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A B S T R A C T

The capacity to predict student academic outcomes is of value for any educational institution aiming to improve
student performance and persistence. Based on the generated predictions, students identified as being at risk of
academic retention or performance can be provided support in a more timely manner. This study creates dif-
ferent classification models for predicting student performance, using data collected from an Australian uni-
versity. The data include student enrolment details as well as the activity data generated from the university
learning management system (LMS). The enrolment data contain student information such as socio-demographic
features, university admission basis (e.g. via entry exam or past experience) and attendance type (e.g. full-time
vs. part-time). The LMS data record student engagement with their online learning activities. An important
contribution of this study is the consideration of student heterogeneity in constructing the predictive models.
This is based on the observation that students with different socio-demographic features or study modes may
exhibit varying learning motivations. The experiments validated the hypothesis that the models trained with
instances in student sub-populations outperform those constructed using all data instances. Furthermore, the
experiments revealed that considering both enrolment and course activity features aids in identifying vulnerable
students more precisely. The experiments determined that no individual method exhibits superior performance
in all aspects. However, the rule-based and tree-based methods generate models with higher interpretability,
making them more useful for designing effective student support.

1. Introduction

At present, educational institutions are facing a highly competitive
environment. As such, there is a need to ensure that resources are uti-
lised effectively and efficiently to improve the student learning ex-
perience and promote esteem factors, such as student retention and
performance. A challenge herein is to conduct an in-depth analysis of
student academic performance that can aid in developing a student
support strategy, and improve teaching and learning practices. In this
regard, institutions may be interested in understanding student aca-
demic performance predictors. However, this is a complex task to solve,
and a huge number of factors, such as economic, social, demographic,
cultural and academic background, may influence academic out-
comes [1]. Discovering significant student academic performance

factors requires an in-depth analysis of the data, which may be achieved
through educational data mining (EDM), a knowledge-discovery pro-
cess that can provide valuable insights from data originating from an
educational setting [2].

One of the most popular data mining methods, namely classifica-
tion [3], has been successfully applied to predict performance. Classi-
fication is a supervised process of organising objects with similar
characteristics into classes. Classification approaches can be broadly
categorised into white box models (e.g. decision tree and rule-based),
and black box models (e.g. artificial neural networks) [4]. For example,
Ibrahim and Rusli [5] developed a neural network-based approach to
predict student grades. The authors determined that students’ basic
knowledge regarding the course, prior schooling and financial status
were the most important factors influencing performance. Although
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such black box models can achieve higher prediction accuracy, inter-
preting the findings is a challenging process, thereby retarding mean-
ingful actions. Certain researchers [6,7] have proposed different tech-
niques for improving interpretation in several black box methods. For
example, Villagrá-Arnedo et al. [6] considered three features, namely
multi-class, probabilistic and progressiveness, in the design of a clas-
sifier to improve its interpretation level. In contrast, white box models
such as decision trees and rule-based approaches discover rules in an if-
then structure, depicting the knowledge in a more comprehensible
manner that can be used directly for further decision-making [2]. For
example, a classification tree-based method has been demonstrated to
identify the influencing factors separating academically successful and
unsuccessful students. Kovačić [8] found that ethnicity, program (e.g.
Bachelor of Business) and course block (e.g. first or second trimester)
had a strong association with student success. A number of stu-
dies [9,10] have attempted to employ both the black box and white box
techniques to predict student performance by considering student
participation in different online course resources and activities.

Prior works have also sought to incorporate all data instances in
order to construct accurate and comprehensive classification models.
However, the developments of these forms of global models are unlikely
to produce quality predictions that can be readily interpreted. For ex-
ample, Gaševic ̀ et al. [11] demonstrated that university-wide predictive
models often fail to account for the subtleties in course design that
influence student motivation, learning strategies and performance.
Hence, the predicted outcomes derived from a global model may not be
useful for informing support and intervention strategies, as the identi-
fied factors deemed to influence student performance may vary con-
siderably across student subgroups.

This study considers the use of student sub-models generated from
specific student subgroups to identify students at risk of academic
failure. We aim to analyse the existing differences in student char-
acteristics, considering key demographic and academic features that
may influence academic performance. Therefore, the study aims to
construct prediction models in different sub-populations, taking into
account student gender, age and attendance type. These attributes are
selected owing to their discriminating ability of student involvement in
different academic activities. We refer to a model constructed in a
subgroup as a sub-model, whereas the model built with all data instances
is known as the base model.

This study evaluates the performance of the proposed approach in
terms of both predictive ability and interpretability of the developed
models. Hence, we apply two black box and two white box classifica-
tion methods for generating the sub-models. The black box methods are
naïve-Bayes [12] and sequential minimal optimizer (SMO) [13], while
the white box methods consist of J48 [3] and JRip [14]. The findings
demonstrate that, in most cases, these sub-models outperform the base
model.

In this study, we consider student demographic, academic and
course activity features separately as well as jointly in order to aid the
identification of “at-risk” students.

Our work offers the following contributions.

1. We propose the concept of exploiting the heterogeneity in student
characteristics for identifying significant predictors of student aca-
demic performance. In this regard, this study generates student sub-
populations based on key demographic and academic features for
constructing student sub-models, and evaluates their usefulness in
identifying vulnerable students.

2. We conduct experiments with four different classification methods
in order to validate the effectiveness of the proposed approach. The
results demonstrate that specific student sub-models attain superior
results to the original model.

3. Our experimental work also compares the performance of the dif-
ferent classification methods in constructing prediction models by
considering students enrolment and activity features both separately

and jointly. The results indicate that models generated using both
enrolment and activity features outperform models constructed
from individual features.

The remainder of this paper is organised as follows. The related
literature is presented in Section 2. Section 3 discusses the methodology
followed in this study. In Section 4, firstly, the datasets and their pre-
processing procedure are described, secondly, student sub-models are
generated from their enrolment and course activity features, and fi-
nally, the results are discussed. The interpretability and usefulness of
the generated sub-models are analysed in Section 5. Finally, Section 6
concludes the paper and suggests future works.

2. Related works

The ability to predict student performance and identify students at
risk of failure is an expanding research area. Various data mining
techniques have been successfully applied to predict student academic
performance. Thiele et al. [15] found that students’ socio-demographic
(e.g. ethnicity, gender and economic status) and academic (e.g. type of
school and their performance in that school) features are associated
with their academic performance. Other works such as those of Guarín
et al. [16] and Strecht et al. [17] demonstrated the effectiveness of
considering academic records along with socio-demographic informa-
tion during specific candidature enrolment in terms of generating
higher-performing models with higher prediction accuracy. Other re-
search [18,19] identified specific courses that serve as significant in-
dicators of student academic performance and claimed that courses are
not equally informative for making accurate predictions. These works
also detected the typical progression of student performance
throughout their study year and related these with the indicator
courses. Alternate data sources were incorporated by gathering student
study (study duration and focus) and social behaviour (partying) data
from smart phones and it was found that these are highly correlated to
their GPA [20].

Student performance prediction for specific courses is also a thor-
oughly studied area in data mining. A number of researchers [11,21,22]
have demonstrated the effectiveness of using data from an institution
learning management system (LMS) (e.g. Moodle [23], Black-
Board [24], Desire2Learn [25]), which accumulates a vast volume of
student information related to courses, study activities and outcomes. It
was demonstrated by Macfadyen and Dawson [26] that LMS tracking
data can be used to predict the student final grade. In this instance, the
authors noted that the quantities of discussion posts and mail messages
sent were significant indicators of the student final grade. Khan
et al. [27] illustrated that student participation in different activities of
web-based courses may also aid in enhancing performance. Other au-
thors [28] only considered data from current courses to generate a
prediction model by presenting the concept of the self-learner. This
prediction type may be useful when considering new courses and no
prior data exists. Other approaches have sought to combine both be-
havioural data (such as LMS activity logs) and prior grades with socio-
emotional and psychological data. For example, Adejo and Con-
nelly [29] proposed a framework to consider the use of psychosocial-
personality (SPP) data from a self-report survey in order to predict
performance.

Although a number of works have been proposed to predict student
academic outcomes, these tend to consider the entire student popula-
tion in order to generate the models. However, this study takes into
account the different student sub-groups for predicting academic out-
comes.

3. Methodology

This study considers heterogeneity in different student sub-popula-
tions and constructs classification models in these sub-populations for
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predicting academic outcomes. Firstly, the datasets are pre-processed;
secondly, student subgroups are generated from the original datasets,
considering certain significant demographic and student academic
features; thirdly, different classification methods are applied to the sub-
datasets to produce student sub-models; and finally, the sub-models are
evaluated using different metrics in terms of their usability in decision-
making. The approach applied in this study is illustrated in Fig. 1.

3.1. Collecting enrolment and LMS activity data

This study incorporates socio-demographic and academic data
gathered during student enrolment, and activity data obtained from the
university LMS - Moodle.

The enrolment dataset contains the socio-demographic (age, gender
and economic status) and academic (attendance type and delivery
mode) features of a student. In order to conduct experiments with this
dataset, student performance is represented as the average mark in all
the courses he/she has taken in a year. The data obtained from Moodle
records the student participation in different activities (e.g. assign-
ments, quizzes, forums and others) and resources (e.g. books and files).
Each record of this dataset contains a student’s frequency of involve-
ment in different activities in a specific course. In the combined dataset,
each student record possesses both the enrolment and participation
features. As a LMS activity dataset record corresponds to a course taken
by a student, there may be multiple records for different courses taken
by the same student in the original dataset. Therefore, in the combined
dataset, for the value of an activity feature for a student is the average
counts of the student’s participation in that particular activity in all
courses he/she has taken during the year. The meanings of different
enrolment and activity attributes can be found in Table 1.

3.2. Pre-processing of data

Data pre-processing is an important phase for preparing the data
prior to applying data mining methods. In this study, pre-processing is
conducted in two steps, namely discretisation and transformation. Most
of the methods employed in this study operate only on categorical data;
hence, all of the continuous attributes are discretised. Following dis-
cretisation, the datasets have been transformed into the appropriate
format for ease of implementation. The pre-processing tasks conducted
in this study are discussed below.

1. Discretisation: Discretisation is performed on the enrolment attri-
butes AGE_NUM, AUST-SES and ATAR_rank2 as well as on all ac-
tivity attributes. All of the activity attributes are categorised into
four quartiles, namely Q1, Q2, Q3 and Q4, where Q1 represents the
lowest participation, and Q4, the highest.

2. Data transformation: Implementing the classification methods

requires the data to be in the ARFF [30] format. The original en-
rolment and LMS activity dataset were in Excel format, and were
transformed into the above-mentioned format, applicable to all ex-
ecutions.

3.3. Generating sub-datasets

The enrolment, activity and combined datasets are partitioned into
several sub-datasets to form student subgroups. The dataset partitioning
is performed in two steps, as follows.

1. Firstly, the enrolment, activity and combined datasets are parti-
tioned according to student gender (male and female), age (normal
and mature), attendance type (full-time and part-time) and atten-
dance mode (internal and external). Hence, 8 sub-datasets are
generated for each of the enrolment, activity and combined datasets,
respectively.

2. Secondly, the female and male sub-datasets are further partitioned
into another 6 sub-datasets according to student age, attendance
type and attendance mode. The sub-datasets and their sizes can be
seen in Table 2.

Initially, female, male, normal-aged, mature-aged, full-time, part-
time, internal and external student sub-groups are generated for each
dataset, which is termed as first-level sub-grouping throughout this
paper. Thereafter, the male and female sub-groups are further sub-
partitioned into normal-aged, mature-aged, full-time, part-time, in-
ternal and external sub-groups, which is referred to second-level sub-
grouping.

3.4. Predicting student academic performance

We employ four classification methods for generating student sub-
models. Among the classification approaches are two black box
methods, namely naïve-Bayes and SMO. The remaining two ap-
proaches, J48 and JRip, are white box methods. For all executions, we
use the implementations by the Waikato Environment for Knowledge
Analysis (WEKA) [30]. WEKA, which was developed at the University
of Waikato, New Zealand, is a software tool that provides collections of
data mining and machine learning algorithms. The general features of
the classification methods used in this study are discussed below.

Naïve-Bayes: This is a probabilistic classification method based on
the Bayesian theorem. A naïve-Bayes classifier can be considered as the
simplest Bayesian network classifier. This method is easy to implement
and is particularly used with high-dimensional data. This classifier can
be used with discrete or continuous attributes.

SMO: This method uses an optimisation algorithm for training a
support vector machine (SVM) [13], and belongs to the type of func-
tional classification that operates by revealing a function. The models
generated by this method usually exhibit high classification accuracy.
This method replaces missing values and can handle multi-class pro-
blems using pair-wise classification.

J48: This method generates a decision tree containing three

Fig. 1. Data mining approach for predicting student academic performance.

2 The primary criterion for entry into most undergraduate programs in any uni-
versity of Australia, which represents a student’s ranking relative to his/her peers
upon completion of their secondary education.
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different node types: root, internal and leaf nodes. The root node is the
top-most node in a tree. The root and internal nodes contain attribute
test conditions, where each branch represents an outcome of the test
and each leaf node represents a class level. Decision tree-based classi-
fiers exhibit high accuracy and are easy to implement.

JRip: This is a rule-based classification method that generates
comprehensible rules in an IF-THEN structure. An IF-THEN rule is ex-
pressed as IF condition THEN conclusion. Similar to the decision tree, this
method is easy to implement, and the generated models are highly
interpretable. This classifier type can easily handle missing values.

3.5. Evaluation of generated models

A number of criteria have been developed for measuring the pre-
dictive ability of a model. In this study, we use several metrics that are
commonly encountered in the existing literature to assess the perfor-
mance of different methods in terms of the generated models, including
the following.

• Precision [31]: the fraction of true positive examples among all
examples classified as positive by a classifier.

• Recall [31]: the fraction of true positive examples classified cor-
rectly by a classifier.

• F-measure [32]: the harmonic mean of the precision and recall of a
classifier; that is, F-measure=2× precision× recall/(precision
+recall).

• Kappa co-efficient [33]: compares the accuracy of a classifier with
the accuracy a random classifier is expected to achieve. The Kappa
value is less than or equal to 1, where 1 denotes perfect prediction
by the classifier and 0 indicates no better than a random guess.

• AUC [34]: the area under the receiver operating characteristic
(ROC) curve indicates the probability that a classifier will rank a
randomly selected positive example more highly than a randomly
selected negative example. An AUC value of 1 indicates a perfect
classifier, while 0.5 implies that the classifier performs as random
guesses.

4. Experiments

In this section, we follow the methodology described in Section 3 to
construct and evaluate the prediction models generated for student sub-
populations. We use student enrolment and LMS activity data sepa-
rately as well as jointly, and employ four classification methods to
generate student sub-models. First, the details of the datasets used in
the experiments (Section 4.1) are provided. Then, in Section 4.2, the
experiment results, including the performances of the different models
constructed, measured using the metrics discussed in Section 3.5 are
presented. Finally, in order to evaluate the model performances further,
we use cross-validation to assess their prediction accuracy (Section 4.3).

Table 1
Meaning of enrolment and course activity attributes used in experiments.

Type Attribute Meaning

Enrolment GENDER Students gender (Male/Female)
SAS_ADM_CURRENT_SHORT_SAS Admission basis for entry into the university (e.g. Mature age entry)
AGE_NUM Students age (If greater than 26 then Mature, otherwise Normal)
ATTENDANCE_TYPE_DESC How a student attends a course
ATTENDANCE_MODE_SHORT_DESC Whether a student attends in off-campus (External) or on-campus (Internal)
AUST_SES Australian Social Economic status (Determined by the living suburb)
APPL_WAS_FIRST_PREF Whether the program was preferred as first choice during enrolment
IN_MULT_PROG_ANY_YR Whether the student was admitted in multiple program in any year
IN_MULT_PROG_THIS_YR Whether the student is admitted in multiple program in current year
PARENT_1_EDUCATION_CODE Education status of a students male parent/guardian
PARENT_2_EDUCATION_CODE Education status of a students female parent/guardian
HIGH_SCHOOL_STATE The state in which the student attends his/her high school
ATAR_rank A students score of Australian Tertiary Admission Rank

LMS activity BOOK_VIEW Viewing book resources
CHOICE_VIEW Viewing choice activity
COURSE_VISIT Visiting course home page
FORUM_ADD_DISCUSSION Adding discussion in course forum
FORUM_ADD_POST Adding post in course forum
FORUM_VIEW_DISCUSSION Viewing discussion in course forum
FORUM_VIEW_FORUM Viewing forum activity
LESSON_VIEW Viewing lesson activity
OUWIKI_EDIT Editing course wiki
OUWIKI_VIEW Viewing course wiki
QUIZ_ATTEMPT Attempting quiz activity
QUIZ_REVIEW Reviewing quiz activity
QUIZ_VIEW Viewing quiz activity
RESOURCE_VIEW Viewing file resources

Table 2
Population sizes of different datasets.

Datasets Sub-datasets Cohort size

Enrolment LMS activity Combined

Full training set 2648 7052 2648
Female 1986 5211 1986
Male 662 1841 662
Fulltime 2160 6123 2160
Part-time 488 929 488
Internal 2101 5955 2101
External 547 1097 547
Normal 1909 5339 1909
Mature 739 1713 739

Female Fulltime 1570 4428 1570
Part-time 416 783 416
Internal 1401 3987 1401
External 585 1224 585
Normal 1369 3820 1369
Mature 617 1391 617

Male Fulltime 590 1695 590
Part-time 72 146 72
Internal 513 1625 513
External 149 216 149
Normal 491 1519 491
Mature 171 322 171
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4.1. Datasets

The datasets used in this paper were collected from 2011 to 2013
from a division (akin to a faculty comprising multiple disciplinary
schools) in an Australian university regarding their first-year domestic
undergraduate students. Three dataset types are employed in this work,
namely enrolment data, activity data, and combined data containing
both enrolment and activity features. For each course (the smallest unit
of study in a program), a student’s performance (passing or failing the
course) is also included in the dataset as the experimental target vari-
able.

Table 3 displays the training and testing datasets used in the ex-
periments in Section 4.2, for training and testing the model perfor-
mances, respectively. A training set includes the data (enrolment, ac-
tivity, or combined) of years 2011 and 2012; a testing set contains the

2013 data. For the 10-fold cross-validation results presented in
Section 4.3, we use all data from the three years (details can be found in
Section 4.3).

4.2. Results

In this section, we construct student performance prediction models
in each subgroup displayed in Table 2. Moreover, in order to investigate
the effectiveness of constructing models in subgroups, we also build the
base model in the entire population, and compare the sub-model and
base model performances. These sub-models are constructed for each of
the three datasets: (i) enrolment data, (ii) activity data obtained from
the course Moodle and (iii) combined data containing both enrolment
and activity features. The following subsections discuss the prediction
ability of the models generated from each dataset, where the best re-
sults are boldfaced.

4.2.1. Predicting student performance using enrolment data
In this section, we discuss the performance of student sub-models in

terms of identifying at-risk students using enrolment data. As indicated
in Table 4, it is found that most sub-models achieve superior results to
the base model in terms of the criteria discussed in Section 3.5. The sub-
model representing external students performs best in identifying un-
successful students. Among all methods, SMO achieves the best results
in building this sub-model, with F-measure and Kappa values of 51%

Table 3
Summary of datasets.

Dataset No. of Instances Attributes

Training Test

Enrolment 2648 1362 13
LMS Activity 7052 3916 14
Combined 2648 1362 27

Table 4
Mining enrolment data.

Method Dataset Female Male

Precision Recall F-measure Kappa AUC Precision Recall F-measure Kappa AUC Precision Recall F-measure Kappa AUC

Naïve-Bayes Original
dataset

0.276 0.128 0.18 0.102 0.504 − − − − − − − − − -

Female 0.411 0.196 0.265 0.138 0.587 − − − − − − − − - −
Male 0.333 0.143 0.2 0.125 0.593 − − − − − − − − - -
Fulltime 0.495 0.194 0.278 0.167 0.617 0.409 0.153 0.222 0.12 0.605 0.45 0.385 0.435 0.256 0.641
Part-time 0.444 0.353 0.393 0.186 0.681 0.429 0.286 0.343 0.109 0.648 0.318 0.538 0.4 -0.15 0.456
Normal 0.471 0.25 0.327 0.134 0.649 0.457 0.246 0.319 0.19 0.653 0.39 0.355 0.392 0.21 0.568
Mature 0.425 0.218 0.288 0.126 0.681 0.483 0.259 0.337 0.202 0.678 0.316 0.316 0.316 -0.016 0.547
Internal 0.511 0.263 0.347 0.22 0.65 0.386 0.199 0.262 0.142 0.634 0.465 0.439 0.452 0.213 0.64
External 0.548 0.317 0.402 0.268 0.702 0.458 0.208 0.286 0.116 0.655 0.49 0.495 0.492 0.27 0.706

J48 Original
dataset

0.34 0.2 0.26 0.18 0.489 − − − − − − − − − −

Female 0.565 0.231 0.328 0.225 0.608 − − − − − − − − − −
Male 0.375 0.429 0.4 0.21 0.598 − − − − − − − − − −
Fulltime 0.542 0.326 0.407 0.25 0.704 0 0 0 0 0.5 0.367 0.515 0.44 0.31 0.668
Part-time 0.444 0.353 0.393 0.18 0.581 0.424 0.333 0.313 0.119 0.541 0.313 0.385 0.345 -0.13 0.425
Normal 0.306 0.172 0.22 0.013 0.523 0.571 0.075 0.133 0.067 0.497 0.492 0.642 0.557 0.326 0.68
Mature 0.364 0.103 0.16 0.045 0.554 0 0 0 0 0.5 0.25 0.158 0.194 -0.108 0.402
Internal 0.476 0.219 0.299 0.17 0.497 0 0 0 0 0.5 0.486 0.505 0.495 0.26 0.638
External 0.577 0.407 0.477 0.27 0.714 0.657 0.257 0.37 0.278 0.703 0.71 0.615 0.66 0.51 0.724

SMO Original
dataset

0.322 0.066 0.1 0.075 0.526 − − − − − − − − − −

Female 0.385 0.122 0.18 0.17 0.576 − − − − − − − − − −
Male 0.385 0.156 0.222 0.146 0.569 − − − − − − − − − −
Fulltime 0.5 0.136 0.21 0.113 0.537 0.444 0.023 0.043 0.023 0.508 0.6 0.438 0.509 0.38 0.625
Part-time 0.463 0.412 0.436 0.24 0.648 0.429 0.214 0.286 0.086 0.537 0.389 0.538 0.452 0.0137 0.507
Normal 0.569 0.123 0.2 0.125 0.546 0.395 0.099 0.159 0.075 0.528 0.5 0.568 0.532 0.31 0.661
Mature 0.42 0.13 0.2 0.18 0.566 0.333 0.019 0.035 0.009 0.503 0.267 0.211 0.235 -0.109 0.448
Internal 0.385 0.156 0.22 0.14 0.584 0.333 0.068 0.113 0.047 0.516 0.486 0.486 0.486 0.26 0.626
External 0.508 0.513 0.51 0.28 0.751 0.5 0.019 0.036 0.014 0.505 0.65 0.538 0.59 0.48 0.676

JRip Original
dataset

0.395 0.109 0.18 0.138 0.506 − − − − − − − − − −

Female 0.537 0.196 0.287 0.187 0.572 − − − − − − − − − −
Male 0.414 0.403 0.409 0.149 0.567 − − − − − − − − − −
Fulltime 0.419 0.14 0.21 0.1 0.54 0.684 0.147 0.242 0.33 0.564 0.343 0.492 0.467 0.43 0.662
Part-time 0.33 0.32 0.32 0.06 0.532 0.5 0.214 0.3 0.129 0.555 0.382 0.351 0.37 0.42 0.642
Normal 0.486 0.19 0.27 0.16 0.562 0.556 0.205 0.299 0.2 0.577 0.507 0.389 0.44 0.24 0.606
Mature 0.545 0.231 0.324 0.193 0.579 0.563 0.167 0.257 0.16 0.563 0.222 0.105 0.143 -0.1 0.453
Internal 0.405 0.234 0.297 0.08 0.539 0.583 0.174 0.268 0.19 0.57 0.43 0.43 0.43 0.17 0.507
External 0.517 0.341 0.41 0.27 0.719 0.455 0.094 0.156 0.056 0.523 0.421 0.8 0.552 0.47 0.683
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and 28%, respectively. This method also obtains a higher AUC of 75.1%
for the external sub-model.

The performance of the second-level sub-models can be observed in
the final two columns, female and male, in Table 4. The results de-
monstrate that not all, but some, specific sub-models outperform the
corresponding base models (female/male). The J48 method achieves
the highest precision for the female-external and male-external sub-
models, with 65.7% and 71%, respectively. For the male-external sub-
model, this method attains the highest score in terms of F-measure,
Kappa and AUC values as well, with 66%, 51% and 72.4%, respectively.

4.2.2. Predicting student performance using LMS activity data
The experiments reveal that all of the sub-models attain superior

results to the base model in all aspects, as illustrated in Table 5. Among
these, the external sub-model performs better in detecting at-risk stu-
dents, with F-measure, Kappa and AUC values above 66%, 53% and
78%, respectively. The JRip model secures the highest score in terms of
F-measure, Kappa and AUC values, with 71%, 58% and 87%, respec-
tively.

The performances of the second-level sub-models constructed from
the female and male students can also be observed in Table 5. Only the
female-mature and female-external sub-models exhibit superior pre-
diction results to the female sub-model. The J48 and SMO models attain
the highest precision of 79.1% for the female-external sub-model,
which also results in a higher F-measure of 68.7%. However, the male-

external sub-model attains superior performance to its base model
(male). The male-external sub-model achieves the best result among all
sub-models generated from the male and female students. The experi-
ments also demonstrate that SMO performs best among all methods in
generating this sub-model, with an F-measure of 72% and Kappa value
of 59%, while the AUC value achieved by this sub-model is 88%.

4.2.3. Predicting student performance using combined data
The experiments performed on the combined dataset outperform

those of the base model (see Table 6). The external sub-model secures
the best prediction result compared to the other sub-models, as in-
dicated by a precision above 80% for the different methods. The naïve-
Bayes method achieves the highest precision and recall, at 86% and
67.8%, respectively, for the external sub-model, which consequently
results in the highest F-measure value of 76% among all sub-models.
Furthermore, this method obtains the highest performance in terms of
Kappa and AUC values, at 61% and 89%, respectively.

As depicted in Table 6, specific female and male sub-models out-
perform the base model (female/male). The experiments demonstrate
that the female-external, female-part-time and female-mature sub-
models achieve superior results compared to the female model. The
JRip model exhibits the highest performance in generating these sub-
models in terms of both the F-measure and Kappa values, with F-
measure values of 70%, 70% and 65%, and Kappa values of 59%, 58%
and 55%, respectively, for the sub-models. This method also attains the

Table 5
Mining LMS activity data.

Method Dataset Female Male

Precision Recall F-measure Kappa AUC Precision Recall F-measure Kappa AUC Precision Recall F-measure Kappa AUC

Naïve-Bayes Original
dataset

0.294 0.388 0.33 0.23 0.603 − − − − − − − − − −

Female 0.447 0.658 0.532 0.374 0.797 − − − − − − − − − −
Male 0.597 0.735 0.659 0.48 0.834 − − − − − − − − − −
Fulltime 0.497 0.687 0.577 0.42 0.816 0.45 0.658 0.535 0.385 0.804 0.591 0.735 0.655 0.477 0.836
Part-time 0.487 0.655 0.558 0.347 0.768 0.453 0.629 0.527 0.315 0.746 0.538 0.737 0.622 0.409 0.829
Normal 0.508 0.688 0.584 0.427 0.818 0.456 0.648 0.535 0.382 0.797 0.511 0.694 0.579 0.425 0.752
Mature 0.517 0.673 0.584 0.42 0.797 0.474 0.655 0.55 0.397 0.809 0.604 0.615 0.61 0.395 0.769
Internal 0.483 0.677 0.564 0.41 0.807 0.416 0.641 0.504 0.355 0.789 0.602 0.731 0.66 0.487 0.834
External 0.657 0.762 0.7 0.53 0.8 0.649 0.759 0.7 0.52 0.879 0.711 0.76 0.71 0.54 0.799

J48 Original
dataset

0.363 0.285 0.32 0.31 0.605 − − − − − − − − − −

Female 0.633 0.466 0.537 0.436 0.8 − − − − − − − − − −
Male 0.722 0.628 0.672 0.51 0.816 − − − − − − − − − −
Fulltime 0.662 0.552 0.602 0.495 0.806 0.63 0.455 0.528 0.43 0.807 0.706 0.635 0.669 0.533 0.811
Part-time 0.652 0.536 0.588 0.448 0.795 0.617 0.468 0.532 0.39 0.761 0.375 0.474 0.419 0.109 0.629
Normal 0.645 0.608 0.626 0.51 0.802 0.604 0.471 0.529 0.423 0.797 0.614 0.528 0.515 0.414 0.681
Mature 0.728 0.512 0.601 0.5 0.8 0.744 0.555 0.635 0.552 0.832 0.75 0.346 0.474 0.324 0.75
Internal 0.631 0.587 0.608 0.5 0.793 0.594 0.449 0.511 0.415 0.793 0.707 0.627 0.664 0.528 0.814
External 0.736 0.623 0.675 0.53 0.861 0.791 0.607 0.687 0.565 0.886 0.721 0.671 0.695 0.568 0.817

SMO Original
dataset

0.338 0.229 0.27 0.29 0.598 − − − − − − − − − −

Female 0.603 0.587 0.595 0.488 0.742 − − − − − − − − − −
Male 0.692 0.511 0.59 0.52 0.744 − − − − − − − − − −
Fulltime 0.629 0.641 0.635 0.52 0.723 0.591 0.601 0.596 0.49 0.747 0.385 0.695 0.539 0.489 0.778
Part-time 0.608 0.738 0.667 0.52 0.736 0.568 0.677 0.618 0.46 0.745 0.63 0.655 0.629 0.459 0.728
Normal 0.626 0.652 0.639 0.53 0.725 0.58 0.595 0.587 0.476 0.74 0.618 0.506 0.598 0.453 0.719
Mature 0.718 0.519 0.602 0.5 0.726 0.744 0.555 0.635 0.552 0.751 0.676 0.481 0.562 0.381 0.678
Internal 0.616 0.636 0.626 0.514 0.74 0.558 0.597 0.577 0.47 0.743 0.706 0.667 0.686 0.55 0.772
External 0.778 0.592 0.672 0.54 0.794 0.791 0.607 0.687 0.56 0.765 0.78 0.71 0.72 0.59 0.88

JRip Original
dataset

0.426 0.217 0.29 0.31 0.581 − − − − − − − − − −

Female 0.627 0.465 0.534 0.43 0.695 − − − − − − − − − −
Male 0.711 0.651 0.64 0.48 0.668 − − − − − − − − − −
Fulltime 0.61 0.64 0.62 0.51 0.768 0.63 0.455 0.528 0.43 0.695 0.68 0.66 0.67 0.49 0.767
Part-time 0.589 0.667 0.63 0.47 0.765 0.705 0.5 0.585 0.47 0.713 0.69 0.65 0.63 0.47 0.717
Normal 0.643 0.604 0.623 0.51 0.757 0.58 0.48 0.52 0.4 0.695 0.43 0.58 0.49 0.38 0.694
Mature 0.7 0.55 0.614 0.51 0.735 0.71 0.56 0.63 0.54 0.751 0.68 0.44 0.54 0.36 0.664
Internal 0.61 0.65 0.63 0.51 0.708 0.595 0.429 0.5 0.403 0.682 0.55 0.48 0.49 0.34 0.763
External 0.76 0.67 0.71 0.58 0.87 0.73 0.63 0.67 0.56 0.77 0.76 0.65 0.71 0.58 0.779
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highest AUC value for the female-external sub-model, at 90.5%. It is
observed that the male-external sub-model exhibits superior perfor-
mance in identifying unsuccessful students than the male model. The
experiments demonstrate that the male-external sub-model attains the
highest score in terms of both F-measure and Kappa, while JRip exhibits
superior performance in generating this sub-model, with F-measure and
Kappa values of 72% and 59%, respectively.

4.3. Evaluation of generated models using cross-validation and statistical
test

In the previous section, we evaluated the prediction models by using
the 2011 and 2012 samples to train the models, and the 2013 samples
to test the performance. This setting is close to practical situations,
where an institution uses historical data to construct models for future
student performance prediction.

In this section, in order to evaluate the model performances further
(purely from a model evaluation perspective), we use the stratified 10-
fold cross-validation implemented in WEKA, with all three years of
data. Specifically, for example, with the experiments on the enrolment
data, during each run of the 10-fold cross-validation, the three years of
enrolment samples are firstly divided into 10 equal-sized and disjoint
subsets (folds), each containing roughly the same portion of samples for
each class value as in the entire dataset. Then, in each iteration (of the
10 iterations), we sequentially use one fold of samples for testing and

the remaining 9 folds for training. Complementary to the metrics used
in the previous section, we use accuracy; that is, the ratio of correctly
predicted samples over the total number of (testing) samples to measure
the prediction performance. Five runs of the 10-fold cross-validation
are carried out and the average accuracy and root mean squared error
of the predictions are recorded.

Tables 7, 8 and 9 display the accuracy and error values obtained by
the naïve-Bayes, J48, SMO and JRip methods for the enrolment, activity
and combined datasets, respectively. We can observe that sub-models
generated from the first-level subgrouping outperform the base model
by achieving a higher accuracy. Certain specific student sub-models,
such as full-time, normal-aged and internal, generated from the second-
level subgrouping, achieve superior results to their corresponding base
models (female and male).

In comparing the accuracy of a sub-model with the model (a second-
level sub-model with a sub-model) given a method in Tables 7, 8 and 9,
the significance of the accuracy difference is determined by a two-tailed
t-test using the STAC tool [35]. The results are obtained from 20 runs of
10-fold cross-validations. The results demonstrate that all of the first-
level sub-models generated from student sub-populations attain su-
perior prediction results to their respective base models trained using
all data instances. Furthermore, the experiments reveal that certain
second-level sub-models outperform the female and male sub models.
One reason for the second-level sub-models not performing as effec-
tively as the first-level sub-models is owing to the small number of

Table 6
Mining combined data.

Method Dataset Female Male

Precision Recall F-measure Kappa AUC Precision Recall F-measure Kappa AUC Precision Recall F-measure Kappa AUC

Naïve-Bayes Original
dataset

0.682 0.374 0.48 0.43 0.644 − − − − − − − − − −

Female 0.802 0.431 0.561 0.477 0.832 − − − − − − − − − −
Male 0.7 0.529 0.603 0.454 0.825 − − − − − − − − − −
Fulltime 0.758 0.448 0.563 0.47 0.84 0.812 0.39 0.527 0.45 0.827 0.7 0.56 0.622 0.48 0.823
Part-time 0.64 0.571 0.604 0.42 0.811 0.686 0.571 0.623 0.48 0.83 0.5 0.2 0.286 0.035 0.65
Normal 0.793 0.485 0.602 0.51 0.856 0.814 0.409 0.545 0.464 0.839 0.532 0.505 0.523 0.325 0.813
Mature 0.854 0.449 0.588 0.49 0.838 0.867 0.481 0.629 0.5 0.845 0.423 0.372 0.41 0.14 0.645
Internal 0.671 0.515 0.583 0.47 0.833 0.614 0.435 0.509 0.408 0.801 0.704 0.553 0.62 0.47 0.824
External 0.86 0.678 0.76 0.61 0.89 0.825 0.604 0.67 0.53 0.786 0.802 0.624 0.683 0.548 0.853

J48 Original
dataset

0.646 0.254 0.37 0.31 0.699 − − − − − − − − − −

Female 0.831 0.262 0.399 0.324 0.801 − − − − − − − − − −
Male 0.754 0.387 0.511 0.38 0.771 − − − − − − − − − −
Fulltime 0.842 0.229 0.361 0.29 0.811 0.808 0.237 0.367 0.3 0.79 0.45 0.39 0.37 0.34 0.782
Part-time 0.813 0.464 0.591 0.46 0.734 0.803 0.411 0.609 0.472 0.689 0.76 0.42 0.638 0.41 0.567
Normal 0.78 0.265 0.396 0.3 0.818 0.74 0.216 0.335 0.26 0.728 0.457 0.383 0.43 0.25 0.724
Mature 0.885 0.295 0.442 0.35 0.779 0.829 0.241 0.382 0.31 0.709 0.351 0.383 0.389 0.155 0.679
Internal 0.855 0.174 0.289 0.227 0.795 0.593 0.099 0.17 0.118 0.737 0.788 0.398 0.529 0.4 0.793
External 0.806 0.453 0.58 0.45 0.825 0.913 0.436 0.68 0.53 0.798 0.857 0.587 0.7 0.55 0.811

SMO Original
dataset

0.604 0.212 0.32 0.28 0.602 − − − − − − − − − −

Female 0.839 0.231 0.362 0.29 0.609 − − − − − − − − − −
Male 0.676 0.387 0.492 0.34 0.65 − − − − − − − − - -
Fulltime 0.75 0.301 0.43 0.34 0.635 0.75 0.169 0.276 0.216 0.577 0.452 0.44 0.43 0.36 0.681
Part-time 0.676 0.446 0.538 0.365 0.668 0.8 0.526 0.637 0.54 0.709 0.462 0.35 0.36 0.3 0.617
Normal 0.75 0.291 0.419 0.325 0.856 0.667 0.199 0.306 0.226 0.585 0.689 0.333 0.449 0.31 0.633
Mature 0.886 0.397 0.549 0.456 0.838 0.955 0.489 0.653 0.54 0.691 0.334 0.297 0.278 0.13 0.501
Internal 0.689 0.304 0.422 0.322 0.833 0.596 0.211 0.312 0.23 0.587 0.667 0.33 0.442 0.29 0.627
External 0.853 0.453 0.592 0.475 0.87 0.920 0.534 0.69 0.56 0.809 0.892 0.55 0.71 0.57 0.812

JRip Original
dataset

0.54 0.22 0.29 0.28 0.601 − − − − − − − − − −

Female 0.86 0.25 0.39 0.32 0.621 − − − − − − − − − −
Male 0.63 0.3 0.4 0.3 0.628 − − − − − − − − − −
Fulltime 0.79 0.3 0.44 0.35 0.638 0.86 0.28 0.42 0.35 0.633 0.72 0.36 0.48 0.35 0.649
Part-time 0.68 0.45 0.54 0.37 0.663 0.85 0.56 0.7 0.58 0.766 0.44 0.8 0.57 -0.03 0.483
Normal 0.8 0.31 0.45 0.36 0.644 0.857 0.175 0.29 0.23 0.584 0.49 0.39 0.35 0.31 0.664
Mature 0.79 0.42 0.55 0.37 0.646 0.89 0.44 0.65 0.55 0.713 0.67 0.17 0.28 0.14 0.56
Internal 0.86 0.23 0.36 0.29 0.609 0.8 0.2 0.32 0.26 0.593 0.49 0.44 0.42 0.33 0.691
External 0.85 0.44 0.58 0.46 0.7 0.89 0.57 0.7 0.59 0.905 0.85 0.66 0.72 0.59 0.731
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instances in the sub-sub-datasets.

5. Discussion

The knowledge derived from the prediction models may be helpful
for educational institutions and course instructors to detect students
who are at risk of academic failure early in their studies, so that
proactive support strategies can be implemented in a timely manner.
Hence, it is important to evaluate the interpretability of the discovered
sub-models for identifying at-risk students in order to assess their use-
fulness for decision-making purposes.

This study demonstrates that the results derived from the sub-
models produce a higher degree of accuracy than the base model.
However, the male, part-time, external and mature sub-models exhibit
superior performance in identifying low achievers in terms of both the
F-measure and Kappa values. Similar findings are observed from the
second-level subgrouping experiments. The female students predicted
to be unsuccessful are either part-time, external or mature-aged. The
results suggest that students who are male and either study part-time or
attend a course on an external basis are predicted to possess a higher
risk level for academic failure.

5.1. Comparing performance of different methods in generating student sub-
models

In this study, we evaluate the generated models and sub-models in
terms of their exactness (precision) and completeness (recall) in

detecting unsuccessful students. However, no single method exhibits
superior performance in terms of analysing the different datasets. For
the first-level subgrouping experiments, SMO achieves the best results
in mining the enrolment dataset, while JRip and naïve-Bayes perform
best in mining the activity and combined data, respectively. For second-
level subgrouping, J48 attains the best result for mining enrolment
data, while SMO and JRip exhibit superior performance in mining the
activity and combined datasets, respectively. Moreover, JRip performs
best in predicting both the successful and unsuccessful students and
correctly classifies above 83% of students for the models generated
from the combined dataset, as illustrated in Fig. 2. This figure re-
presents the percentage of correctly classified students (for both suc-
cessful and unsuccessful students) of the external sub-model for the
enrolment, activity and combined datasets.

The results indicate that the experiments on the combined datasets
achieve the best prediction in terms of both the F-measure and Kappa
values. The first-level sub-grouping experiments reveal that the highest-
performing sub-model achieves an F-measure of 51% for the enrolment
dataset, while this proportion is increased up to 71% and 76% for the
activity and combined datasets, respectively. It is also found that the
sub-models that attain the best results perform 28%, 58% and 61%
better than chance for the enrolment, activity and combined datasets,
respectively.

Moreover, the findings demonstrate that the female-external or fe-
male-mature sub-models attain precisions of above 60% for the dif-
ferent classification methods when considering only the activity fea-
tures. This proportion is increased to above 80% when student

Table 7
Cross-validation results for enrolment dataset. The accuracy of a sub-model built on a sub-dataset is compared to that of the model built on the entire dataset (and
with a male or female sub-model for a second-level sub-model). The following notations are used to indicate the significance of the accuracy difference: “**” for p-
value < 0.01, “*” for p-value < 0.05 and “ns” (not significant) for p-value > 0.05.

Method Datasets Female Male

Accuracy (%) Error Accuracy (%) Error Accuracy (%) Error

Naïve-Bayes Original dataset 70.05 0.45 − − − −
Female 72.66 ** 0.43 − − − −
Male 70.97 * 0.44 − − − −
Fulltime 73.67 ** 0.43 74.39 ** 0.42 72.48 ** 0.43
Part-time 70.63 * 0.44 62.86 (ns) 0.48 68.74 (ns) 0.47
Normal 74.2 ** 0.42 74.03 ** 0.42 71.4 ** 0.43
Mature 71.75 * 0.44 70.24 (ns) 0.45 66.84 (ns) 0.48
Internal 73.45 ** 0.42 74.08 ** 0.42 71.71 ** 0.43
External 71.19 * 0.44 67.52 (ns) 0.47 68.22 (ns) 0.49

J48 Original dataset 70.54 0.45 − − − −
Female 74.94 ** 0.423 − − − −
Male 71.6 * 0.43 − − − −
Fulltime 76.97 ** 0.41 78 ** 0.4 72.56 ** 0.41
Part-time 72.44 * 0.42 65.36 (ns) 0.47 58.82 (ns) 0.54
Normal 76.19 ** 0.41 76.98 ** 0.41 73.51 ** 0.4
Mature 71.3 * 0.43 69.52 (ns) 0.46 61.96 (ns) 0.5
Internal 76.13 ** 0.41 77.15 ** 0.4 72.04 ** 0.42
External 71.3 * 0.43 69.55 (ns) 0.46 65.89 (ns) 0.49

SMO Original dataset 72.04 0.53 − − − −
Female 73.96 ** 0.51 − − − −
Male 71.89 * 0.52 − − − −
Fulltime 74.63 ** 0.5 76.13 ** 0.48 73.37 ** 0.51
Part-time 72.89 * 0.52 74.12 ** 0.5 70.03 (ns) 0.54
Normal 73.87 ** 0.51 76.51 ** 0.48 74.28 ** 0.5
Mature 73.06 ** 0.51 71.07 (ns) 0.53 71.95 * 0.54
Internal 73.32 ** 0.52 74.54 ** 0.5 75.01 ** 0.5
External 72.56 * 0.52 67.7 (ns) 0.56 72.93 * 0.53

JRip Original dataset 73.79 0.44 − − − −
Female 74.33 ** 0.43 − − − −
Male 73.24 ** 0.42 − − − −
Fulltime 74.87 ** 0.42 76.8 ** 0.42 74.87 ** 0.41
Part-time 74.79 ** 0.42 65 (ns) 0.47 73.65 * 0.43
Normal 73.84 * 0.43 76.37 ** 0.42 75.12 ** 0.4
Mature 73.98 * 0.43 71.9 (ns) 0.44 72.41 (ns) 0.44
Internal 74.55 ** 0.42 76.42 ** 0.41 75.03 ** 0.4
External 74.02 ** 0.43 69.43 (ns) 0.45 73.82 * 0.44
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enrolment as well as activity features are considered. Furthermore, it is
revealed from the LMS activity dataset experiment that the male-ex-
ternal sub-model achieves a precision of approximately 70%, while this
amount increases to 80% when combined features are considered. The
model generated from the combined dataset also attains the best result
for correctly classifying both the successful and unsuccessful students,
as illustrated in Fig. 2. This figure indicates that, for each method, the
sub-models generated from the combined dataset achieve the best
prediction result.

5.2. Interpretability and usability of discovered sub-models

The models developed by means of applying different classification
methods aid us in predicting student academic outcomes. Identification
of the influencing features affords the opportunity for course instructors
to implement appropriate support measures. In this regard, the dis-
covered knowledge should be easily understood and interpreted by
course instructors and associated teaching staff. Four different classifier
types are employed in this study to generate student performance
models. The performance of the different methods is dissimilar across
the different datasets. However, the black box techniques, namely
naïve-Bayes and SMO, were unsuccessful in generating interpretable
models for further use. In contrast, the white box techniques, namely
JRip and J48, generate highly comprehensible models in rule and tree
forms, respectively.

We describe certain findings provided by these white box techni-
ques for the experiments on the combined dataset, for which they

achieve the highest precision. JRip generates the following set of rules
for the part-time sub-model.

As illustrated in Fig. 3, the rule set discovered by JRip takes an IF-
THEN-ELSE form. The THEN is represented by the operator = >, while
ELSE represents the default rule. The number in braces indicates the
count of correctly and incorrectly classified instances by the rule, re-
spectively. The first rule indicates that a student with lower participa-
tion in visiting the course home page is identified as low performer. The
second rule states that a student who has a lower view in the course
forum and is admitted based on professional qualification is predicted
to be unsuccessful.

Consider another rule set discovered by the female-external sub-
model, as illustrated in Fig. 4. The first rule indicates that students with
lower participation in visiting the course home page and are not ad-
mitted into multiple programs in any year are predicted to be un-
successful. The second rule states that students with a lower score in
viewing discussions in the course forum and those who are admitted
into multiple programs in the current year are most likely to be low
performers. However, these findings are very obvious, as lower parti-
cipation naturally leads to less involvement in different academic ac-
tivities.

The J48 algorithm generates a tree in which each branch represents
an if-then rule. In a tree, the root and internal nodes are represented by
ellipse, while the leaf nodes are represented by rectangle. This method
discovers the following tree for the male-external sub-model, as illu-
strated in Fig. 5. The tree divides students into two major branches,
according to the level of participation in commencing quiz attempts.

Table 8
Cross-validation results for activity dataset. The accuracy of a sub-model built on a sub-dataset is compared to that of the model built on the entire dataset (and with a
male or female sub-model for a second-level sub model). The following notations are used to indicate the significance of the accuracy difference: “**” for p-value <
0.01, “*” for p-value < 0.05 and “ns” (not significant) for p-value > 0.05.

Method Datasets Female Male

Accuracy (%) Error Accuracy (%) Error Accuracy (%) Error

Naïve-Bayes Original dataset 75.12 0.43 − − − −
Female 76.26 ** 0.41 − − − −
Male 75.03 * 0.41 − − − −
Fulltime 79.12 ** 0.38 79.86 ** 0.39 78.65 ** 0.39
Part-time 76.06 ** 0.41 76.45 * 0.42 75.45 * 0.42
Normal 76.83 ** 0.41 78.08 ** 0.4 79.23 ** 0.4
Mature 75.32 ** 0.42 76.78 * 0.42 76.05 * 0.41
Internal 76.69 ** 0.42 78.44 ** 0.4 79.65 ** 0.4
External 75.65 * 0.42 75.27 (ns) 0.44 76.66 ** 0.41

J48 Original dataset 75.09 0.37 − − − −
Female 81.4 ** 0.34 − − − −
Male 78.35 ** 0.35 − − − −
Fulltime 83.3 ** 0.32 83.23 ** 0.31 79.7 ** 0.34
Part-time 78 ** 0.38 78.35 (ns) 0.4 77.6 (ns) 0.42
Normal 82.2 ** 0.33 82.9 ** 0.32 80.48 ** 0.33
Mature 81.8 ** 0.32 78.1 (ns) 0.41 73.62(ns) 0.43
Internal 82 ** 0.33 82.84 ** 0.32 80.46 ** 0.32
External 79.9 ** 0.35 80.2 (ns) 0.38 74.26(ns) 0.44

SMO Original dataset 75.59 0.43 − − − −
Female 78.35 ** 0.41 − − − −
Male 76.03 ** 0.42 − − − −
Fulltime 79.48 ** 0.4 79.96 ** 0.4 78.49 ** 0.41
Part-time 77.28 ** 0.42 77.64 (ns) 0.42 75.32 (ns) 0.44
Normal 79.73 ** 0.4 79.14 ** 0.4 78.03 ** 0.41
Mature 78.1 ** 0.42 76.32 (ns) 0.43 76.8 * 0.43
Internal 80.02 ** 0.39 80.7 ** 0.39 79.25 ** 0.4
External 78.79 ** 0.41 77.4 (ns) 0.42 76.23 * 0.43

JRip Original dataset 76.66 0.42 − − − −
Female 78.5 ** 0.39 − − − −
Male 77.1 ** 0.41 − − − −
Fulltime 78.6 ** 0.4 79.58 ** 0.38 78.2 ** 0.4
Part-time 76.89 ** 0.41 76.7 (ns) 0.42 76.5 (ns) 0.42
Normal 78.3 ** 0.4 79.3 ** 0.38 78.64 ** 0.4
Mature 76.9 * 0.41 77.6 (ns) 0.41 76.84 (ns) 0.42
Internal 77.66 ** 0.4 80.5 ** 0.37 79.13 ** 0.39
External 77.02 * 0.4 78.9 * 0.4 77.6 * 0.41
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Students with higher contributions to the course online activities are
predicted to pass. Students with lower participation are categorised
according to whether or not they are admitted into multiple programs
in any year of their candidature. Students who are admitted into mul-
tiple programs are predicted to pass. Students who are not admitted
into multiple programs are further sub-divided into four sub-categories,
according to their participation frequency in viewing book resources.
Students with lower participation are predicted to fail, while the re-
mainder are predicted to pass.

Fig. 6 depicts a decision tree generated from the external sub-model

that classifies students into four major types according to their fre-
quency of visiting the course home page, which indicates that students
with medium or high visits pass the course. Among the students with
the lowest visits of the course home page, the model discriminates them
by considering whether or not they are admitted into multiple programs
in any year. The first sub-category, in which students are not admitted
into multiple programs, predicts students to fail. Finally, the second
sub-category partitions students according to their attendance type,
where part-time students are predicted to fail, and the remainder, to
pass.

Another tree (Fig. 7) representing the female-part-time sub-model
indicates that students with medium to higher participation in viewing
discussions of the course forum pass the course. This tree further par-
titions students according to their ATAR with the lowest score in this
activity. It demonstrates that students with a low to good ATAR fail in
the course. The tree sub-divides students with a high ATAR according to
their participation in viewing file resources. Students with higher par-
ticipation pass, while the remainder fail in the course.

5.3. Major findings and their usefulness

Different white box methods have revealed a number of student
academic outcome factors; among these, several are common across all
methods. For example, it has been found that students with lower
participation in either viewing the course home page or viewing a
forum/discussion are most likely to be low performers. The experiments
also demonstrate that students who are admitted into multiple

Table 9
Cross-validation results for combined dataset. The accuracy of a sub-model built on a sub-dataset is compared to that of the model built on the entire dataset (and
with a male or female sub-model for a second-level sub model). The following notations are used to indicate the significance of the accuracy difference: “**” for p-
value < 0.01, “*” for p-value < 0.05 and “ns” (not significant) for p-value > 0.05.

Method Datasets Female Male

Accuracy (%) Error Accuracy (%) Error Accuracy (%) Error

Naïve-Bayes Original dataset 78.44 0.36 − − − −
Female 80.12 ** 0.33 − − − −
Male 79.03 * 0.35 − − − −
Fulltime 81.18 ** 0.32 82.78 ** 0.31 81.23 ** 0.32
Part-time 80.68 ** 0.33 78.18 (ns) 0.35 78.4 (ns) 0.35
Normal 82.23 ** 0.3 81.97 ** 0.32 80.9 ** 0.33
Mature 80.67 ** 0.32 79.05 (ns) 0.34 79.14 * 0.34
Internal 82.79 ** 0.3 82.54 ** 0.31 81.69 ** 0.32
External 79.92 * 0.34 77.65(ns) 0.35 77.65 (ns) 0.36

J48 Original dataset 79.8 0.34 − − − −
Female 82.27 ** 0.32 − − − −
Male 80.38 * 0.32 − − − −
Fulltime 82.87 ** 0.3 83.28 ** 0.3 81.9 ** 0.31
Part-time 80.26 * 0.32 75.8 (ns) 0.43 77.63 (ns) 0.41
Normal 83.88 ** 0.3 82.9 ** 0.31 82.6 ** 0.3
Mature 80.13 * 0.32 78.76 (ns) 0.4 78.85 (ns) 0.4
Internal 82.14 ** 0.3 83.14 ** 0.31 83.02** 0.29
External 80.68 * 0.32 78 (ns) 0.4 79 (ns) 0.39

SMO Original dataset 78.38 0.36 − − − −
Female 80.23 ** 0.32 − − − −
Male 79.17 * 0.34 − − − −
Fulltime 81.23 ** 0.31 82.56 ** 0.29 80.78 ** 0.31
Part-time 78.79 * 0.35 79.3 (ns) 0.34 78.48 (ns) 0.34
Normal 80.9 ** 0.32 81.97 ** 0.31 81.52 ** 0.3
Mature 79.3 * 0.34 76.46 (ns) 0.36 76.04 (ns) 0.36
Internal 81.69 ** 0.3 82.04 ** 0.3 81.95 ** 0.3
External 79.67 * 0.33 77.32 (ns) 0.35 77.15 (ns) 0.35

JRip Original dataset 74.33 0.43 − − − −
Female 81.81 ** 0.37 − − − −
Male 79.38 ** 0.4 − − − −
Fulltime 82.49 ** 0.36 83 ** 0.36 79.7 * 0.39
Part-time 77.1 ** 0.41 78.83 (ns) 0.4 74.29 (ns) 0.44
Normal 82.2 ** 0.37 82.19 ** 0.36 80.11 * 0.38
Mature 82.46 ** 0.37 81.84 * 0.37 70.64 (ns) 0.45
Internal 81.97 ** 0.37 82.6 ** 0.36 80.64 * 0.39
External 79.58 ** 0.4 80.28 (ns) 0.39 71.69 (ns) 0.45

Fig. 2. Performance of different datasets for external sub-model in predicting
student academic outcome.
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Fig. 3. Rules discovered by JRip method for part-time sub-model.

Fig. 4. Rules discovered by JRip method for female-external sub-model.

Fig. 5. Decision tree of male-external sub-model generated by J48.

Fig. 6. Decision tree of external sub-model generated by J48.
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programs in the current year or any year of their candidature are pre-
dicted to be low achievers. Certain additional factors are determined by
individual methods. It is identified that students with lower participa-
tion in quiz activities or lower frequencies of viewing book or file re-
sources are mostly unsuccessful. Furthermore, it is discovered that
students with a poor academic background (ATAR, admission basis),
belong to a lower social status (e.g. economic status or parent educa-
tion) or study part-time are often time-poor and, as such, do not reach
their academic potential. However, it is found in certain occasions that,
when a student possesses a lower score in an activity, he/she can still
demonstrate high performance in that course if he/she has a strong
academic background and exhibits higher participation in other activ-
ities.

By learning the significant socio-demographic and academic factors,
an educational institution can detect at-risk students at an early stage
(prior to beginning their course or program), and take necessary steps
to support students exhibiting these features, such as monitoring their
progress by conducting a routine assessment of their studies throughout
the term. Moreover, the institution can provide additional academic
support; for example, forming smaller groups of such students to allow
them to take several extra classes along with a small weekly seminar on
a specific topic. When detecting the influencing LMS activity features, a
course teacher should direct his/her attention to the group of students
with a very high chance of failing, and also encourage them to parti-
cipate in such activities because of their strong association with student
academic performance in a course. However, in this case, it is not
possible to conduct early identification of vulnerable students. The
course instructor must wait until a specific period (e.g. the fourth or
sixth week from starting the course) to detect student participation in
specific activities. By learning the influencing factors, an institution can
identify vulnerable students possessing specific socio-demographic or
academic features, and advise the course instructors to monitor their
course progress.

This study exhibits certain limitations; for example, although it
employs different classification methods with student enrolment and
LMS activity data, the experiments are confined to the data of domestic
students for a specific university division. Moreover, when mining the
LMS activity data, we only consider individual attributes for all of the
modules (e.g. quiz, forum, etc.); we do not consider the combined
features corresponding to a particular module (e.g. students’ overall
participation in a forum or resource module).

6. Conclusion

In this paper, we have proposed the concept of exploiting hetero-
geneity for obtaining improved prediction models. The experimental

results demonstrated the effectiveness of using student sub-populations
in predicting student academic performance. It was shown that the
generated sub-models outperform the base model. The experiment in-
dicated that the sub-model generated from the external student sub-
group achieves the best performance.

Furthermore, it has been demonstrated that it is useful to investigate
second-level subgroups. For example, the experiments indicated that
the female-mature, female-external and female-part-time sub-models
attain superior prediction results to the female model (a first-level sub-
model). Moreover, the male-external sub-model outperforms the male
model. These results indicate that, although not all of the second-level
sub-models achieve superior predictions, several can still provide in-
sights into student performance, and thus assist in the design of more
targeted student support.

The experiments revealed that no single method exhibits superior
performance in all aspects for predicting student performance.
However, it is crucial to use the discovered knowledge for predicting
vulnerable students with higher predictability. In this regard, the white
box techniques, namely J48 and JRip, contribute significantly by gen-
erating comprehensible output in the form of a tree and rule, respec-
tively. Furthermore, by considering combined features, a superior
prediction result is obtained in identifying unsuccessful students com-
pared to considering the features separately.

Further research should be conducted to address the limitations of
this paper. Firstly, in order to generalise the results, an investigation
should be carried out to identify the risk indicators of international
students, as they may possess some different features from domestic
students, such as diverse ethnic origins, funding opportunities, native
languages and other factors. Secondly, it would be very useful to con-
sider the combined features for a particular module and the categor-
isation features (e.g. social and information) in terms of student parti-
cipation in LMS activities. Furthermore, we plan to generate student
profiles using unlabelled data to discover interesting student clusters
and their characteristics.

References

[1] Y. Zhang, S. Oussena, T. Clark, H. Kim, Use data mining to improve student re-
tention in higher education - a case study, Proceedings of the Twelveth
International Conference on Enterprise Information Systems ICEIS, (2010), pp.
190–197.

[2] C. Romero, M.I. López, J.M. Luna, S. Ventura, Predicting students’ final perfor-
mance from participation in on-line discussion forums, Comput. Edu. 68 (0) (2013)
458–472.

[3] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1993.

[4] W. Klösgen, J.M. Zytkow (Eds.), Handbook of Data Mining and Knowledge
Discovery, Oxford University Press, Inc., New York, NY, USA, 2002.

[5] Z. Ibrahim, D. Rusli, Predicting students’ academic performance: comparing

Fig. 7. Decision tree of female-part-time sub-model generated by J48.

S. Helal et al. Knowledge-Based Systems 161 (2018) 134–146

145

http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0001
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0001
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0001
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0001
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0002
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0002
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0002
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0003
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0003
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0005


artificial neural network, decision tree and linear regression, Proceedings of Annual
SAS Malaysia Forum, Kuala Lumpur, Malaysia, (2007), pp. 1–6.

[6] C.J. Villagrà-Arnedo, F.J. Gallego-Durn, F. Llorens-Largo, P. Compa-Rosique,
R. Satorre-Cuerda, R. Molina-Carmona, Improving the expressiveness of black-box
models for predicting student performance, Comput. Human Behav. 72 (2017)
621–631.

[7] L. Rosenbaum, G. Hinselmann, A. Jahn, A. Zell, Interpreting linear support vector
machine models with heat map molecule coloring, J. Cheminf. 3 (1) (2011) 11.

[8] Z.J. Kovačić, Predicting student success by mining enrolment data, Res. Higher Edu.
J. 15 (0) (2012) 1–20.

[9] C. Romero, P.G. Espejo, A. Zafra, J.R. Romero, S. Ventura, Web usage mining for
predicting final marks of students that use Moodle courses, Comput. Appl. Eng. Edu.
21 (1) (2013) 135–146.

[10] M. Blagojević, Z. Micić, A web-based intelligent report e-learning system using data
mining techniques, Comput. Electr. Eng. 39 (2) (2013) 465–474.

[11] D. Gašević, S. Dawson, T. Rogers, D. Gašević, Learning analytics should not promote
one size fits all: the effects of instructional conditions in predicting academic suc-
cess, Int. Higher Edu. 28 (2016) 68–84.

[12] G.H. John, P. Langley, Estimating continuous distributions in Bayesian classifiers,
Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence,
(1995), pp. 338–345.

[13] J.C. Platt, Fast Training of Support Vector Machines Using Sequential Minimal
Optimization, in: B. Schölkopf, Christopher J.C. Burges, A.J. Smola (Eds.), Advances
in Kernel Methods, MIT Press, Cambridge, MA, USA, 1999, pp. 185–208.

[14] W.W. Cohen, Fast effective rule induction, Proceedings of the Twelfth International
Conference on Machine Learning, (1995), pp. 115–123.

[15] T. Thiele, A. Singleton, D. Pope, D. Stanistreet, Predicting students’ academic per-
formance based on school and socio-demographic characteristics, Stud. Higher Edu.
41 (8) (2016) 1424–1446.

[16] C.E.L. Guarín, E.L. Guzmán, F.A. González, A model to predict low academic per-
formance at a specific enrollment using data mining, IEEE Revista Iberoamericana
de Tecnologias del Aprendizaje 10 (3) (2015) 119–125.

[17] P. Strecht, L. Cruz, C. Soares, J. Moreira, R. Abreu, A comparative study of classi-
fication and regression algorithms for modelling students’ academic performance,
Proceedings of the Eighth International Conference on Educational Data Mining,
(2015), pp. 392–395.

[18] R. Asif, A. Merceron, S.A. Ali, N.G. Haider, Analyzing undergraduate students’
performance using educational data mining, Comput. Edu. 113 (2017) 177–194.

[19] J. Xu, K.H. Moon, M. van der Schaar, A machine learning approach for tracking and
predicting student performance in degree programs, IEEE J. Sel. Top Signal Process.
11 (5) (2017) 742–753.

[20] R. Wang, G. Harari, P. Hao, X. Zhou, A.T. Campbell, Smartgpa: how smartphones
can assess and predict academic performance of college students, Proceedings of the
ACM International Joint Conference on Pervasive and Ubiquitous Computing,
UbiComp ’15, (2015), pp. 295–306.

[21] G. Cobo, G. García, E. Santamaría, J.A. Morán, J. Melenchón, C. Monzo, Modeling
students’ activity in online discussion forums: a strategy based on time series and
agglomerative hierarchical clustering, Proceedings of the International Conference
on Educational Data Mining, (2011), pp. 253–258.

[22] M. Jovanovic, M. Vukicevic, M. Milovanovic, M. Minovic, Using data mining on
student behavior and cognitive style data for improving e-learning systems: a case
study, Int. J. Comput. Intell. Syst. 5 (3) (2012) 597–610.

[23] Moodle, https://moodle.org/. Online accessed: 10-Feb-2018.
[24] BlackBoard, http://www.blackboard.com//. Online accessed: 10-Feb-2018.
[25] Desire2Learn, http://www.brightspace.com/. Online accessed: 10-Feb-2018.
[26] L.P. Macfadyen, S. Dawson, Mining LMS data to develop an early warning system

for educators: a proof of concept, Comput. Edu. 54 (2) (2010) 588–599.
[27] T.M. Khan, F. Clear, S.S. Sajadi, The relationship between educational performance

and online access routines: analysis of students’ access to an online discussion
forum, Proceedings of the Second International Conference on Learning Analytics
and Knowledge, (2012), pp. 226–229.

[28] M. Hlosta, Z. Zdrahal, J. Zendulka, Ouroboros: early identification of at-risk stu-
dents without models based on legacy data, Proceedings of the Seventh
International Learning Analytics & Knowledge Conference, LAK ’17, (2017), pp.
6–15.

[29] O. Adejo, T. Connolly, An integrated system framework for predicting students’
academic performance in higher educational institutions, Int. J. Comput. Sci. Inf.
Technol. 9 (2017) 149–157.

[30] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The WEKA
data mining software: an update, SIGKDD Explor. Newslett. 11 (1) (2009) 10–18.

[31] J.W. Perry, A. Kent, M.M. Berry, Machine literature searching x. machine language;
factors underlying its design and development, J. Assoc. Inf. Sci. Technol. 6 (4)
(1955) 242–254.

[32] D.C. Blair, Information retrieval, J. Am. Soc. Inf. Sci. 30 (6) (1979) 374–375.
[33] J. Cohen, A coefficient of agreement for nominal scales, Edu. Psychol. Meas 20 (1)

(1960) 37–46.
[34] J.A. Hanley, B.J. McNeil, The meaning and use of the area under a receiver oper-

ating characteristic (ROC) curve, Radiology 143 (1) (1982) 29–36.
[35] I. Rodríguez-Fdez, A. Canosa, M. Mucientes, A. Bugarín, STAC: a web platform for

the comparison of algorithms using statistical tests, Proceedings of the IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE), (2015), p. 1.

S. Helal et al. Knowledge-Based Systems 161 (2018) 134–146

146

http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0005
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0005
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0006
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0006
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0006
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0006
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0007
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0007
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0008
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0008
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0009
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0009
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0009
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0010
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0010
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0011
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0011
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0011
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0012
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0012
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0012
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0013
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0013
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0013
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0014
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0014
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0015
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0015
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0015
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0016
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0016
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0016
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0017
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0017
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0017
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0017
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0018
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0018
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0019
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0019
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0019
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0020
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0020
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0020
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0020
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0021
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0021
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0021
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0021
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0022
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0022
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0022
https://moodle.org/
http://www.blackboard.com//
http://www.brightspace.com/
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0023
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0023
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0024
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0024
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0024
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0024
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0025
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0025
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0025
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0025
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0026
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0026
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0026
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0027
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0027
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0028
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0028
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0028
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0029
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0030
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0030
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0031
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0031
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0032
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0032
http://refhub.elsevier.com/S0950-7051(18)30393-9/sbref0032

	Predicting academic performance by considering student heterogeneity
	Introduction
	Related works
	Methodology
	Collecting enrolment and LMS activity data
	Pre-processing of data
	Generating sub-datasets
	Predicting student academic performance
	Evaluation of generated models

	Experiments
	Datasets
	Results
	Predicting student performance using enrolment data
	Predicting student performance using LMS activity data
	Predicting student performance using combined data

	Evaluation of generated models using cross-validation and statistical test

	Discussion
	Comparing performance of different methods in generating student sub-models
	Interpretability and usability of discovered sub-models
	Major findings and their usefulness

	Conclusion
	References




