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Causal Feature Selection With Dual Correction
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Abstract— Causal feature selection methods aim to identify
a Markov boundary (MB) of a class variable, and almost all
the existing causal feature selection algorithms use conditional
independence (CI) tests to learn the MB. However, in real-
world applications, due to data issues (e.g., noisy or small
samples), CI tests can be unreliable; thus, causal feature selection
algorithms relying on CI tests encounter two types of errors: false
positives (i.e., selecting false MB features) and false negatives (i.e.,
discarding true MB features). Existing algorithms only tackle
either false positives or false negatives, and they cannot deal with
both types of errors at the same time, leading to unsatisfactory
results. To address this issue, we propose a dual-correction-
strategy-based MB learning (DCMB) algorithm to correct the
two types of errors simultaneously. Specifically, DCMB selectively
removes false positives from the MB features currently selected,
while selectively retrieving false negatives from the features cur-
rently discarded. To automatically determine the optimal num-
ber of selected features for the selective removal and retrieval in
the dual correction strategy, we design the simulated-annealing-
based DCMB (SA-DCMB) algorithm. Using benchmark Bayesian
network (BN) datasets, the experimental results demonstrate that
DCMB achieves substantial improvements on the MB learning
accuracy compared with the existing MB learning methods.
Empirical studies in real-world datasets validate the effectiveness
of SA-DCMB for classification against state-of-the-art causal and
traditional feature selection algorithms.

Index Terms— Bayesian network (BN), dual correction, feature
selection, Markov boundary (MB).

I. INTRODUCTION

THE Markov boundary (MB) is a key concept in a
Bayesian network (BN). If the probability distribution

of a dataset can be faithfully represented by a BN, the MB
of a node (feature) in the BN consists of its parents (direct
causes), children (direct effects), and spouses (other parents
of the children) of the node [1].

The MB of a variable provides a complete picture of
the local causal relationships around the variable, and thus,
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learning MBs plays an essential role in scalable learning of
both local and global causal structures [2], [3]. Moreover, it has
been proven that MB of the class variable is theoretically
the minimal feature subset of optimal feature selection for
prediction when data distribution is faithfully represented by
a BN [4]–[6].

Accordingly, as an emerging successful filtering feature
selection approach, causal feature selection [7] has attracted
much attention inspired by the theory of BN and MB. Causal
feature selection aims to learn the MB of a class variable
of the dataset, and many causal feature selection algorithms
have been developed in the past decade [8]. Almost all these
algorithms use conditional independence (CI) tests to assess
the associations between features as a statistical measure to
identify the MB of the class variable.

However, in real-world applications, limited by small sam-
ple size, noisy data, or high dimensionality, CI tests can be
unreliable during MB learning, leading to two types of errors
of the CI test-based causal feature selection methods: false
positives (i.e., some false MB features being selected) and
false negatives (i.e., some true MB features being discarded).
To rectify the two types of errors, the existing causal feature
selection algorithms use either the AND rule to remove false
positives (e.g., parents and children based MB (PCMB) [9]
and Iterative parent-Child based search of MB (IPCMB) [10])
or the OR rule to retrieve false negatives (e.g., cross-check and
complement MB discovery (CCMB) [11]).

Moreover, we use the example in Fig. 1 to illustrate how
the existing algorithms use either the AND rule or the OR

rule to resolve the two types of errors and summarize their
shortcomings. In this example, we choose the frequently used
ALARM BN and generate two synthetic datasets (1000 data
samples each). Using the ALARM network, we can read off
the true MB of a node, and then we are able to compare the
MB of the node learned from a dataset with the true MB of
the node in the network. In Fig. 1(a), the true MB of X15 in
the ALARM network is highlighted in orange. A red cross
denotes that a true MB feature is discarded by an algorithm,
and a red arrow represents that a false MB feature is selected
by an algorithm.

We choose two well-established causal feature selection
algorithms, PCMB [9] and max-min MB (MMMB) [12], and
one state-of-the-art algorithm, CCMB [11]. PCMB uses the
AND rule to remove false positives, while CCMB employs the
OR rule to retrieve false negative. MMMB does not use either
rule.

In a BN, the AND rule means that if feature Fi is a parent
of feature Fj (i.e., Fi → Fj ), then Fj must be a child of
Fi . However, in real-world applications, due to noisy data,
it was often found that when using a causal feature selection
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Fig. 1. (a) MBs learned by MMMB with PCMB using 1000 samples. (b) MBs
learned by MMMB with CCMB using 1000 samples.

algorithm to find the parents and children (PC) set of Fi , Fj

was not found in the PC set of Fi ; however, the found PC set
of Fj included Fi . Thus, the OR rule means that if Fj is not
found in the PC set of Fi but Fi is found in the PC set of Fj ,
Fj is still considered a true PC feature of Fi .

For X15, PCMB first learns the PC set of X15 and then
learns the PC set of each feature (denoted as A) within the
learned PC set of X15. Using the AND rule, if X15 is not in
the learned PC set of A, A is considered a false positive and is
removed from the learned PC set of X15. After removing false
PC features, PCMB learns the spouses of X15. In Fig. 1(a),
compared with the MB learned by MMMB, PCMB removes
false positives (e.g., X18), as well as many true MB features
(e.g., X14, X16, and X31). In Fig. 1(b), CCMB also first learns
the PC set of X10; then, it learns the PC set of each feature
(denoted as B) within all discarded features. Clearly, B is not
in the learned PC set of X10. Using the OR rule, if the found
PC set of B includes X10, B is considered a false negative,
and it is added to the learned PC set of X10. After retrieving
the missed true PC features, CCMB learns the spouses of X10.
From Fig. 1(b), compared with the MB learned by MMMB,
CCMB not only recovers the true MB feature X16 but also
selects three false MB features, such as X18, X31, and X34.

Compared with the MMMB algorithm, in Fig. 1, it was
found that: 1) PCMB and CCMB may not obtain satisfactory
results and 2) PCMB and CCMB are more computationally
expensive than MMMB since using the AND rule, PCMB
needs to perform additional CI tests for finding the PC sets of
all features within the found PC set; while using the OR rule,
CCMB needs to conduct additional CI tests for learning the
PC sets of all the discarded features.

The above findings lead to the following question: can
we use both the rules at the same time to simultaneously
reduce both false positive and false negative errors to achieve
satisfactory results with relatively low computational costs?

This article tackles the question raised above and makes the
following main contributions.

1) We propose the dual-correction-strategy-based MB
learning (DCMB) algorithm. In the DCMB algorithm,
we design a dual correction strategy using the AND rule
and the OR rule together to simultaneously reduce both
false positive and false negative errors. To make both
the rules work efficiently and effectively, for the AND

rule, instead of using the entire found PC set, the dual
correction strategy selectively chooses features within
the found PC set for finding their PC sets to remove
false positives. For the OR rule, rather than using all
the discarded features, this strategy selectively chooses
features within the discarded features for learning their
PC sets to retrieve false negatives.

2) To automatically search for the optimal number of
selected features for the selective removal and retrieval
in the dual correction strategy, we design the simulated-
annealing-based DCMB (SA-DCMB) algorithm, which
uses simulated annealing (SA) to automatically deter-
mine the optimal number of selective features for both
the rules.

3) Using synthetic datasets, we validate the quality of the
learned MB and the learning efficiency of DCMB. Using
real-world datasets, we validate the effectiveness of
SA-DCMB for classification against the well-established
and state-of-the-art feature selection algorithms.

II. RELATED WORK

Feature selection has been widely studied and used in
machine learning, as well as in data mining. In addition,
many excellent studies on feature selection methods have been
presented recently. We suggest readers refer to reviews on
this topic, such as [13] for an extensive survey on classic
feature selection methods, [14] and [15] for a review of
information theoretic feature selection algorithms and [8] for
a comprehensive survey on causal feature selection methods.

In this section, we focus on causal feature selection meth-
ods. The existing causal feature selection methods can be
divided into multi-source and single-source causal feature
selection methods. The former selects causal features from
multiple datasets with different distributions [16], while the
latter learns causal features using a single dataset [17].
Recently, Mastakouri et al. [18] proposed a novel and sound
causal feature selection algorithm to deal with time series
data with latent variables. In this article, we focus on learning
causal features from a single dataset in a static environment.

We first briefly introduce the causal feature selection algo-
rithms, and then highlight the causal feature selection methods
using the AND rule or the OR rule to correct false positive or
false negative errors. Koller and Sahami [17] were the first to
introduce MB to feature selection. Based on this work [17],
in the past decade, many causal feature selection algorithms
have been developed [8] without learning an entire BN, and
thus were able to scale up to hundreds of thousands of features.
In general, the existing causal feature selection algorithms
using a single dataset can be divided into two main types:
simultaneous MB (STMB) learning and divide-and-conquer
MB learning. A STMB learning algorithm finds parents, chil-
dren, and spouses of the class variable simultaneously and does
not distinguish the PC of the class variable from its spouses
during MB learning. The grow-shrink MB (GSMB) algorithm
was the first correct algorithm for learning an MB of the class
variable [19]. Based on GSMB, many of its variants have been
developed, such as incremental association MB (IAMB) [5],
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Fast-IAMB [20], Inter-IAMB [21], IAMB-informative prior
(IAMB-IP) [22], and forward-backward selection with early
dropping (FBED)K [23]. Since those MB learning algorithms
use the entire currently selected MB as the conditioning set
at each computation, the data samples required by those
algorithms are exponential to the size of the MB set that
is currently selected. Moreover, the existing STMB learning
algorithms do not use the AND rule or the OR rule.

The divide-and-conquer MB learning methods were pro-
posed to reduce the data requirements of the STMB learn-
ing methods. This approach breaks down the MB learning
problem into two subproblems: PC learning (i.e., learning
PC of the class variable) and spouse learning (i.e., learn-
ing spouses of the class variable). The representative algo-
rithms include: MMMB [12], HITON-MB [24], PCMB [9],
[25], MB search using the OR condition (MBOR) [26],
IPCMB [10], STMB [27], CCMB [11], and separation and
recovery MB discovery (SRMB) [28]. To achieve a balance
between data efficiency and time efficiency, balanced MB
discovery (BAMB) [29] and efficient and effective discovery
of MB (EEMB) [30] perform the PC learning step and the
spouse discovery step alternatively instead of performing these
two steps separately. For PC learning, these methods do not
use the entire PC set currently selected as the conditioning
set for CI tests. Instead, it makes use of the subsets of the
PC set currently selected, which is much smaller than the
entire MB set used by the STMB learning approach when
determining dependence/independence relationships between
variables. Thus, the divide-and-conquer MB learning approach
requires a considerably smaller number of samples than the
STMB learning approach.

Since both the AND and OR rules use the symmetry property
of PC in BNs, the existing algorithms using either rule focus
on the type of divide-and-conquer MB learning methods.
Peña et al. [25] and Tsamardinos et al. [31] independently
claimed that the MMMB and HITON-MB algorithms cannot
return the correct MB even under the faithfulness assumption.
They found that both the MMPC and the HITON-PC algo-
rithms used by MMMB and HITON-MB, respectively, may
return a superset of the true PC of C (i.e., including false pos-
itives). Then, Pena et al. [9] proposed the PCMB algorithm.
Based on the idea of PCMB, the IPCMB algorithm [10] was
proposed. Both the algorithms use the AND rule to remove
false positives. Specifically, for each feature in the found PC
set of the class variable, if the PC set of the feature does not
include the class variable, then the two algorithms consider
the feature as a false positive and remove it from the found
PC set.

However, as shown in Fig. 1, the current algorithms using
the AND rule remove not only false positives but also true
positives. That is to say, using the AND rule reduces the
false positive rate, but it increases the false negative rate.
Then, to reduce the false negative rate, the MBOR algorithm
was designed using the OR rule. Clearly, the OR rule is less
strict than the AND rule and makes it easier for true positives
to enter the MB. Since MBOR uses the STMB discovery
approach for PC learning, it still struggles with the problem
of data inefficiency. To tackle this problem, Wu et al. [11],

[28] proposed the CCMB algorithm and the SRMB algorithm.
The CCMB algorithm adopts the divide-and-conquer idea to
learn PC of the class variable for alleviating the data-efficient
problem. Then, it adopts the OR rule to recover the discarded
true positives. SRMB first learns a rough MB of C by a
fast MB discovery algorithm, then proceeds with a separation
process to separate PC and spouses from the initial MB, and
finally exploits the OR rule to recover the missed PC and
spouses of C .

However, the current algorithms using the OR rule can
recover as many true positives as possible, but they increase
the number of false positives. Moreover, MBOR, CCMB and
SRMB all need to identify the PC sets of all features excluding
the found PC set, which leads to very expensive computations.
In this article, we investigate the OR rule and the AND

rule and study how to make both the rules truly work in
practice.

III. NOTATIONS AND DEFINITIONS

In this section, we provide the basic notations and defin-
itions related to causal feature selection, BN, and MB used
throughout the article. We let F consist of M features and the
class variable C , i.e., F = {F1, F2, . . . , FM+1}, where Fi =
Fi (1 ≤ i ≤ M), and FM+1 = C . Let S be any set of features
within F\{C}, and we use S\Fi as the shorthand of S\{Fi }
and S ∪ Fi as the shorthand of S ∪ {Fi }. We use Fi ⊥⊥ Fj |S
to denote that Fi and Fj are conditionally independent given
S ⊆ F\{Fi , Fj , C}, and Fi ⊥�⊥ Fj |S to represent that Fi and
Fj are conditionally dependent given S. The symbols PC(Fi )
and SP(Fi ) denote the set of PC and the set of spouses of Fi ,
respectively.

Let P(F) be the joint probability distribution over F and
G = (F, E) represents a directed acyclic graph (DAG) with
nodes F and edges E, where an edge Fi → Fj denotes that
Fi is a parent of Fj while Fj is a child of Fi . The triplet
�F, G, P(F)	 is called a BN if and only if �F, G, P(F)	 satisfies
the Markov condition: every node of G is independent of any
subset of its non-descendants conditioning on the parents of
the node [1].

In a BN, due to the symmetry relationship of a node and
its parents (or its children), the AND rule and the OR rule are
defined as follows. Clearly, the OR rule is less strict than the
AND rule.

Definition 1 (AND rule): In a BN, if Fi is a parent of Fj

[i.e., Fi ∈ PC(Fj )], Fj must be a child of Fi [i.e., Fj ∈
PC(Fi )].

Definition 2 (OR rule): Given a causal feature selection
algorithm and a dataset for learning the PC set of Fi , if Fj

is not in the learned PC set of Fi [i.e., Fj /∈ PC(Fi )] but Fi

is in the learned PC set of Fj [i.e., Fi ∈ PC(Fj )], Fj is still
considered a true PC feature of Fi .

Definition 3 (Faithfulness [1]): Given a BN �F, G, P(F)	,
G is faithful to P(F) if and only if every CI present in P is
entailed by G and the Markov condition. P(F) is faithful to
G if and only if there exists a DAG G such that G is faithful
to P(F).

Under the faithfulness assumption, Definition 4 below states
the uniqueness of MBs and what the MB of a node is in a BN.
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Definition 4: (MB [1]) Under the faithfulness assumption,
the MB of any node in a BN is unique and it consists of the
node’s parents, children, and spouses (other parents of the
node’s children).

In BNs, the MB of a node renders the node statistically
independent of all the remaining nodes conditioning on the
MB [1], as shown in Proposition 1 below.

Proposition 1 ( [1]): In a BN, let MB(Fi ) be the MB of
node Fi , ∀Fj ∈ F \ (MB(Fi ) ∪ C), Fi ⊥⊥ Fj |MB(Fi ) holds.

Proposition 1 bridges the gap between MB learning and
feature selection and illustrates that learning the MB of the
class variable is actually a procedure of optimal feature
selection.

Proposition 2 ( [5], [6]): Under the faithfulness assump-
tion, ∀Fi ∈ F, Fi belongs to the MB of the class variable
C (MB(C)), if and only if Fi is a strongly relevant feature.

IV. PROPOSED DCMB ALGORITHM

In this section, we propose the DCMB algorithm, and this
section is organized as follows. We first give the overview of
the DCMB algorithm in Section IV-A, and then present the
detailed description of DCMB in Section IV-B.

A. Overview of DCMB

The DCMB algorithm includes four phases as shown in
Algorithm 1.

For Phase I (Line 1), we propose the IdenCPC algorithm
(presented in Algorithm 2) to identify candidate PC (IdenCPC)
of C (CPC).

The dual correction is done in Phase II (Line 2) and
Phase III (Line 3) and these two phases are the most critical
parts of DCMB. For Phase II and Phase III, we propose
the OR rule-based PC retrieval (ORPC) and AND rule-based
PC removal (ANDPC) algorithms, respectively (presented in
Algorithms 3 and 4). The ORPC algorithm uses the OR

rule to recover the true PC discarded in Phase I, while the
ANDPC algorithm use the AND rule to remove false positives
from CPC. To efficiently and effectively apply the two rules,
the ORPC and ANDPC algorithms use two input parameters
k_or ∈ [0, 1] (denoting any real number between 0 and 1) and
k_and ∈ [0, 1] to greedily select some features for correcting
the two types of errors, respectively, and these selected features
have a high probability of being identified as false negatives
or false positives.

Finally, Phase IV (Lines 5–12) learns the spouses of the
class variable (denoted as SP) based on the corrected PC set
in Line 4. In this phase, the idea of identifying spouses is the
same as the existing MB learning algorithms, such as MMMB.

B. Detailed Descriptions of DCMB

1) IdenCPC Algorithm in Phase I: The IdenCPC algorithm
adopts the similar idea of the MMPC algorithm [12] to learn
a candidate PC set of the class variable, denoted as CPC.
The pseudo code of IdenCPC is shown in Algorithm 2, which
consists of two steps: the forward step (Step 1) and the
backward step (Step 2).

Step 1 (Forward step, Lines 2–15 in Algorithm 2.) We
assume that both CPC and or_rank are initially empty. CPC

Algorithm 1 DCMB
Input: C: the class variable; k_or ∈ [0,1]; k_and ∈ [0,1]
Output: MB of C

{Phase I: IdenCPC}
1: [or_rank, CPC] = IdenCPC(C)

{Phase II: The “OR” rule for recovering discarded PC}
2: orPC = ORPC(k_or , or_rank)

{Phase III: The “AND” rule for removing false PC}
3: andCPC = ANDPC(k_and , CPC)
4: PC = andCPC ∪orPC

{Phase IV: Find spouses}
5: SP = ∅
6: for each X ∈ PC do
7: for each Y ∈ PC(X) and Y /∈ PC do
8: if ∃ S s.t. C ⊥⊥Y |S and C �⊥⊥Y |S ∪{X} then
9: SP ←−SP ∪{Y}

10: end if
11: end for
12: end for
13: MB = PC ∪ SP

stores the candidate PC of C found by IdenCPC, while
or_rank keeps possibly discarded true PC for recovering later
using the OR rule.

Given the CPC currently selected, for each feature X ∈
F \ CPC, in Line 4, IdenCPC uses the function dep() to
calculate the relevancy of X and C conditioning on all possible
subsets of CPC, and then chooses the minimum relevancy
as the relevancy value of X and C . The function dep() can
be instantiated by chi-squared test, mutual information, etc.
Dep[X] keeps the minimum relevancy value of X and C
conditioning on the subset Sep[X] within CPC. In Line 5,
if X is independent of C , X is removed from F and never
considered as candidate PC again in Line 6.

The smaller the size of or_rank, the more efficient the
ORPC algorithm. In Lines 7 and 8, to keep or_rank as small
as possible, we only consider that if X and C are independent
and their conditioning set is not empty, X is added to the
set or_rank at Line 8. The explanation for this is that if
X is independent of C conditioning on an empty set, both
C /∈ PC(X) and X /∈ PC(C) hold and thus X cannot be
recovered using the OR rule.

Then in Lines 12 and 13, IdenCPC selects the next feature
to be included in CPC as the one that is dependent of C
and exhibits the maximum relevancy among the features in
F \ CPC. The forward step is terminated until F is empty
(that is to say, each feature in F\CPC and C are independent
given any subsets of CPC).

Step 2 (Backward step, Lines 16–21 in Algorithm 2.) At the
backward phase, IdenCPC checks whether each feature Y in
CPC is independent of C conditioning on all possible subsets
of CPC \Y . If so, Y is removed from CPC and Y is added to
or_rank; otherwise, it is retained.

2) ORPC Algorithm in Phase II: The ORPC algorithm is
shown in Algorithm 3. The basic idea of the ORPC algorithm
is to determine which features in or_rank are the discarded
PC of C . If the PC set of each feature X ∈ or_rank includes
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Algorithm 2 IdenCPC
Input: C; F: union of features and class variable
Output: or_rank: possibly discarded true positives;

CPC: candidate parents and children features
1: Initialize or_rank = ∅, CPC = ∅, F = F \{C}

{Step 1: Forward step}
2: repeat
3: for each X ∈ F do
4: [Dep[X], Sep[X]] = arg minS⊆CPCdep(C , X|S)
5: if C ⊥⊥ X|Sep[X] then
6: F = F \{X}
7: if Sep[X] �= ∅ then
8: or_rank ←−or_rank ∪{X}
9: end if

10: end if
11: end for
12: Y = arg maxX∈F Dep(X)
13: CPC = CPC ∪{Y}
14: F = F \{Y}
15: until F = ∅

{Step 2: Backward step}
16: for each X ∈ CPC do
17: if ∃S ⊆CPC\{X} such that C ⊥⊥X|S then
18: CPC = CPC \{X}
19: or_rank ←−or_rank ∪{X}
20: end if
21: end for

Algorithm 3 ORPC
Input: k_or ∈ [0,1]; or_rank
Output: orPC: recovered PC by the “OR” rule
1: Initialize orPC = ∅

/*Descending order, F1 has the highest dependency*/
2: �F1, . . . , F|or_rank|	 ←− or_rank
3: for i =1 to R(|or_rank| × k_or ) do
4: [or_rank2, CPC2] = IdenPC(Fi)
5: if C ∈ CPC2 then
6: orPC = orPC ∪{Fi }
7: end if
8: end for

C , X is reconsidered as a parent or a child of C and added
to orPC. First, it is computationally expensive to check all
the features in or_rank, especially when the size of or_rank
becomes large. Second, due to incorrect CI tests, more features
within or_rank are examined, and more false positives may be
added. To save computational costs and ensure that only a few
false positives are added, ORPC adopts a selective correction
strategy that uses a parameter k_or ∈ [0, 1] to control the
number of features selected from or_rank.

To implement this strategy, in Line 2, ORPC first sorts
the features in or_rank in descending order according to
the association values between these features and C . Second,
ORPC uses the parameter k_or to specify the number of
features selected from or_rank. Then, in Lines 3 and 4,
ORPC examines the R(|or_rank| × k_or) features from the
first feature in or_rank and identifies their PC set using the

IdenCPC algorithm. |or_rank| denotes the number of features
in or_rank and the function R(m) is used to round the
parameter m. In Lines 5 and 6, if a feature’s PC set includes
C , then the feature is added to orPC. For the parameter k_or,
if k_or = 1, ORPC will identify the PC sets of all the features
in or_rank, while if taking k_or = 0, ORPC does not examine
any features in or_rank. In addition, we sort the features in
or_rank in descending order since the higher dependency a
feature has with C , the higher chance the feature has to be
a true positive. This strategy makes ORPC selectively choose
the most promising features in or_rank for recovering, while
avoiding checking all the features in or_rank. We discuss the
empirical bound of the value of k_or in Section VI-B.

3) ANDPC Algorithm in Phase III: To remove false posi-
tives from CPC achieved in Phase I, th existing algorithms use
the AND rule to examine all the features in CPC. However,
examining all the features in CPC is not only computationally
expensive but also removes true positives from CPC.

The ANDPC algorithm (as shown in Algorithm 4) also
uses the AND rule, but it implements a selective correction
by specifying a parameter k_and ∈ [0, 1] to control the
number of features selected from CPC. Specifically, in Line 2,
ANDPC first sorts the features in CPC in ascending order
according to the association values between these features and
C . In Line 3, ANDPC specifies k_and to control the number
of features selected from CPC. In Line 4, ANDPC examines
the R(|CPC| × k_and) features from the first feature in CPC
and identifies their PC sets using IdenCPC. |CPC| denotes the
number of features in CPC and R(m) is the same as R(m) in
the ORPC algorithm. In Lines 5 and 6, if a feature’s PC set
does not include C , then the feature is removed from andCPC.

For the parameter k_and, if k_and = 1, ANDPC learns the
PC sets of all the features in CPC, while if taking k_and = 0,
ANDPC does not check any features in CPC. In addition,
the features in CPC are arranged in ascending order. The
explanation is that if a feature has a low dependency with
C , the feature has a high chance to be a false positive. This
strategy makes ANDPC selectively choose the most promising
features for being removed from CPC and at the same time
avoid checking all the features in CPC. We will discuss the
empirical bound of the value of k_and in Section VI-B.

The order of Lines 2 and 3 in Algorithm 1 has no effect on
the result of DCMB. According to the IdenCPC algorithm (see
Algorithm 2), or_rank∩CPC = ∅ holds. Here, both or_rank
and CPC are the outputs of IdenCPC. orPC ∩ andCPC = ∅
also holds since the orPC output by the ORPC algorithm in
Phase II is a subset of or_rank and the andCPC outputted
by the ANDPC algorithm in Phase III is a subset of CPC.
Therefore, Phase II (Line 2 of Algorithm 1) and Phase III
(Lines 3 and 4 of Algorithm 1) are interchangeable, and their
order does not affect the results of the DCMB algorithm.

4) Identifying Spouses in Phase IV: Phase IV (Lines 5–15
in Algorithm 1) learns the spouses of C , and the idea
of the phase is the same as the spouse learning of the
existing MB algorithms [4]. Based on the PC corrected by
Phases II and III, for each feature X ∈ PC, first, at Phase IV,
DCMB uses IdenCPC to find the PC of X [denoted as PC(X)].
Then, for each feature Y in PC(X), if there exists a subset
S within F \ {C, X, Y } (S was identified and stored in the
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Algorithm 4 ANDPC
Input: k_and ∈ [0,1]; CPC
Output: andCPC: corrected CPC by the “AND” rule
1: Initialize andCPC = CPC

/*Ascending order, F1 has the lowest dependency*/
2: �F1, . . . , F|CPC|	 ←− CPC
3: for i =1 to R(|CPC| × k_and) do
4: [or_rank2, CPC2] = IdenCPC(Fi )
5: if C /∈ CPC2 then
6: andCPC = andCPC \{Fi }
7: end if
8: end for

IdenCPC algorithm) such that both C⊥⊥Y |S and C⊥�⊥Y |S∪{X}
hold, Y is a spouse of C with regard to X . Finally, in Line 16
in Algorithm 1, we obtain the MB of C .

5) Tracing DCMB: We provide a tracing example to show
how DCMB works in Section S-1 in the Supplementary
Material.

V. PROPOSED SA-DCMB ALGORITHM

The values of parameters k_or and k_and have great influ-
ences on the performance of DCMB. In real-world applica-
tions, it is difficult to specify the suitable values of the two
parameters for DCMB for different tasks. Then the question
arises, whether DCMB can automatically determine a set of
optimal values of k_or and k_and simultaneously? In this
section, we propose the SA-DCMB algorithm to tackle this
problem. SA [32] is an effective greedy search method to find
the global optimum in the presence of a large number of local
optima. In theory, according to the convergence analysis of
Markov process, the probability of SA converging to the global
solution is 1 with the extension of SA procedure [33].

The pseudo code of SA-DCMB is shown in Algorithm 5.
In SA-DCMB, t is analogous to temperature in an annealing
system. The value of t is high at the beginning, and then
the value is gradually decreased according to an “annealing
schedule.” The parameter r is used to control the descent
rate of t . The smaller the r , the faster t falls. The whole
search process stops when t falls to t_min. In Algorithm 5,
we assume that the search process of SA-DCMB is carried
out in a 3-D coordinate system. The X-axis and Y -axis
represent parameters k_or and k_and, respectively. Parameters
h1 and h2 denote the unit scale sizes of the X-axis and
Y -axis, respectively. In addition, the value on the Z -axis
denotes the classification accuracy that is obtained by function
J(k_or, k_and). The function J() consists of four steps as
follows.

1) First, the training dataset D1 and validation dataset
D2 are obtained from the training dataset D (the pro-
portion of samples in dataset D1 and dataset D2 is 9:1).

2) Next, the MB of the class variable C is learned using
DCMB, and MB(C) = DCMB(C , D1, k_or, k_and).

3) Then, the classifier f (·) (such as naive Bayes (NB) and
K -nearest neighbor (KNN) classifiers) is trained using
all the features in MB(C) on dataset D1.

Algorithm 5 SA-DCMB
Input: t : temperature; t_min: the lower limit of t;

C; D: training dataset; r ∈ [0,1];
Output: MB of C
1: i ← 1, LOS = ∅ /*locally optimal solution set*/
2: Randomly initialize k_or(i) ∈ [0,1] and k_and(i) ∈ [0,1]
3: Implement J((k_or(i), k_and(i))) and initialize h1, h2

4: while t > t_min do
5: CanPS = {(k_or(i) ± h1, k_and(i) ± h2)}
6: loop
7: if CanPS = ∅ then
8: goto 30 /*stop search*/
9: end if

10: Yset = arg maxXset∈CanPSJ(Xset)
11: if Yset /∈LOS then
12: goto 17
13: else
14: CanPS = CanPS \{Yset}
15: end if
16: end loop
17: dE = J(Yset) − J((k_or(i), k_and(i)))
18: if dE �0 then
19: i = i+1, (k_or(i), k_and(i)) ← Yset
20: else
21: LOS = LOS ∪{(k_or(i), k_and(i))}
22: if exp(dE/ t) > random(0,1) then
23: t = r ∗ t /*cooling annealing*/
24: i = i+1, (k_or(i), k_and(i)) ← Yset
25: else
26: goto 30 /*stop search*/
27: end if
28: end if
29: end while
30: Select best parameter (k_or(best), k_and(best)) from LOS
31: MB=DCMB(C , k_or(best), k_and(best); D)

4) Finally, the class labels in D2 are predicted using f (·)
and the classification accuracy is obtained.

The details of SA-DCMB are described as follows.
First, we randomly initialize parameter k_or and k_and in

the range of [0,1] (Line 2 in Algorithm 5) and call the function
J(·) (Line 3).

Based on the obtained or_rank and CPC, h1 and h2 are
initialized to 1/|or_rank| and 1/|CPC|, respectively. h1 and
h2 ensure that features in the sets of or_rank and CPC are
traversed one-by-one throughout the process of implementing
ORPC (see Algorithm 3) and ANDPC (see Algorithm 4).

Second, SA-DCMB implements the SA search process
for searching for the best parameter (k_or(best), k_and(best))
in the range of [0,1] (Lines 4–29). SA-DCMB initializes
the candidate parameter set (CanPS) (Line 5), including
four parameter combinations: [(k_or(i) + h1, k_and(i)),
(k_or(i), k_and(i) + h2), (k_or(i) − h1, k_and(i)), and
(k_or(i), k_and(i) − h2)]. Then, SA-DCMB traverses CanPS
(Lines 6–16) to select the parameter set (k_or, k_and) within
CanPS\LOS for obtaining maximum classification accuracy.
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TABLE I

SUMMARY OF BENCHMARK BNS FOR VALIDATING DCMB

Next, if J(Yset) ≥ J((k_or(i), k_and(i))), SA-DCMB will
choose parameter Yset as a new search direction (Line 19);
otherwise, the current set of (k_or(i), k_and(i)) is considered
as the best parameter set. Since the probability of cooling
with an energy difference of dE is exp(dE/ t), SA-DCMB
can accept the poor parameter (k_or, k_and) and starts
annealing once if and only if exp(dE/ t) > random (0,1)
holds (Lines 22–24), and random (0,1) is used to generate a
random number from 0 to 1.

Finally, SA-DCMB selects the best (k_or, k_and) within
LOS (Line 30), and the MB of C is obtained (Line 31).

VI. EXPERIMENTS

In this section, we first validate that DCMB achieves signif-
icant improvements on MB learning accuracy on benchmark
BN datasets, and then we analyze the parameters k_or and
k_and. Finally, we evaluate the effectiveness of SA-DCMB
on real-world datasets.

All the experiments are conducted on a computer with Intel
Core i5-8400 2.80-GHz CPU and 16-GB memory.

A. Benchmark BN Datasets for Validating DCMB

1) Datasets: We use four benchmark BNs with different
numbers of variables in our experiments, and the details of
the four benchmark BNs are summarized in Table I.1 For
each benchmark BN network, we randomly generate three
datasets, including 500 data instances, 1000 data instances,
and 5000 data instances, respectively.

2) Comparison Methods: We compare DCMB with four
state-of-the-art causal feature selection algorithms, including
FBEDK [23], PCMB [9], BAMB [29], and CCMB [11].2 Note
that PCMB adopts the “AND” rule, while CCMB uses the
“OR” rule.

3) Evaluation Metrics: For the benchmark BN networks,
the MB of each feature can be read from those networks.
Accordingly, in the experiments, we evaluate the algorithms
using the following metrics.

1) Precision: The precision metric denotes the number
of true positives in the output (i.e., the features in the
output of an algorithm belonging to the true MB of a
given target in a test DAG) divided by the number of
features in the output of the algorithm.

2) Recall: The recall metric represents the number of true
positives in the output divided by the number of true

1Those benchmark BN networks are publicly available at http://www.
bnlearn.com/bnrepository/

2The source codes are available at https://github.com/kuiy/CausalFS

TABLE II

EXPERIMENTAL RESULTS ON BENCHMARK DATASETS FOR VALIDATING
THE EFFICIENCY OF THE DUAL CORRECTION STRATEGY

(TIME METRIC, IN SECONDS)

positives (the number of the true MB of a given target)
in a test DAG.

3) F1: F1 = 2∗Precision∗Recall/(Precision+Recall).
The F1 score is the harmonic average of the precision
and recall, where F1 = 1 is the best case (perfect
precision and recall) while F1 = 0 is the worst case.

4) T ime: We report running time (in seconds) as the
efficiency measure of different algorithms.

4) Implementation Details:

1) All the algorithms are implemented in C/C++. For the
FBEDK algorithm, the value of K is set to 1, which is
enough to make FBEDK converge.

2) The CI tests are G2 tests with a statistical significance
level of 0.01.

3) For an algorithm, we identify the MBs of all the features
in each BN and report the average results of F1,
precision, recall, and time.

a) Experimental results of the dual correction strategy:
In this section, we validate the effectiveness and the efficiency
of the dual correction strategy of the DCMB algorithm.

We compare DCMB with the four state-of-the-art MB
learning algorithms, BAMB, CCMB, FBED, and PCMB on
the benchmark datasets with 500, 1000, and 5000 samples,
respectively. The experimental results are shown in Figs. 2–4
and Table II. Specifically, we traverse k_or from 0 to 1 and
k_and from 0 to 1 simultaneously, and we record the change
process of precision, recall, and F1 metrics as shown in
Figs. 2–4, respectively. For Figs. 2–4, [(a)–(d)], [(e)–(h)], and
[(i)–(l)] denote the experimental results with 500, 1000, and
5000 samples, respectively. In addition, in Table II, we also
present the time metric, and note that we record the time when
the F1 metric of DCMB reaches the maximum as the running
time of DCMB on a dataset.

From Figs. 2–4 and Table II, our observations are summa-
rized as follows.

1) The precision metric of PCMB is high on most datasets,
since PCMB uses the AND rule to correct the false
positive errors, and even if some true positives are
mistakenly deleted, the precision metric may not go
down. Similarly, the recall metric of CCMB is high
on most datasets, since CCMB adopts the OR rule to
correct the false negative errors, and even if some true
negatives are wrongly added to MB of the class variable,
the recall metric cannot decrease. However, the F1
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Fig. 2. Experimental results on benchmark datasets for validating the effectiveness of the dual correction strategy (precision metric). (a), (e), and (i) Alarm.
(b), (f), and (j) Alarm3. (c), (g), and (k) Child3. (d), (h), and (l) Insurance10.

Fig. 3. Experimental results on benchmark datasets for validating the effectiveness of the dual correction strategy (recall metric). (a), (e), and (i) Alarm.
(b), (f), and (j) Alarm3. (c), (g), and (k) Child3. (d), (h), and (l) Insurance10.

Fig. 4. Experimental results on benchmark datasets for validating the effectiveness of the dual correction strategy (F1 metric). (a), (e), and (i) Alarm.
(b), (f), and (j) Alarm3. (c), (g), and (k) Child3. (d), (h), and (l) Insurance10.

metrics of PCMB and CCMB are not very high on most
datasets, while DCMB always gets the highest F1 value
on all the datasets, since PCMB may delete the true MB
features and CCMB may select false MB features, which
reduce the recall of PCMB and precision of CCMB,
respectively.

2) With the increase in the value of k_and of DCMB, the
precision metric of DCMB first rises and then declines;

the recall metric of DCMB is positively correlated with
k_or. This is because removing true MB features from
MB(C) (the MB of the class variable) may reduce
the precision metric, while adding false MB features
to MB(C) cannot reduce the recall metric. Particu-
larly, when the sample size is small (such as 500 and
1000 samples), many CI tests become unreliable during
the MB identification process. In this case, if the value of
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k_and of DCMB is large, some true positives might be
deleted from MB(C), i.e., the precision metric declines,
as shown in Fig. 2(a)–(g).

3) When the sample size is small (such as 500 and
1000 samples), the value of k_or of DCMB is large and
the value of k_and of DCMB is small, the F1 metric of
DCMB can reach its peak. In contrast, when the sample
size is large (such as 5000 samples), the value of k_or
is small and the value of k_and is large, the F1 metric
of DCMB can obtain the highest value (we analyze this
phenomenon in detail in Section VI-B).

4) On all the datasets, the time cost of DCMB is always
much lower than that of CCMB and slightly higher than
that of PCMB, since their time cost mainly depends
on the number of calls made to the PC learning algo-
rithm (e.g. IdenCPC, Algorithm 2). Specifically, for the
selective removal/retrieval in the dual correction strategy,
the ORPC and ANDPC algorithms need to implement
the PC learning algorithm R(|or_rank| × k_or) times
(Lines 3 and 4 in Algorithm 3) and R(|CPC| × k_and)
times (Lines 3 and 4 in Algorithm 4), respectively.
Thus, DCMB needs to run the PC learning algorithm
[R(|CPC|×k_and)+R(|or_rank|×k_or)] times. In addi-
tion, PCMB and CCMB call the PC learning algo-
rithm |CPC| times [9] and (|F| − |CPC|) times [11],
respectively. Generally, |CPC| < (R(|CPC| × k_and)+
R(|or_rank| × k_or)) � (|F| − |CPC|) holds, i.e., the
number of times that DCMB needs to call the PC
learning algorithm is slightly higher than PCMB but
significantly less than CCMB.

b) Detailed experimental results: We present more exper-
imental results in Section S-2 of the Supplementary Material,
where DCMB is compared with more baselines on more
benchmark datasets.

c) The rationale of the dual correction strategy of DCMB:
In this section, we use the experimental results on the
benchmark datasets to demonstrate the rationale of the dual
correction strategy of DCMB.

Using the IdenCPC algorithm (see Algorithm 2), we con-
ducted experiments on the Alarm BN with 37 variables
including 1000 samples. Specifically, we take each variable as
the class variable C in turn to identify their PC by IdenCPC.
Then, we record the relevancy value between other variables
and C after calling IdenCPC. As shown in Fig. 5, we select
ten variables (denoted as ordinate) for demonstration and the
PC learning of those variables encountered mistakes. Since
the PC of each variable can be read off from the benchmark
BN, false positives and false negatives can be distinguished
from true positives and true negatives, respectively. The pink
circle, light blue circle, red cross, and blue cross denote true
positives, true negatives, false positives, and false negatives,
respectively.

For a CI test of Fi and C conditioning on S, when the rele-
vancy value calculated by the function dep() (see Algorithm 2)
is greater than 0, Fi⊥�⊥C|S holds; otherwise, Fi⊥⊥C|S. We can
see that the relevancy values of false positives are closer to
0+ than true positives. Similarly, the relevancy values of false
negatives are closer to 0− than true negatives.

Fig. 5. Example of relevancy value distribution when conducting experiments
on the Alarm benchmark BN dataset.

Thus, the ORPC algorithm (see Algorithm 3) selects the
variable with a greater relevancy value with C for correction,
and the ANDPC algorithm (see Algorithm 4) selects the
variable with a smaller relevancy value with C for correction.

d) Experimental results of the single correction strategy:
In Section S-3 in the Supplementary Material, we validate the
effectiveness of the single correction strategy using either the
AND rule or the OR rule, respectively.

B. Conjectures of the Value of k_or and k_and

In Phases II and III of the DCMB algorithm, it is critical to
specify suitable values of k_or and k_and for the ORPC and
ANDPC algorithms.

For the ORPC and ANDPC algorithms, we sort the features
in or_rank in descending order, while arranging the ones in
CPC in ascending order. Then these two algorithms selectively
choose features from or_rank and CPC, respectively, using
the parameters k_or and k_and. From the experimental results
in Section VI-A above, for the two parameters, we have the
following conjectures.

1) Conjecture 1: If the size of data samples is much smaller
than the dimensionality, the value of k_or bigger than 0.5 is
better, while the value of k_and smaller than 0.5 is better.

2) Conjecture 2: If the size of data samples is much bigger
than the dimensionality, the value of k_or smaller than 0.5 is
better, while the value of k_and bigger than 0.5 is better.

The rationale of Conjecture 1 is that when a dataset with
small-sized data samples and high dimensionality, many CI
tests may be unreliable, resulting in many true PC of C being
discarded. In this case, recovering discarded true positives is
more important than removing false positives. A large k_and
value will make more true PC be discarded using the AND

rule. Instead, we need to use a large k_or value to recover
more discarded PC.

For Conjecture 2, when a dataset has a large number of
data samples, most CI tests are reliable. In this case, many
false positives may be selected while few true PC of C are
discarded. Thus, at this time removing false positives is more
critical than recovering discarded true positives. Under this
situation, a large k_and value and a small k_or will be suitable.

In the experiments using real-world datasets (i.e.,
Section VI-C), these two conjectures are particularly beneficial
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TABLE III

DESCRIPTION OF REAL-WORLD DATASETS USED IN THE EXPERIMENTS

to the initialization of parameters k_or and k_and of the
SA-DCMB algorithm.

C. Real-World Datasets for Validating SA-DCMB

1) Datasets: We use 12 real-world datasets with a variety
of dimensions and sample sizes in our experiments, and
these datasets are from the UCI Machine Learning Reposi-
tory, KDD2008 Gene Expression Data and NIPS2003 feature
selection challenge datasets. Details of the datasets are shown
in Table III, and we can see that leuk, arcene, prostate,
lungcancer, ovarian, breastcancer, and dexter belong to
high-dimensional small sample datasets, and semeion belongs
to multi-class dataset.

2) Comparison Methods: We compare SA-DCMB with
16 other algorithms, including 12 causal feature selection
algorithms, IAMB [5], FBEDK [23], MMMB [12], PCMB [9],
HITON-MB [24], MBOR [26], IPCMB [10], STMB [27],
BAMB [29], CCMB [11], EEMB [30]3, and SRMB [28],
and four well-established feature selection algorithms, least
absolute shrinkage and selection operator (LASSO) [34], fast
correlation-based filter (FCBF) [35], quadratic programming
feature selection (QPFS) [36], and fuzzy similarity and entropy
(FSAE) [37].

3) Evaluation Metrics: We use the following metrics for the
feature selection evaluation.

1) Accuracy: We report the classification accuracy of the
NB classifier and the KNN classifier for SA-DCMB and
all the compared algorithms. Classification accuracy is
the percentage of the correctly classified test instances
in all test instances.

2) Compactness: Compactness is the size of the feature
subset selected by an algorithm.

3) T ime: We measure the efficiency of an algorithm using
the total runtime (in seconds) of this algorithm and
classifier.

4) Implementation Details:

1) The running details of all causal feature selection meth-
ods are consistent with those on benchmark BN datasets.

2) LASSO, FCBF, QPFS, and FSAE are implemented in
MATLAB. The information threshold of FCBF is set to

3The source codes of these algorithms are available at https://github.
com/kuiy/CausalFS

0.01. As for LASSO, QPFS, and FSAE, we choose the
top N features where N is the size of the MB obtained
by SA-DCMB on each dataset.

3) We apply tenfold cross-validation for all the datasets
and use two classifiers, i.e., NB and KNN to compute
their classification accuracies achieved using the selected
feature subsets. The value of k for the KNN classifier is
set to 10 and KNN uses the linear kernel.

4) Parameters r and t_min of SA-DCMB are set to
0.8 and 20, respectively. Based on two conjectures in
Section VI-B, given a dataset, we can get a rough
2-D empirical interval � = {(x, y)|x ∈ [a, b], y ∈
[c, d], 0 � a � b � 1, 0 � c � d � 1}. Obviously,
the range of � is diverse on different types of datasets.
Considering the randomness of SA, we randomly ini-
tialize three pairs of parameters (k_or, k_and) ∈ � to
implement SA-DCMB three times, and then record the
highest classification accuracy as the final result on a
dataset.

In Tables IV–IX, “-” denotes that an algorithm fails to gen-
erate any output with the corresponding dataset after running
more than one day and “*” denotes that no feature is selected
by an algorithm. In addition, the best results are highlighted
in bold face.

a) Comparison of SA-DCMB to causal feature selection
algorithms: In this section, we report the results obtained
by SA-DCMB and the other 12 state-of-the-art MB learn-
ing algorithms, including IAMB, FBEDK , MMMB, PCMB,
HITON-MB, MBOR, IPCMB, STMB, BAMB, CCMB,
EEMB, and SRMB.

1) Accuracy Metric: Table IV summarizes the classifica-
tion accuracy of SA-DCMB against IAMB, FBEDK ,
MMMB, PCMB, HITON-MB, MBOR, IPCMB, STMB,
BAMB, CCMB, EEMB, and SRMB using NB and KNN
classifiers. We can see that SA-DCMB is superior to
the other algorithms on most datasets using both NB
and KNN. In particular, using NB, the accuracy of
the SA-DCMB algorithm has reached 100% on the
leuk dataset; on the arcene and semeion datasets, the
classification accuracy of SA-DCMB is more than 10%
higher than that of the other algorithms. Furthermore,
using KNN, the classification accuracy of SA-DCMB
is approximately 10% higher than that of the other
algorithms on the arcene dataset. On the whole, the
algorithms using the OR rule have high classification
accuracy on high-dimensional and small-sized datasets
(such as leuk, arcene, prostate, lungcancer, ovarian,
breastcancer, and dexter), since many true MB features
are retrieved; when the sample size of the dataset is
sufficient (such as sonar, spambase, and semeion), the
algorithms using the AND rule have better classification
accuracy due to some false MB features being removed.
Since SA-DCMB uses the dual correction strategy, it can
delete the false MB features and recover the true MB
features simultaneously, and this strategy can also avoid
removing the true MB features or recalling the false
MB features. Thus, SA-DCMB performs well on all
the datasets. Note that the semeion dataset is dense
and multi-class, so a large number of true MB features
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TABLE IV

ACCURACY (IN %) OF SA-DCMB AND OTHER CAUSAL FEATURE SELECTION ALGORITHMS

TABLE V

COMPACTNESS OF SA-DCMB AND OTHER CAUSAL FEATURE SELECTION ALGORITHMS

will be discarded [20] on this dataset, which renders
that all the algorithms except SA-DCMB have poor
performance. As for the latest two baselines, EEMB [30]
and SRMB [28], although they have achieved excellent
performance, they are still inferior to our method on the
whole. EEMB optimizes the search strategy of BAMB,
so that the classification accuracy of EEMB is slightly
better than BAMB in general, and SRMB achieves
a comparable performance against CCMB, since the
feature subsets selected by them are similar across all
the datasets.

2) Compactness Metric: From Table V, we can observe that
IPCMB and STMB do not select any features on the
lungcancer dataset. This is because IPCMB and STMB
use the same PC learning algorithm, RecognizePC [38],
for finding the PC set of C , and RecognizePC adopts
the backward strategy to remove features that are inde-
pendent of C from the candidate PC set of C . When
the CI tests are unreliable, the backward strategy may
result in an empty candidate PC set, whereas the forward
strategy aims to constantly add features that depend on
C to the candidate PC set of C , which can avoid the
situation of an empty candidate PC set for C . As the

lungcancer dataset has high dimensionality and contains
a small number of samples, CI tests conducted with the
dataset can be unreliable [20]. This leads to the results
that all true PC features have been discarded, and hence
the PC set of C becomes empty. For the same reason,
all spouses of C have been discarded. Nevertheless,
on many datasets, the STMB algorithm can select more
features than other algorithms since it identifies the
spouses of C from F \ PC(C) instead of the PC set
of each feature in PC(C), and this adds many false
spouses to MB(C). Specifically, on the leuk, arcene,
prostate, ovarian, breastcancer, and semeion datasets,
and STMB selects more features and achieves lower
accuracy than the other methods. However, SA-DCMB
always keeps selecting fewer features to achieve higher
classification accuracy on all the datasets. Specifically,
on most datasets, SA-DCMB selects fewer features than
the algorithms using the OR rule and more features than
the algorithms using the AND rule or without any rules.
This is because an algorithm using the OR rule may add
the false MB features to the MB of C on most datasets.
On all the datasets, IAMB and FBED obtain similar
feature subsets and the size of their subsets is small since
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TABLE VI

TIME (IN SECONDS) OF SA-DCMB AND OTHER CAUSAL FEATURE SELECTION ALGORITHMS

they suffer from the data inefficiency problem (i.e., many
key features are independent of C conditioning on the
MB feature subset currently selected). In addition, the
subset of features selected by SRMB is also similar to
that selected by CCMB.

3) Time Metric: In Table VI, we find that the methods
using either rule, especially the OR rule, are compu-
tationally expensive. For example, on most datasets,
PCMB, MBOR, IPCMB, CCMB, and SRMB are slower
than the other methods without using either rule. Since
SA-DCMB selectively chooses features from or_rank
and CPC to correct the false positive errors and the
false negative errors, it may be more efficient than
other algorithms using two rules. Specifically, on the
breastcancer and semeion datasets, SA-DCMB only
costs hundreds of seconds, while CCMB and SRMB
spend more than one day; on the spambase and semeion
datasets, SA-DCMB is significantly faster than algo-
rithms using two rules. Since EAMB improves the
search strategy of BAMB, EEMB is significantly faster
than BAMB on some high-dimensional datasets (such
as lungcancer and breastcancer).

b) Comparison of SA-DCMB with non-causal feature
selection algorithms: In this section, we report and discuss
the experimental results of the SA-DCMB algorithm com-
pared with the four well-established feature selection methods,
LASSO, FCBF, QPFS, and FSAE.

1) Accuracy Metric: From Table VII, it can be seen that the
SA-DCMB algorithm has higher accuracy than the other
three algorithms using both NB and KNN classifiers on
most datasets. Specifically, SA-DCMB is never worse
than LASSO in classification accuracy using both NB
and KNN on each dataset. On the datasets with a large
number of features and a small number of samples
(such as arcene, leuk, prostate, lungcancer, ovarian,
breastcancer, and dexter), the advantage of SA-DCMB
in classification accuracy is more obvious. In particular,
on the arcene dataset, the classification accuracy of
SA-DCMB is more than 20% higher than that of the
other algorithms using KNN.

TABLE VII

ACCURACY (IN %) OF SA-DCMB AND NON-CAUSAL
FEATURE SELECTION ALGORITHMS

TABLE VIII

COMPACTNESS OF SA-DCMB AND NON-CAUSAL
FEATURE SELECTION ALGORITHMS

2) Compactness Metric: Table VIII summarizes the number
of selected features of SA-DCMB and other non-causal
feature selection algorithms using the NB and KNN
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TABLE IX

TIME (IN SECONDS) OF SA-DCMB AND NON-CAUSAL
FEATURE SELECTION ALGORITHMS

classifiers. Although LASSO, QPFS, and FSAE choose
the same number of selected features with SA-DCMB
in each dataset, the prediction accuracy of SA-DCMB
is better than LASSO, QPFS, and FSAE on almost
all the datasets, which means that SA-DCMB chooses
more correct MB features. Furthermore, SA-DCMB
selects fewer features and achieves higher accuracy
than FCBF on high-dimensional and small-sized datasets
(such as leuk, arcene, prostate, lungcancer, ovarian,
breastcancer, and dexter), since the redundant features
selected by FCBF lead to the overfitting of the predictive
model on those datasets.

3) Time Metric: In Table IX, SA-DCMB is much faster
than QPFS on most datasets. Especially, SA-DCMB
is 25.3 times faster than QPFS on the dexter dataset,
and 7.6 times faster than QPFS on the arcene dataset.
Moreover, on the breastcancer dataset, QPFS runs for
more than one day, while SA-DCMB runs for less than
1000 s. Since FCBF uses pairwise mutual information to
calculate the relevancy between features and C , FCBF
is significantly more efficient than SA-DCMB.

c) Statistical tests for verifying whether SA-DCMB is
significantly better than other methods: In Section S-4 in
the Supplementary Material, we adopt the Friedman test and
Nemenyi test [39] to further compare the performance of
SA-DCMB with that of its rivals.

VII. CONCLUSION

This article focuses on the two types of errors encountered
by the existing causal feature selection methods: false positives
(i.e., selecting false MB features) and false negatives (i.e.,
discarding true MB features). These two types of errors seri-
ously deteriorate the performance of those existing methods.
To tackle this problem, we propose a DCMB algorithm, which
can efficiently and effectively correct the two types of errors
simultaneously. Specifically, DCMB applies the AND rule to
selectively delete false positives from the MB features cur-
rently selected, and then uses the OR rule to selectively recover
false negatives from the features currently discarded. However,

we cannot determine in advance how many features to select
for correction to yield the best results. Thus, we further
design the SA-DCMB algorithm to automatically search for
the optimal number of selected features. Using benchmark
BN datasets, our experimental results have validated the
effectiveness of DCMB and demonstrated the rationale of the
dual correction strategy of DCMB. In addition, SA-DCMB
is extensively evaluated and compared with the state-of-the-
art causal feature selection algorithms and well-established
traditional feature selection methods on real-world datasets,
and the results validate the effectiveness and superiority of
SA-DCMB for feature selection.

In the future, we will further explore the following
research issues in causal inference and causal feature selection.
One direction is to extend DCMB for scalable learning of
large-scale causal structures. The second direction is to use
DCMB to tackle the problem of causal feature selection with
multiple data sources, and the third direction is to extend
DCMB to deal with a dataset with latent variables.
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