Support Vector Machines for Uplift Modeling

Łukasz Zaniewicz² Szymon Jaroszewicz^{1,2}

¹National Institute of Telecommunications Warsaw, Poland

> ²Institute of Computer Science Polish Academy of Sciences Warsaw, Poland

What is uplift modeling?

From workshop's description:

Traditionally, causal relationships are identified based on controlled experiments. [...] there has been an increasing interest in discovering causal relationships from observational data only.

What is uplift modeling?

From workshop's description:

Traditionally, causal relationships are identified based on controlled experiments. [...] there has been an increasing interest in discovering causal relationships from observational data only.

- Suppose we do have data from a controlled experiment
- Question: what can Machine Learning do for us?
- Relatively little interest in the ML community

What is uplift modeling?

Uplift modeling

- Given two training datasets:
 - the treatment dataset individuals on which an action was taken
 - the control dataset individuals on which no action was taken used as background
- Build a model which predicts the causal influence of the action on a given individual

Uplift modeling

Notation:

- P^T probabilities in the treatment group
- \bullet P^C probabilities in the control group

Traditional classifiers predict the conditional probability

$$P^T(Y \mid X_1, \ldots, X_m)$$

Uplift models predict change in behaviour resulting from the action

$$P^{T}(Y \mid X_{1},...,X_{m}) - P^{C}(Y \mid X_{1},...,X_{m})$$

Why uplift modeling?

A typical marketing campaign

Why uplift modeling?

A typical marketing campaign

- But this is not what we need!
- We want people who bought because of the campaign
- Not people who bought after the campaign

A typical marketing campaign

We can divide potential customers into four groups

- Responded because of the action (the people we want)
- Responded, but would have responded anyway (unnecessary costs)
- Did not respond and the action had no impact (unnecessary costs)
- Did not respond because the action had a (negative impact)

Marketing campaign (uplift modeling approach)

Applications in medicine

- A typical medical trial:
 - treatment group: gets the treatment
 - control group: gets placebo (or another treatment)
 - do a statistical test to show that the treatment is better than placebo
- With uplift modeling we can find out for whom the treatment works best
- Personalized medicine

Main difficulty of uplift modeling

Rubin's causal inference framework

The fundamental problem of causal inference

- Our knowledge is always incomplete
- For each training case we know either
 - what happened after the treatment, or
 - what happened if no treatment was given
- Never both!

• This makes designing uplift algorithms challenging

The two model approach

An obvious approach to uplift modeling:

- **1** Build a classifier M^T modeling $P^T(Y|\mathbf{X})$ on the treatment sample
- ② Build a classifier M^C modeling $P^C(Y|X)$ on the control sample
- The uplift model subtracts probabilities predicted by both classifiers

$$M^{U}(Y|\mathbf{X}) = M^{T}(Y|\mathbf{X}) - M^{C}(Y|\mathbf{X})$$

Two model approach

Advantages:

- Works with existing classification models
- Good probability predictions ⇒ good uplift prediction

Disadvantages:

- Differences between class probabilities can follow a different pattern than the probabilities themselves
 - each classifier focuses on changes in class probabilities but ignores the weaker 'uplift signal'
 - algorithms designed to focus directly on uplift can give better results

- Support Vector Machines (SVMs) are a popular Machine Learning algorithm
- Here we adapt them to the uplift modeling problem

- Recall that the outcome of an action can be
 - positive
 - negative
 - neutral

- Recall that the outcome of an action can be
 - positive
 - negative
 - neutral

Main idea

Use two parallel hyperplanes dividing the sample space into three areas:

- positive (+1)
- neutral (0)
- negative (-1)

- How do we train Uplift SVMs?
- Classical SVMs:

need to know if a case is classified correctly

- Fundamental problem of causal inference
 - \Rightarrow We never know if a point was classified correctly!
- The algorithm must use only the information available

- Four types of points: T_+ , T_- , C_+ , C_-
- Positive area (+1):
 - T_- , C_+ definitely misclassified
 - \bullet T_+ , C_- may be correct, at worst neutral
- Negative area (-1):
 - T₊, C₋ definitely misclassified
 - T_- , C_+ may be correct, at worst neutral
- Neutral area (0):
 - all predictions may be correct or incorrect

Uplift Support Vector Machines – problem formulation

- Penalize points separately for being on the wrong side of each hyperplane
- Points in the neutral area are penalized for crossing one hyperplane
 - this prevents all points from being classified as neutral
- Points which are definitely misclassified are penalized for crossing two hyperplanes
 - such points should be avoided, thus the higher penalty
- Other points are not penalized

Uplift Support Vector Machines – problem formulation

Optimization task - primal form

$$\begin{split} \min_{\mathbf{w},b_{1},b_{2} \in \mathbb{R}^{m+2}} \frac{1}{2} \langle \mathbf{w}, \mathbf{w} \rangle + C_{1} \sum_{\mathbf{D}_{+}^{T} \cup \mathbf{D}_{-}^{C}} \xi_{i,1} + C_{2} \sum_{\mathbf{D}_{-}^{T} \cup \mathbf{D}_{+}^{C}} \xi_{i,1} \\ + C_{2} \sum_{\mathbf{D}_{+}^{T} \cup \mathbf{D}_{-}^{C}} \xi_{i,2} + C_{1} \sum_{\mathbf{D}_{-}^{T} \cup \mathbf{D}_{+}^{C}} \xi_{i,2}, \end{split}$$

subject to:

$$\langle \mathbf{w}, \mathbf{x}_i \rangle + b_1 \leq -1 + \xi_{i,1}, \text{ for } (\mathbf{x}_i, y_i) \in \mathbf{D}_+^T \cup \mathbf{D}_-^C,$$

 $\langle \mathbf{w}, \mathbf{x}_i \rangle + b_1 \geq +1 - \xi_{i,1}, \text{ for } (\mathbf{x}_i, y_i) \in \mathbf{D}_-^T \cup \mathbf{D}_+^C,$
 $\langle \mathbf{w}, \mathbf{x}_i \rangle + b_2 \leq -1 + \xi_{i,2}, \text{ for } (\mathbf{x}_i, y_i) \in \mathbf{D}_+^T \cup \mathbf{D}_-^C,$
 $\langle \mathbf{w}, \mathbf{x}_i \rangle + b_2 \geq +1 - \xi_{i,2}, \text{ for } (\mathbf{x}_i, y_i) \in \mathbf{D}_-^T \cup \mathbf{D}_+^C,$
 $\xi_{i,j} \geq 0, \text{ dla } i = 1, \dots, n, j \in \{1, 2\},$

Optimization task – primal form

We have two penalty parameters:

- C_1 penalty coefficient for being on the wrong side of one hyperplane
- C₂ coefficient of additional penalty for crossing also the second hyperplane
- ullet All points classified as neutral are penalized with $\mathcal{C}_1 \xi$
- All definitely misclassified points are penalized with $C_1 \xi$ and $C_2 \xi$

How do C_1 and C_2 influence the model?

Influence of penalty coefficients C_1 and C_2 on the model

Lemma

For a well defined model $C_2 \ge C_1$. Otherwise the order of the hyperplanes would be reversed.

Lemma

If $C_2 = C_1$ then no points are classified as neutral.

Lemma

For sufficiently large ratio C_2/C_1 no point is penalized for crossing both hyperplanes. (Almost all points are classified as neutral.)

Influence of penalty coefficients C_1 and C_2 on the model

- The C₁ coefficient plays the role of the penalty in classical SVMs
- The ratio C_2/C_1 decides on the proportion of cases classified as neutral

Example: the tamoxifen drug trial data

Example: the tamoxifen drug trial data

Evaluating uplift models

Evaluating uplift models

- We have two separate test sets:
 - a treatment test set
 - a control test set

Problem

To assess the gain for a customer we need to know both treatment and control responses, but only one of them is known

Solution

Assess gains for groups of customers

Evaluating uplift classifiers

For example:

Gain for the 10% highest scoring customers =

% of successes for top 10% treated customers

- % of successes for top 10% control customers

Uplift curves

- Uplift curves are a more convenient tool:
 - Draw separate lift curves on treatment and control data (TPR on the Y axis is replaced with percentage of successes in the whole population)
 - Uplift curve =
 lift curve on treatment data lift curve on control data
 - Interpretation: net gain in success rate if a given percentage of the population is treated
- We can of course compute the Area Under the Uplift Curve (AUUC)

An uplift curve for UCI breast cancer data (artificially split into T/C groups)

Experimental evaluation

- Used 5 datasets with real control groups
- Used additional 13 dataset artificially split into T/C groups
- Uplift SVMs compared favorably with other models
 - better than double SVM model on 13 out of 18 datasets
 - better than uplift decision trees on 12 out of 18 datasets

Thank you!