= 27/29=93.1%
Negative prediction 14 51 65 Negative predictive value= 51/65=78.5%
Total 41 53 94

Sensitivity= 27/41=65.9% Specificity= 51/53=96.2%

Fig. 9. Frequencies of time gaps between adjacent prescriptions that dispense
ranitidine and tobramycin sequentially, which unrelated to each other. We
randomly selected these two medicines as an example for the uniform dis-
tribution.
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treatment medicine. The weight function we proposed in Section 3.3
takes the time gaps between the prescription and the ADE into account.
By rewarding the sampled medicine use information whose time gap
between the prescription and the ADE complies with the temporal pattern
of ADE-associated situation and penalising the sampled medicine use
information whose time gap does not comply, our method distinguishes
the ADE-associated situation from other confounding situations and mi-
tigates the influences of such confounders.

In order to detect more potential ADE signals, we use the estimated
maximum exposure period as the length of sampled (case and control)
time windows as we proposed in Section 3. In the case study that setting
heart/cardiac failure and/or peripheral oedema as target ADE, potential
signals we detected cover a variety of medicines, including antith-
rombotic agents (ATC code initialled by B01A), antineoplastic agents
(ATC code initialled by L01) and analgesics (ATC code initialled by N02),
etc. (details listed in Table 1) were detected. In practice, a uniform length
of sampled time windows cannot fit all medicines. While a longer time
window ensures the higher sensitivity, the compromise of specificity
comes along. The false discoveries of our case study generally focus on
antibiotics (ATC code initialled by J01), which are usually intermittently
used by patients. Hence, such signals were captured as those medicines
are less prone to be sampled in a control time window (patients are in a
healthy condition). Besides, any settings of time window length shorter
than 42 days are also welcomed if users aim to detect more acute events
caused by medicine use with shorter latency. We have conducted a few
more experiments of different length of time windows, i.e. 42 days, 28
days and 14 days respectively. The results show that different length of
time windows (28 days and 14 days) facilitate the detection of more
signals which were not captured with the maximum length of the ex-
posure period (42 days), such as blood glucose lowering medications
(ATC code initialled by A10B) and immunosuppressants (ATC code in-
itialled by L04A), etc. However, a narrow time window also brings ad-
ditional false signals, e.g. some medicines are usually co-prescribed with
indicator medicine (frusemide in our case study).

In the experiments of comparing to the gold standard, the two im-
provements we proposed with our basic method have shown their ef-
fectiveness in a more comprehensive evaluation. The sensitivity and
specificity of results were gradually enhanced with the addition of two
improvements. The performance of the method overwhelms that of the
basic solution when two improvements are used in combination.
Speaking to adding the individual effects, it automatically adjusts the
corresponding indicators of medicine use information to 0 when a
candidate medicine was evenly dispensed to a patient during both his
case and control time windows. Thus, unrelated medicines were
eliminated as those medicines are considered to be less possible to lead
to the ADE. There are also a number of positive medicines in the gold
standard which our method failed to detect. Two major reasons might
be responsible for those false negatives: (1) Signals of some medicines
are masked by medicines belonging to the same pharmaceutical class
but are more frequently used. Frequently used medicines provide more
cases that patients experiencing the ADE, and hence generate stronger
signals. When the method selected strong signals among all the candi-
dates, frequently used medicines tend to mask other medicines with
lower usages, especially those medicines belonging to the same phar-
maceutical class. For example, we successfully detected Sertraline as
causing the ADE, nausea. However, we failed to detect Citalopram and

Escitalopram as the cause of nausea, which belong to the same phar-
maceutical class (selective serotonin reuptake inhibitors, ATC code
prefix N06AB) but are less frequently used. (2) Some medicines are not
sufficiently sampled in case time windows due to the uniform setting of
the length of time windows in the experiments. As stated in the pre-
vious paragraph, the uniform setting of the length of time windows may
not fit for all medicines. It requires more evaluations to determine the
optimal individualised settings.

It is also worth to mention a phenomenon we discovered when
surveying the time gaps between the dispensations of medicines for the
weight function. That is, for two medicines that one causes the ADEs
which lead to the dispensation of another, the counts regarding dif-
ferent values of their time gaps tend to follow the curve as Fig. 8 shows.
However, for two medicines that do not have a strong association, the
counts will roughly comply with a uniform distribution as Fig. 9 shows.
This phenomenon reminds us of the PSSA [15] method, which evalu-
ates the association between suspected medicines and the ADE-in-
dicator medicine by measuring the asymmetry of suspected medicines
being dispensed before versus after the dispensation of ADE-indicator.

Last but not least, the main value of our method lies in its high
efficiency in detecting the most suspicious signals of ADEs from the
large-scale prescription data. So the patients and medical practitioners
can be alerted of possible ADEs and possible consequences of ADEs can
be prevented. Despite that our experiments were conducted on a pre-
scription dataset which does not contain additional information such as
symptoms, diagnoses nor physical measurements, our method has the
potential to be a complementary tool for global pharmacosurveillance
relying on SRS. For future work, we plan to extend our method to au-
tomatically utilise domain knowledge to improve the process of ADE
detection.

6. Conclusion

In this paper, we introduced a method to discover medicines that
are responsible for a specific ADE from the prescription data by spon-
taneously evaluating their effects on the corresponding ADE. For data
preparation, we adapt the design of the case-crossover study to con-
struct the case and the control time windows for the extraction of
medicine use information. Furthermore, we proposed several im-
provements to take into account more factors (i.e. the temporal effect,
frequency of prescription and individual effect) that might affect the
evaluation. Therefore, some biases were eliminated and a more accu-
rate discovery was achieved.
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Appendix A. Appendix

Table 5 provides the gold standard we summarised and marks the detail of the experimental results of comparing to the gold standard.
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