

Foundations of Causal Discovery

Frederick Eberhardt

KDD Causality Workshop 2016

data sample

assumptions, e.g.

- causal Markov
- causal faithfulness
- functional form
- etc.

data sample

inference algorithm

assumptions, e.g.

- causal Markov
- causal faithfulness
- functional form
- etc.

equivalence classes

data sample

inference algorithm

samples

equivalence classes

model specifications

	W	x	y	\overline{z}
w	0	0	?	a
x	0	0	0	0
y	0	0	0	0
z	b	?	?	0
direct edges				

data sample

constraints

equivalence classes

 $\begin{array}{c} x \perp y \,|\, \{z,w\} \\ \text{probabilistic} \\ \text{independence} \end{array}$

truth (unknown) ${\mathcal X}$ \mathcal{U} data sample w ${\mathcal X}$ \boldsymbol{z} \boldsymbol{y} samples

statistical

inference

constraints graphical connection $x \perp y \mid \{z, w\}$

conditions • Markov • faithfulness

 $x \perp y \mid \{z, w\}$ probabilistic independence

truth (unknown) d-separation ${\mathcal X}$ wdata sample w ${\mathcal X}$ \boldsymbol{z} \boldsymbol{y} inference samples

statistical

constraints graphical connection $x \perp y \mid \{z, w\}$

> conditions • Markov • faithfulness

 $x \perp y \mid \{z, w\}$ probabilistic independence

graphical connection $x \perp y \mid \{z, w\}$ conditions Markov faithfulness $x \perp y \mid \{z, w\}$

constraints

probabilistic independence

Causal Markov

x is independent of its non-descendents given its parents in the causal graph

Causal Markov

x is independent of its non-descendents given its parents in the causal graph

Violations of Causal Markov

- quantum mechanics
- [unmeasured common causes]
- [mixtures of populations]
- [variables are not distinct, or too coarsely grained]

Causal Faithfulness

If x is independent of y given C in the probability distribution then x is d-separated from y given C in the graph.

Causal Faithfulness

If x is independent of y given C in the probability distribution then x is d-separated from y given C in the graph.

Violations of Causal Faithfulness

- canceling pathways
- matching pennies cases
- [small sample sizes and near violations of faithfulness]

• causal Markov: permits inference from probabilistic dependence to causal connection

- causal Markov: permits inference from probabilistic dependence to causal connection
- causal faithfulness: permits inference from probabilistic independence to causal separation

- causal Markov: permits inference from probabilistic dependence to causal connection
- causal faithfulness: permits inference from probabilistic independence to causal separation
- causal sufficiency: there are no unmeasured common causes

- causal Markov: permits inference from probabilistic dependence to causal connection
- causal faithfulness: permits inference from probabilistic independence to causal separation
- causal sufficiency: there are no unmeasured common causes
- acylicity: no variable is an (indirect) cause of itself

- causal Markov: permits inference from probabilistic dependence to causal connection
- causal faithfulness: permits inference from probabilistic independence to causal separation
- causal sufficiency: there are no unmeasured common causes
- acylicity: no variable is an (indirect) cause of itself

All graphs in an equivalence class have:

- same adjacencies ("skeleton")
- same unshielded colliders

[Verma & Pearl 1990, Frydenberg 1990]

- causal Markov: permits inference from probabilistic dependence to causal connection
- causal faithfulness: permits inference from probabilistic independence to causal separation
- causal sufficiency: there are no unmeasured common causes
- acylicity: no variable is an (indirect) cause of itself

- same adjacencies ("skeleton")
- same unshielded colliders

[Verma & Pearl 1990, Frydenberg 1990]

assumptions • Markov

- faithfulness
- acyclicity
- causal sufficiency

- same adjacencies ("skeleton")
- same unshielded colliders

- allow for unmeasured common causes
- allow for cycles
- weaken faithfulness

- allow for unmeasured common causes
- allow for cycles
- weaken faithfulness
- Exclude the limitations (and reduce the equivalence class)
 - restrict to non-Gaussian error distributions
 - restrict to non-linear causal relations
 - restrict to specific discrete parameterizations

- allow for unmeasured common causes
- allow for cycles
- weaken faithfulness
- Exclude the limitations (and reduce the equivalence class)
 - restrict to non-Gaussian error distributions
 - restrict to non-linear causal relations
 - restrict to specific discrete parameterizations
- Include more general data collection set-ups (and see how assumptions can be adjusted and what equivalence class results)
 - experimental evidence
 - multiple (overlapping) data sets
 - relational data

- allow for unmeasured common causes
- allow for cycles
- weaken faithfulness \prec Zhalama talk
- Exclude the limitations (and reduce the equivalence class)
 - restrict to non-Gaussian error distributions Tank talk
 - restrict to non-linear causal relations
 - restrict to specific discrete parameterizations
- Include more general data collection set-ups (and see how assumptions can be adjusted and what equivalence class results)
 - experimental evidence
 - multiple (overlapping) data sets
 - relational data

Limitations

For linear Gaussian and for multinomial causal relations, an algorithm that identifies the Markov equivalence class of the true model is complete. (Pearl & Geiger 1988, Meek 1995)

Linear non-Gaussian method (LiNGaM)

• Linear causal relations:

$$x_i = \sum_{x_j \in \mathbf{Pa}(x_i)} \beta_{ij} x_j + \epsilon_j$$

- Assumptions:
 - causal Markov
 - causal sufficiency
 - acyclicity

[Shimizu et al., 2006]

Linear non-Gaussian method (LiNGaM)

• Linear causal relations:

$$x_i = \sum_{x_j \in \mathbf{Pa}(x_i)} \beta_{ij} x_j + \epsilon_j$$

- Assumptions:
 - causal Markov
 - causal sufficiency
 - acyclicity

If $\epsilon_j \sim \text{non-Gaussian}$, then the true graph is uniquely identifiable from the joint distribution.

[Shimizu et al., 2006]

True model

$$y = \beta x + \epsilon_y$$

True model

$$y = \beta x + \epsilon_y$$

 $x \perp \epsilon_y$

True model

$$y = \beta x + \epsilon_y$$

Backwards model

$$x = \theta y + \tilde{\epsilon}_x$$

 ϵ_y

y

 ϵ_x

(x)

 $x \perp \epsilon_y$

True model

$$y = \beta x + \epsilon_y$$

Backwards model

$$x = \theta y + \tilde{\epsilon}_x$$

 $x \perp \epsilon_y$

 $y \perp \tilde{\epsilon}_x$

True model

$$y = \beta x + \epsilon_y$$

Backwards model

$$x = \theta y + \tilde{\epsilon}_x$$

 ϵ_y

y

 ϵ_x

(x)

 $x \perp \epsilon_y$

 $y \perp \tilde{\epsilon}_x$

$$\widetilde{\epsilon}_x = x - \theta y
= x - \theta (\beta x + \epsilon_y)
= (1 - \theta \beta) x - \theta \epsilon_y$$

True model

 $x \perp \epsilon_y$

Backwards model

$$x = \theta y + \tilde{\epsilon}_x$$

 $y \perp \tilde{\epsilon}_x$

$$\tilde{\epsilon}_x = x - \theta y \\
= x - \theta (\beta x + \epsilon_y) \\
= (1 - \theta \beta) x - \theta \epsilon_y$$

Why Normals are unusual

Why Normals are unusual

Forwards model $y = \beta x + \epsilon_y$ $\downarrow^x \downarrow^y$ For backwards model $\tilde{\epsilon}_x = (1 - \theta \beta)x - \theta \epsilon_y$ $\stackrel{\forall x \downarrow^y}{x \downarrow^y}$

Theorem 1 (Darmois-Skitovich) Let X_1, \ldots, X_n be independent, non-degenerate random variables. If for two linear combinations

$$l_1 = a_1 X_1 + \ldots + a_n X_n, \quad a_i \neq 0$$

 $l_2 = b_1 X_1 + \ldots + b_n X_n, \quad b_i \neq 0$

are independent, then each X_i is normally distributed.

algorithm/ assumption	PC / GES	FCI	CCD
Markov	\checkmark	\checkmark	<
faithfulness	\checkmark	\checkmark	√
causal sufficiency	\checkmark	×	√
acyclicity	\checkmark	\checkmark	×
parametric assumption	×	×	×
output	Markov equivalence	PAG	PAG

algorithm/ assumption	PC / GES	FCI	CCD	LiNGaM	lvLiNGaM	cyclic LiNGaM
Markov	\checkmark	\checkmark	√	\checkmark	\checkmark	\checkmark
faithfulness	\checkmark	\checkmark	√	×	\checkmark	~
causal sufficiency	\checkmark	×	✓	\checkmark	×	\checkmark
acyclicity	\checkmark	\checkmark	×	\checkmark	\checkmark	×
parametric assumption	×	×	×	linear non- Gaussian	linear non- Gaussian	linear non- Gaussian
output	Markov equivalence	PAG	PAG	unique DAG	set of DAGs	set of graphs

Limitations

For linear Gaussian and for multinomial causal relations, an algorithm that identifies the Markov equivalence class of the true model is complete. (Pearl & Geiger 1988, Meek 1995)

Limitations

For linear Gaussian and for multinomial causal relations, an algorithm that identifies the Markov equivalence class of the true model is complete. (Pearl & Geiger 1988, Meek 1995)

Bivariate Linear Gaussian case

True model

$$\begin{aligned} x &= \epsilon_x \\ y &= x + \epsilon_y \end{aligned}$$

 $\epsilon_x, \epsilon_y \sim \text{indep. Gaussian}$

Bivariate Linear Gaussian case

True model

 $\epsilon_x, \epsilon_y \sim \text{indep. Gaussian}$

$$x_j = f_j(pa(x_j)) + \epsilon_j$$

$$x_j = f_j(pa(x_j)) + \epsilon_j$$

• If $f_j(.)$ is linear, then non-Gaussian errors are required for identifiability

$$x_j = f_j(pa(x_j)) + \epsilon_j$$

• If $f_j(.)$ is linear, then non-Gaussian errors are required for identifiability

 \blacktriangleright What if the errors are Gaussian, but $f_j(.)$ is non-linear?

$$x_j = f_j(pa(x_j)) + \epsilon_j$$

• If $f_j(.)$ is linear, then non-Gaussian errors are required for identifiability

- What if the errors are Gaussian, but $f_j(.)$ is non-linear?
- More generally, under what circumstances is the causal structure represented by this class of models identifiable?

(graphics from Hoyer et al. 2009)

(graphics from Hoyer et al. 2009)

Hoyer Condition (HC): Technical condition on the relation between the function, the noise distribution and the parent distribution that, if satisfied, permits a backward model.

• If the error terms are **Gaussian**, then the **only** functional form that **satisfies** HC is **linearity**, otherwise the model is **identifiable**.

- If the error terms are **Gaussian**, then the **only** functional form that **satisfies** HC is **linearity**, otherwise the model is **identifiable**.
- If the errors are non-Gaussian, then there are (rather contrived) functions that satisfy HC, but in general identifiability is guaranteed.

- If the error terms are **Gaussian**, then the **only** functional form that **satisfies** HC is **linearity**, otherwise the model is **identifiable**.
- If the errors are non-Gaussian, then there are (rather contrived) functions that satisfy HC, but in general identifiability is guaranteed.
 - this generalizes to multiple variables (assuming minimality*)!

- If the error terms are **Gaussian**, then the **only** functional form that **satisfies** HC is **linearity**, otherwise the model is **identifiable**.
- If the errors are non-Gaussian, then there are (rather contrived) functions that satisfy HC, but in general identifiability is guaranteed.
 - this generalizes to multiple variables (assuming minimality*)!
 - extension to discrete additive noise models

- If the error terms are **Gaussian**, then the **only** functional form that **satisfies** HC is **linearity**, otherwise the model is **identifiable**.
- If the errors are non-Gaussian, then there are (rather contrived) functions that satisfy HC, but in general identifiability is guaranteed.
 - this generalizes to multiple variables (assuming minimality*)!
 - extension to discrete additive noise models
- If the function is linear, but the error terms non-Gaussian, then one can't fit a linear backwards model (Lingam), but there are cases where one can fit a non-linear backwards model
| algorithm/
assumptions | PC / GES | FCI | CCD | LiNGaM | lvLiNGaM | cyclic
LiNGaM |
|---------------------------|-----------------------|--------------|-----|-------------------------|-------------------------|-------------------------|
| Markov | \checkmark | \checkmark | ✓ | \checkmark | \checkmark | \checkmark |
| faithfulness | \checkmark | \checkmark | ✓ | × | \checkmark | ~ |
| causal
sufficiency | \checkmark | × | ✓ | √ | × | \checkmark |
| acyclicity | \checkmark | \checkmark | × | \checkmark | \checkmark | × |
| parametric
assumption | × | × | × | linear non-
Gaussian | linear non-
Gaussian | linear non-
Gaussian |
| output | Markov
equivalence | PAG | PAG | unique
DAG | set of
DAGs | set of
graphs |

algorithm/ assumptions	PC / GES	FCI	CCD	LiNGaM	lvLiNGaM	cyclic LiNGaM	non-linear additive noise
Markov	\checkmark	\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark
faithfulness	\checkmark	\checkmark	√	×	\checkmark	~	minimality
causal sufficiency	√	×	√	√	×	✓	✓
acyclicity	\checkmark	\checkmark	×	\checkmark	\checkmark	×	\checkmark
parametric assumption	×	×	×	linear non- Gaussian	linear non- Gaussian	linear non- Gaussian	non-linear additive noise
output	Markov equivalence	PAG	PAG	unique DAG	set of DAGs	set of graphs	unique DAG

• how to integrate data from experiments?

• how to integrate data from experiments?

• how to integrate data from experiments?

• how to integrate data from experiments?

• how to include background knowledge?

• how to integrate data from experiments?

• how to include background knowledge?

• how to integrate data from experiments?

• how to include background knowledge?

tier orderings

• how to integrate data from experiments?

• how to include background knowledge?

tier orderings

• how to integrate data from experiments?

• how to include background knowledge?

tier orderings

• how to integrate data from experiments?

• how to include background knowledge?

tier orderings

"priors"

• how to integrate data from experiments?

• how to include background knowledge?

tier orderings

"priors"

• how to integrate data from experiments?

• how to include background knowledge?

tier orderings

High-Level

High-Level

data sample

High-Level

• Formulate the independence constraints in propositional logic

- Formulate the independence constraints in propositional logic
- Encode the constraints into one formula.

$$x \perp y \iff \neg A \land \neg B \dots$$

 $A = `x \to y \text{ is present'}$

$$\neg A \land \neg B \land \neg (C \land D) \land \neg \dots$$

- Formulate the independence constraints in propositional logic
- Encode the constraints into one formula.
- Find satisfying assignments using a SAT-solver

$$x \perp y \iff \neg A \land \neg B \dots$$

 $A = `x \to y \text{ is present'}$

$$\neg A \land \neg B \land \neg (C \land D) \land \neg \dots$$

. . .

- Formulate the independence constraints in propositional logic
- Encode the constraints into one formula.
- Find satisfying assignments using a SAT-solver

$$x \perp y \iff \neg A \land \neg B \dots$$
$$A = `x \to y \text{ is present'}$$

$$\neg A \land \neg B \land \neg (C \land D) \land \neg \dots$$

very general setting (allows for cycles and latents) and trivially complete

. . .

- Formulate the independence constraints in propositional logic
- Encode the constraints into one formula.
- Find satisfying assignments using a SAT-solver

$$x \perp y \iff \neg A \land \neg B \dots$$

 $A = `x \to y \text{ is present'}$

$$\neg A \land \neg B \land \neg (C \land D) \land \neg \dots$$

very general setting (allows for cycles and latents) and trivially complete

. . .

BUT: erroneous test results induce conflicting constraints: UNsatisfiable

Conflicts and Errors

• Statistical independence tests produce errors

Conflict: no graph can produce the set of constraints

Conflicts and Errors

• Statistical independence tests produce errors

Conflict: no graph can produce the set of constraints

Conflicts and Errors

Sridhar talk

• Statistical independence tests produce errors

Conflict: no graph can produce the set of constraints

constraints	weight		
$x \perp \!\!\!\!\perp y$	500		
$x \not\perp z$	3000		
$y \not\perp z$	2500		
$x \perp\!\!\!\!\perp y \mid z$	250		

Constraint Satisfaction Approach

• INPUT: (in)dependence constraints weighted according to reliability

$$\min_{G} \sum_{k \text{ : constraint } k \text{ is not satisfied by } G$$

• OUTPUT: a graph G that minimizes the cost

Constraint Satisfaction Approach

• INPUT: (in)dependence constraints weighted according to reliability

$$\min_{G} \sum_{k : \text{ constraint } k \text{ is not satisfied by } G$$

- OUTPUT: a graph G that minimizes the cost
- Answer Set Programming (ASP)
 - solver used: Clingo
 - finds globally optimal weighted maxSAT solution

Constraint Satisfaction Approach

• INPUT: (in)dependence constraints weighted according to reliability

$$\min_{G} \sum_{k : \text{ constraint } k \text{ is not satisfied by } G$$

- OUTPUT: a graph G that minimizes the cost
- Answer Set Programming (ASP)
 - solver used: Clingo
 - finds globally optimal weighted maxSAT solution

What are suitable weights?

Weighting Schemes

- Constant weights
 - unit weights for all constraint

Weighting Schemes

- Constant weights
 - unit weights for all constraint
- Hard dependencies
 - only treat rejections of the null-hypothesis as hard constraints, in line with classical statistics
 - give dependences infinite weight, maximize the independences (unit weight) in light of these dependences

Weighting Schemes

- Constant weights
 - unit weights for all constraint
- Hard dependencies
 - only treat rejections of the null-hypothesis as hard constraints, in line with classical statistics
 - give dependences infinite weight, maximize the independences (unit weight) in light of these dependences
- Log weights
 - obtain the probability of an (in)dependence and weigh it according to the log of the probability
 - Model selection with Bayes rule:

 $\begin{array}{ccc} x \not \perp y | C & x \perp y | C \\ P(x|C)P(y|x,C) & \text{VS.} & P(x|C)P(y|C) \end{array}$
Simulation I: no cycles, no latents, linear Gaussian

- TPR vs. FPR of all d-separation constraints of the true graph for a varying p-value cut-off
- observational data set,
 6 observed variables,
 average degree 2;
 500 samples, 200 models,
 linear Gaussian
 parameterization

 cPC returns a fully determined output only 58/200 times at its optimum

Simulation 2: no cycles, but latents

cFCI only returns unambiguous results 61/200 times at its optimum

Simulation 3: cycles and latents

[Hyttinen et al. 2014]

 $x \not\perp w || x z$

32

$x \not\perp w || x z \quad weight = 0.8$

 $(x > z) \land (x > w)$ $\land (y > z) \land (y > w)$

- specific probabilities for each graph
- soft sparsity constraint
- 32

•

assumption/ algorithm	PC / GES	FCI	CCD	LiNGaM	lvLiNGaM	cyclic LiNGaM	non-linear additive noise	maxSAT
Markov	\checkmark	\checkmark	√	\checkmark	\checkmark	√	√	\checkmark
faithfulness	\checkmark	\checkmark	√	×	\checkmark	~	minimality	\checkmark
causal sufficiency	\checkmark	×	√	\checkmark	×	\checkmark	\checkmark	×
acyclicity	\checkmark	\checkmark	×	\checkmark	\checkmark	×	\checkmark	X *
parametric assumption	×	×	×	linear non- Gaussian	linear non- Gaussian	linear non- Gaussian	non-linear additive noise	×

assumption/ algorithm	PC / GES	FCI	CCD	LiNGaM	lvLiNGaM	cyclic LiNGaM	non-linear additive noise	maxSAT
Markov	\checkmark	\checkmark	<	\checkmark	\checkmark	√	√	√
faithfulness	\checkmark	\checkmark	✓	×	\checkmark	~	minimality	√
causal sufficiency	\checkmark	×	√	\checkmark	×	√	\checkmark	×
acyclicity	\checkmark	\checkmark	×	\checkmark	\checkmark	×	\checkmark	X *
parametric assumption	×	×	×	linear non- Gaussian	linear non- Gaussian	linear non- Gaussian	non-linear additive noise	×
output	Markov equivalence	PAG	PAG	unique DAG	set of DAGs	set of graphs	unique DAG	query based

Simulation 4: Scalability

• up to 10 variables and only a few overlapping data sets for now

[Hyttinen et al. 2014]

Query:

11/

• list the structures in the equivalence class

(max) SAT-solver

Query:

- list the structures in the equivalence class
- what structural features are determined?
 - edges, confounders
 - ancestral relations
 - pathways

(max) SAT-solver

Query:

- list the structures in the equivalence class
- what structural features are determined?
 - edges, confounders
 - ancestral relations
 - pathways
- what are the highest scoring equivalence classes?

(max) SAT-solver

Query:

- list the structures in the equivalence class
- what structural features are determined?
 - edges, confounders
 - ancestral relations
 - pathways
- what are the highest scoring equivalence classes?

Response:

- enumeration of solutions
- "backbone" of the SAT-instance

•

Computing Causal Effects

Computing Causal Effects

 search in the equivalence class over the possible applications of the *do*-calculus rules by *querying* the satisfaction of their dseparation conditions

 search in the equivalence class over the possible applications of the *do*-calculus rules by *querying* the satisfaction of their dseparation conditions

do-calculus

Rule I (insertion/deletion of observations) $P(y|do(x), z, w) = P(y|do(x), w) \text{ if } Y \perp Z|X, W||X$ Rule 2 (action/observation exchange) $P(y|do(x), do(z), w) = P(y|do(x), z, w) \text{ if } Y \perp I_Z|X, Z, W||X$ Rule 3 (insertion/deletion of actions)

 $P(y|do(x), do(z), w) = P(y|do(x), w) \text{ if } Y \perp I_Z|X, W||X$

 search in the equivalence class over the possible applications of the *do*-calculus rules by *querying* the satisfaction of their dseparation conditions

 $\begin{array}{l} \textbf{do-calculus} \\ \text{Rule I (insertion/deletion of observations)} \\ P(y|do(x), z, w) = P(y|do(x), w) \text{ if } Y \perp Z|X, W||X \\ \text{Rule 2 (action/observation exchange)} \\ P(y|do(x), do(z), w) = P(y|do(x), z, w) \text{ of } Y \perp I_Z|X, Z, W||X \\ \text{Rule 3 (insertion/deletion of actions)} \\ P(y|do(x), do(z), w) = P(y|do(x), w) \text{ of } Y \perp I_Z|X, W||X \end{array}$

High-Level

tting ime series nternal latent structures itc.

e as ints on graph e (max) SAT-solver

High-Level

tting ime series nternal latent structures itc.

e as ints on graph (max) SAT-solver

QUERY?


```
Just getting started...
```

- Just getting started...
- application

[Stekhoven et al. 2012]

• application

[Stekhoven et al. 2012]

• multi-scale causal analysis: micro- to macro-variables

[Chalupka et al. 2016]

• application

[Stekhoven et al. 2012]

• multi-scale causal analysis: micro- to macro-variables

[Chalupka et al. 2016]

• time-series and dynamics

• application

[Stekhoven et al. 2012]

• multi-scale causal analysis: micro- to macro-variables

[Chalupka et al. 2016]

• time-series and dynamics

 violations of the Markov property: non-causal relations

[Maier et al. 2013]

application

[Stekhoven et al. 2012]

• multi-scale causal analysis: micro- to macro-variables

[Chalupka et al. 2016]

• time-series and dynamics

 violations of the Markov property: non-causal relations

[Maier et al. 2013]

References

Limitations

- Verma & Pearl, Equivalence and synthesis of causal models, UAI 1990.
- Frydenberg, The chain graph Markov property, Scandinavian Journal of Statistics 1990.
- Geiger & Pearl, On the logic of influence diagrams, UAI 1988.
- Meek, Strong completeness and faithfulness in Bayesian networks, UAI 1995.

LiNGaM

- Shimizu et al, A linear non-Gaussian acyclic model for causal discovery, JMLR, 2006.
- Hoyer et al., Estimation of causal effects using linear non-Gaussian causal models with hidden variables, IJAR 2008.
- Lacerda et al., Discoverying cyclic causal models by Independent Component Analysis, UAI 2008.

Additive noise models

- Hoyer et al., Nonlinear causal discovery with additive noise models, NIPS 2009.
- Mooij et al., Regression by dependence minimization and its application to causal inference, ICML 2009.
- Peters et al., Causal inference on discrete data using additive noise models, IEEE..., 2011.
- Peters et al., Identifiability of causal graphs using functional models, UAI 2011.

SAT-based approaches

- Triantafillou et al., Learning causal structure from overlapping variable sets, AISTATS 2010.
- Claassen & Heskes, A logical characterization of constraint-based causal discovery, UAI 2011.
- Hyttinen et al., Discovering cyclic causal models with latent variables: A SAT-based approach, UAI 2013.
- Hyttinen et al., Constraint-based Causal Discovery: Conflict Resolution with Answer Set Programming, UAI 2014.
- Hyttinen et al., Do-calculus when the true graph is unknown, UAI 2015.
- Triantafillou & Tsamardinos, Constraint-based Causal Discovery from Multiple Interventions Over Overlapping Variable Sets, JMLR 2015.

Other references

- Maier et al., A sound and complete algorithm for learning causal models from relational data, UAI 2013.
- Chalupka et al., Unsupervised discovery of El Niño using causal feature learning on microlevel climate data, UAI 2016.
- Stekhoven et al., Causal stability ranking, Bioinformatics 2012.

Thank you!