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Traditional to Hybrid Approaches
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Hybrid Approaches:  
 

•  PC-based DAG Search – Dash and Drudzel, UAI 99 
•  Min-max Hill Climbing – Tsamardinos et al., JMLR 06 
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Joint Inference for Structure Discovery
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Joint Inference Approaches: 
 

•  Linear Programming Relaxations, Jaakkola et al., AISTATS 10 
•  MAX-SAT, Hyttinen et al., UAI 13 

Joint Inference of Variables: 
  

Causal Edge Cij 
Adjacency Edges Aij 
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Probabilistic Joint Model of Causal Structure
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Extending joint approaches: 
probabilistic model over causal structures



Probabilistic Joint Model of Causal Structure
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Probabilistic Joint Model of Causal Structure
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Combining logical and structural constraints and 
probabilistic reasoning
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Probabilistic Soft Logic (PSL)
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Bach et. al (2015). “Hinge-loss Markov Random Fields and Probabilistic Soft 
Logic.” arXiv. 
Open source software: https://psl.umiacs.umd.edu 

5.0: Causes(A, B) ^ Causes(B, C) ^ Linked(A,C) à 
Causes(A, C)  

Weighted rules 

•  Logic-like syntax with probabilistic, soft constraints 
• Describes an undirected graphical model
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Bach et. al (2015), arXiv 
Open source software: https://psl.umiacs.umd.edu 
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Weighted rules Predicates are 
continuous  
random 
variables! 
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Probabilistic Soft Logic (PSL)
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Bach et. al (2015), arXiv 
Open source software: https://psl.umiacs.umd.edu 

5.0: Causes(A, B) ^ Causes(B, C) ^ Linked(A,C) à 
Causes(A, C)  

Weighted rules Predicates are 
continuous  
random 
variables! 

Relaxations of Logical Operators 

•  Logic-like syntax with probabilistic, soft constraints 
• Describes an undirected graphical model



•  Rules instantiated with values from real network 
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5.0: Causes(A, B) ^ Causes(B, C) ^ Linked(A,C) à 
Causes(A, C)  

Probabilistic Soft Logic (PSL)
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•  Rules instantiated with variables from real network 
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Probabilistic Soft Logic (PSL)

5.0: Causes(X1, X2) ^ Causes(X2, X4) ^ Linked(X1,X4) à 
Causes(X1, X4)  

C12 C14

C24

A14



Bach et al. NIPS 12, Bach et al. UAI 13 19Bach et al. (2015), arXiv 

5.0: Causes(X1, X2) ^ Causes(X2, X4) ^ Linked(X1,X4) à 
Causes(X1, X4)  

Convex relaxation of implication 
and distance to rule satisfaction 

Soft Logic Relaxation

Linear Function



Hinge-loss Markov Random Fields
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Feature functions are 
hinge-loss functions 

Hinge-loss Markov random fields
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5.0: Causes(X1, X2) ^ Causes(X2, X4) ^ Linked(X1,X4) à 
Causes(X1, X4)  

Hinge-loss Markov random fields



Bach et al. NIPS 12, Bach et al. UAI 13 24Bach et al. (2015), arXiv 

p(Y|X) =

1

Z(w,X)

exp

2

4�
mX

j=1

wj

h
max {�j(Y,X), 0}]{1,2}

i
3

5

Conditional 
random field  

MAP Inference Intuition: minimize distances to satisfaction! 

Hinge-loss Markov random fields



Fast Inference in Hinge-loss MRFs
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Convex, continuous inference 
objective… 
 
Convex optimization!

•  Solved using efficient, message-passing algorithm 
called Alternating Direction Method of Multipliers 

 
•  Algorithms for weight learning and reasoning with 

latent variables 

Bach et al. (2015), arXiv 
Open source software: https://psl.umiacs.umd.edu 
 



Encoding PC Algorithm with PSL

•  PC Algorithm:
•  No latent variables and confounders
•  Constraint-based approach

•  PC with PSL:
•  Use all independence tests
•  All rule weights set to 1.0
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PSL Causal Structure Discovery
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Multiple independence tests 
with various separation sets 

No early pruning! 



PSL Causal Structure Discovery
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Colliders in triples using d-separation  



PSL Causal Structure Discovery
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PSL Causal Structure Discovery
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PSL Causal Structure Discovery
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Evaluation Dataset
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Synthetic Causal DAG Dataset – 2000 examples

Causality Challenge: http://www.causality.inf.ethz.ch/data/LUCAS.html



Evaluation

• Experimental setup:
• G2 Independence Tests for both PC and PSL
• Max separation set of size 3 

• Evaluation details
• Run PC and PC-PSL algorithms and compare to 

causal ground truth
• For PSL, round with threshold selected by cross-

validation on causal edges
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Causal Edge Prediction Results
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Accuracy F1 Score

PC Algorithm 0.91 ± 0.06 0.53 ± 0.26

PC-PSL 0.94 ± 0.02 0.58 ± 0.19

Average causal edge prediction accuracy and F1 score 
on 3-fold cross validation 



Summary and Future Directions
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•  Joint inference of causal structure using probabilistic, 
soft constraints

•  Incorporate prior and domain knowledge for causal 
edges from text-mining, ontological constraints, and 
variable selection methods

•  Extensive, cross-validation experiments on multiple 
datasets


