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Violations of Causal Markov

• quantum mechanics

• [unmeasured common causes]

• [mixtures of populations]

• [variables are not distinct, or too coarsely grained]
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If x is independent of y given C in the probability distribution then 
x is d-separated from y given C in the graph.

Violations of Causal Faithfulness

• canceling pathways

• matching pennies cases

• [small sample sizes and near violations 
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For linear Gaussian and for multinomial causal relations, an 
algorithm that identifies the Markov equivalence class of the 

true model is complete.
(Pearl & Geiger 1988, Meek 1995)
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Linear non-Gaussian method (LiNGaM)

• Linear causal relations:

• Assumptions:
- causal Markov
- causal sufficiency
- acyclicity

‣ If         non-Gaussian, then the true graph is uniquely identifiable 
from the joint distribution.
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Theorem 1 (Darmois-Skitovich) Let X1, . . . , Xn be independent,

non-degenerate random variables. If for two linear combinations

l1 = a1X1 + . . .+ anXn, ai 6= 0

l2 = b1X1 + . . .+ bnXn, bi 6= 0

are independent, then each Xi is normally distributed.
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In the next section, we start by defining the family of models under study, and then, in Section 3
we give theoretical results on the identifiability of these models from non-interventional data. We
describe a practical method for inferring the generating model from a sample of data vectors in
Section 4, and show its utility in simulations and on real data (Section 5).

2 Model definition
We assume that the observed data has been generated in the following way: Each observed variable
x

i

is associated with a node i in a directed acyclic graph G, and the value of x
i

is obtained as a
function of its parents in G, plus independent additive noise n

i

, i.e.
x

i

:= f
i

(xpa(i)

) + n
i

, (1)
where f

i

is an arbitrary function (possibly different for each i), xpa(i)

is a vector containing the
elements x

j

such that there is an edge from j to i in the DAG G, the noise variables n
i

may
have arbitrary probability densities p

n

i

(n
i

), and the noise variables are jointly independent, that
is p

n

(n) =

Q
i

p
n

i

(n
i

), where n denotes the vector containing the noise variables n
i

. Our data then
consists of a number of vectors x sampled independently, each using G, the same functions f

i

, and
the n

i

sampled independently from the same densities p
n

i

(n
i

).

Note that this model includes the special case when all the f
i

are linear and all the p
n

i

are Gaussian,
yielding the standard linear–Gaussian model family [2, 3, 9]. When the functions are linear but the
densities p

n

i

are non-Gaussian we obtain the linear–non-Gaussian models described in [7].

The goal of causal discovery is, given the data vectors, to infer as much as possible about the gen-
erating mechanism; in particular, we seek to infer the generating graph G. In the next section we
discuss the prospects of this task in the theoretical case where the joint distribution p

x

(x) of the
observed data can be estimated exactly. Later, in Section 4, we experimentally tackle the practical
case of a finite-size data sample.

3 Identifiability
Our main theoretical results concern the simplest non-trivial graph: the case of two variables. The
experimental results will, however, demonstrate that the basic principle works even in the general
case of N variables.

Figure 1 illustrates the basic identifiability principle for the two-variable model. Denoting the two
variables x and y, we are considering the generative model y := f(x) + n where x and n are
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Figure 1: Identification of causal direction based on constancy of conditionals. See main text for
a detailed explanation of (a)–(f). (g) shows an example of a joint density p(x, y) generated by a
causal model x ! y with y := f(x) + n where f is nonlinear, the supports of the densities p

x

(x)

and p
n

(n) are compact regions, and the function f is constant on each connected component of the
support of p

x

. The support of the joint density is now given by the two gray squares. Note that the
input distribution p

x

, the noise distribution p
n

and f can in fact be chosen such that the joint density
is symmetrical with respect to the two variables, i.e. p(x, y) = p(y, x), making it obvious that there
will also be a valid backward model.
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In the next section, we start by defining the family of models under study, and then, in Section 3
we give theoretical results on the identifiability of these models from non-interventional data. We
describe a practical method for inferring the generating model from a sample of data vectors in
Section 4, and show its utility in simulations and on real data (Section 5).

2 Model definition
We assume that the observed data has been generated in the following way: Each observed variable
x

i

is associated with a node i in a directed acyclic graph G, and the value of x
i

is obtained as a
function of its parents in G, plus independent additive noise n

i

, i.e.
x

i

:= f
i

(xpa(i)

) + n
i

, (1)
where f

i

is an arbitrary function (possibly different for each i), xpa(i)

is a vector containing the
elements x

j

such that there is an edge from j to i in the DAG G, the noise variables n
i

may
have arbitrary probability densities p

n

i

(n
i

), and the noise variables are jointly independent, that
is p

n

(n) =

Q
i

p
n

i

(n
i

), where n denotes the vector containing the noise variables n
i

. Our data then
consists of a number of vectors x sampled independently, each using G, the same functions f

i

, and
the n

i

sampled independently from the same densities p
n

i

(n
i

).

Note that this model includes the special case when all the f
i

are linear and all the p
n

i

are Gaussian,
yielding the standard linear–Gaussian model family [2, 3, 9]. When the functions are linear but the
densities p

n

i

are non-Gaussian we obtain the linear–non-Gaussian models described in [7].

The goal of causal discovery is, given the data vectors, to infer as much as possible about the gen-
erating mechanism; in particular, we seek to infer the generating graph G. In the next section we
discuss the prospects of this task in the theoretical case where the joint distribution p

x

(x) of the
observed data can be estimated exactly. Later, in Section 4, we experimentally tackle the practical
case of a finite-size data sample.

3 Identifiability
Our main theoretical results concern the simplest non-trivial graph: the case of two variables. The
experimental results will, however, demonstrate that the basic principle works even in the general
case of N variables.

Figure 1 illustrates the basic identifiability principle for the two-variable model. Denoting the two
variables x and y, we are considering the generative model y := f(x) + n where x and n are
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Figure 1: Identification of causal direction based on constancy of conditionals. See main text for
a detailed explanation of (a)–(f). (g) shows an example of a joint density p(x, y) generated by a
causal model x ! y with y := f(x) + n where f is nonlinear, the supports of the densities p

x

(x)

and p
n

(n) are compact regions, and the function f is constant on each connected component of the
support of p

x

. The support of the joint density is now given by the two gray squares. Note that the
input distribution p

x

, the noise distribution p
n

and f can in fact be chosen such that the joint density
is symmetrical with respect to the two variables, i.e. p(x, y) = p(y, x), making it obvious that there
will also be a valid backward model.
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In the next section, we start by defining the family of models under study, and then, in Section 3
we give theoretical results on the identifiability of these models from non-interventional data. We
describe a practical method for inferring the generating model from a sample of data vectors in
Section 4, and show its utility in simulations and on real data (Section 5).

2 Model definition
We assume that the observed data has been generated in the following way: Each observed variable
x

i

is associated with a node i in a directed acyclic graph G, and the value of x
i

is obtained as a
function of its parents in G, plus independent additive noise n

i

, i.e.
x

i

:= f
i

(xpa(i)

) + n
i

, (1)
where f

i

is an arbitrary function (possibly different for each i), xpa(i)

is a vector containing the
elements x

j

such that there is an edge from j to i in the DAG G, the noise variables n
i

may
have arbitrary probability densities p

n

i

(n
i

), and the noise variables are jointly independent, that
is p

n

(n) =

Q
i

p
n

i

(n
i

), where n denotes the vector containing the noise variables n
i

. Our data then
consists of a number of vectors x sampled independently, each using G, the same functions f

i

, and
the n

i

sampled independently from the same densities p
n

i

(n
i

).

Note that this model includes the special case when all the f
i

are linear and all the p
n

i

are Gaussian,
yielding the standard linear–Gaussian model family [2, 3, 9]. When the functions are linear but the
densities p

n

i

are non-Gaussian we obtain the linear–non-Gaussian models described in [7].

The goal of causal discovery is, given the data vectors, to infer as much as possible about the gen-
erating mechanism; in particular, we seek to infer the generating graph G. In the next section we
discuss the prospects of this task in the theoretical case where the joint distribution p

x

(x) of the
observed data can be estimated exactly. Later, in Section 4, we experimentally tackle the practical
case of a finite-size data sample.

3 Identifiability
Our main theoretical results concern the simplest non-trivial graph: the case of two variables. The
experimental results will, however, demonstrate that the basic principle works even in the general
case of N variables.

Figure 1 illustrates the basic identifiability principle for the two-variable model. Denoting the two
variables x and y, we are considering the generative model y := f(x) + n where x and n are
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Figure 1: Identification of causal direction based on constancy of conditionals. See main text for
a detailed explanation of (a)–(f). (g) shows an example of a joint density p(x, y) generated by a
causal model x ! y with y := f(x) + n where f is nonlinear, the supports of the densities p

x

(x)

and p
n

(n) are compact regions, and the function f is constant on each connected component of the
support of p

x

. The support of the joint density is now given by the two gray squares. Note that the
input distribution p

x

, the noise distribution p
n

and f can in fact be chosen such that the joint density
is symmetrical with respect to the two variables, i.e. p(x, y) = p(y, x), making it obvious that there
will also be a valid backward model.
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In the next section, we start by defining the family of models under study, and then, in Section 3
we give theoretical results on the identifiability of these models from non-interventional data. We
describe a practical method for inferring the generating model from a sample of data vectors in
Section 4, and show its utility in simulations and on real data (Section 5).

2 Model definition
We assume that the observed data has been generated in the following way: Each observed variable
x

i

is associated with a node i in a directed acyclic graph G, and the value of x
i

is obtained as a
function of its parents in G, plus independent additive noise n

i

, i.e.
x

i

:= f
i

(xpa(i)

) + n
i

, (1)
where f

i

is an arbitrary function (possibly different for each i), xpa(i)

is a vector containing the
elements x

j

such that there is an edge from j to i in the DAG G, the noise variables n
i

may
have arbitrary probability densities p

n

i

(n
i

), and the noise variables are jointly independent, that
is p

n

(n) =

Q
i

p
n

i

(n
i

), where n denotes the vector containing the noise variables n
i

. Our data then
consists of a number of vectors x sampled independently, each using G, the same functions f

i

, and
the n

i

sampled independently from the same densities p
n

i

(n
i

).

Note that this model includes the special case when all the f
i

are linear and all the p
n

i

are Gaussian,
yielding the standard linear–Gaussian model family [2, 3, 9]. When the functions are linear but the
densities p

n

i

are non-Gaussian we obtain the linear–non-Gaussian models described in [7].

The goal of causal discovery is, given the data vectors, to infer as much as possible about the gen-
erating mechanism; in particular, we seek to infer the generating graph G. In the next section we
discuss the prospects of this task in the theoretical case where the joint distribution p

x

(x) of the
observed data can be estimated exactly. Later, in Section 4, we experimentally tackle the practical
case of a finite-size data sample.

3 Identifiability
Our main theoretical results concern the simplest non-trivial graph: the case of two variables. The
experimental results will, however, demonstrate that the basic principle works even in the general
case of N variables.

Figure 1 illustrates the basic identifiability principle for the two-variable model. Denoting the two
variables x and y, we are considering the generative model y := f(x) + n where x and n are
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Figure 1: Identification of causal direction based on constancy of conditionals. See main text for
a detailed explanation of (a)–(f). (g) shows an example of a joint density p(x, y) generated by a
causal model x ! y with y := f(x) + n where f is nonlinear, the supports of the densities p

x

(x)

and p
n

(n) are compact regions, and the function f is constant on each connected component of the
support of p

x

. The support of the joint density is now given by the two gray squares. Note that the
input distribution p

x

, the noise distribution p
n

and f can in fact be chosen such that the joint density
is symmetrical with respect to the two variables, i.e. p(x, y) = p(y, x), making it obvious that there
will also be a valid backward model.
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In the next section, we start by defining the family of models under study, and then, in Section 3
we give theoretical results on the identifiability of these models from non-interventional data. We
describe a practical method for inferring the generating model from a sample of data vectors in
Section 4, and show its utility in simulations and on real data (Section 5).

2 Model definition
We assume that the observed data has been generated in the following way: Each observed variable
x

i

is associated with a node i in a directed acyclic graph G, and the value of x
i

is obtained as a
function of its parents in G, plus independent additive noise n

i

, i.e.
x

i

:= f
i

(xpa(i)

) + n
i

, (1)
where f

i

is an arbitrary function (possibly different for each i), xpa(i)

is a vector containing the
elements x

j

such that there is an edge from j to i in the DAG G, the noise variables n
i

may
have arbitrary probability densities p

n

i

(n
i

), and the noise variables are jointly independent, that
is p

n

(n) =

Q
i

p
n

i

(n
i

), where n denotes the vector containing the noise variables n
i

. Our data then
consists of a number of vectors x sampled independently, each using G, the same functions f

i

, and
the n

i

sampled independently from the same densities p
n

i

(n
i

).

Note that this model includes the special case when all the f
i

are linear and all the p
n

i

are Gaussian,
yielding the standard linear–Gaussian model family [2, 3, 9]. When the functions are linear but the
densities p

n

i

are non-Gaussian we obtain the linear–non-Gaussian models described in [7].

The goal of causal discovery is, given the data vectors, to infer as much as possible about the gen-
erating mechanism; in particular, we seek to infer the generating graph G. In the next section we
discuss the prospects of this task in the theoretical case where the joint distribution p

x

(x) of the
observed data can be estimated exactly. Later, in Section 4, we experimentally tackle the practical
case of a finite-size data sample.

3 Identifiability
Our main theoretical results concern the simplest non-trivial graph: the case of two variables. The
experimental results will, however, demonstrate that the basic principle works even in the general
case of N variables.

Figure 1 illustrates the basic identifiability principle for the two-variable model. Denoting the two
variables x and y, we are considering the generative model y := f(x) + n where x and n are
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Figure 1: Identification of causal direction based on constancy of conditionals. See main text for
a detailed explanation of (a)–(f). (g) shows an example of a joint density p(x, y) generated by a
causal model x ! y with y := f(x) + n where f is nonlinear, the supports of the densities p

x

(x)

and p
n

(n) are compact regions, and the function f is constant on each connected component of the
support of p

x

. The support of the joint density is now given by the two gray squares. Note that the
input distribution p

x

, the noise distribution p
n

and f can in fact be chosen such that the joint density
is symmetrical with respect to the two variables, i.e. p(x, y) = p(y, x), making it obvious that there
will also be a valid backward model.
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In the next section, we start by defining the family of models under study, and then, in Section 3
we give theoretical results on the identifiability of these models from non-interventional data. We
describe a practical method for inferring the generating model from a sample of data vectors in
Section 4, and show its utility in simulations and on real data (Section 5).

2 Model definition
We assume that the observed data has been generated in the following way: Each observed variable
x

i

is associated with a node i in a directed acyclic graph G, and the value of x
i

is obtained as a
function of its parents in G, plus independent additive noise n

i

, i.e.
x

i

:= f
i

(xpa(i)

) + n
i

, (1)
where f

i

is an arbitrary function (possibly different for each i), xpa(i)

is a vector containing the
elements x

j

such that there is an edge from j to i in the DAG G, the noise variables n
i

may
have arbitrary probability densities p

n

i

(n
i

), and the noise variables are jointly independent, that
is p

n

(n) =

Q
i

p
n

i

(n
i

), where n denotes the vector containing the noise variables n
i

. Our data then
consists of a number of vectors x sampled independently, each using G, the same functions f

i

, and
the n

i

sampled independently from the same densities p
n

i

(n
i

).

Note that this model includes the special case when all the f
i

are linear and all the p
n

i

are Gaussian,
yielding the standard linear–Gaussian model family [2, 3, 9]. When the functions are linear but the
densities p

n

i

are non-Gaussian we obtain the linear–non-Gaussian models described in [7].

The goal of causal discovery is, given the data vectors, to infer as much as possible about the gen-
erating mechanism; in particular, we seek to infer the generating graph G. In the next section we
discuss the prospects of this task in the theoretical case where the joint distribution p

x

(x) of the
observed data can be estimated exactly. Later, in Section 4, we experimentally tackle the practical
case of a finite-size data sample.

3 Identifiability
Our main theoretical results concern the simplest non-trivial graph: the case of two variables. The
experimental results will, however, demonstrate that the basic principle works even in the general
case of N variables.

Figure 1 illustrates the basic identifiability principle for the two-variable model. Denoting the two
variables x and y, we are considering the generative model y := f(x) + n where x and n are
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Figure 1: Identification of causal direction based on constancy of conditionals. See main text for
a detailed explanation of (a)–(f). (g) shows an example of a joint density p(x, y) generated by a
causal model x ! y with y := f(x) + n where f is nonlinear, the supports of the densities p

x

(x)

and p
n

(n) are compact regions, and the function f is constant on each connected component of the
support of p

x

. The support of the joint density is now given by the two gray squares. Note that the
input distribution p

x

, the noise distribution p
n

and f can in fact be chosen such that the joint density
is symmetrical with respect to the two variables, i.e. p(x, y) = p(y, x), making it obvious that there
will also be a valid backward model.

y = x+ x

3 + ✏y

x = ✏

x

✏
x

, ✏
y

⇠ indep. Gaussian

x = g(y) + ✏̃

x

y \??✏̃
x

True model

(graphics from Hoyer et al. 2009) 

Forwards 
(true) model

Backwards 
model
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General non-linear additive noise models

Hoyer Condition (HC): Technical condition on the relation between the 
function, the noise distribution and the parent distribution that, if satisfied, 
permits a backward model.

• If the error terms are Gaussian, then the only functional form that 
satisfies HC is linearity, otherwise the model is identifiable.

• If the errors are non-Gaussian, then there are (rather contrived) 
functions that satisfy HC, but in general identifiability is 
guaranteed.

- this generalizes to multiple variables (assuming minimality*)!
- extension to discrete additive noise models 

• If the function is linear, but the error terms non-Gaussian, then one 
can’t fit a linear backwards model (Lingam), but there are cases 
where one can fit a non-linear backwards model

21
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Experiments, Background Knowledge 
and all the other Jazz

• how to integrate data from experiments?
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w
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wy
z<

tier orderings
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y
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• specific search space restrictions time

subsampled time seriesbiological settings
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SAT-based Causal Discovery

• Formulate the independence 
constraints in propositional 
logic

• Encode the constraints into 
one formula.

• Find satisfying assignments 
using a SAT-solver

25

x ?? y () ¬A ^ ¬B . . .

A = ‘x ! y is present’

➡ very general setting (allows for cycles and latents) and trivially 
complete

➡ BUT: erroneous test results induce conflicting constraints: 
UNsatisfiable

¬A ^ ¬B ^ ¬(C ^D) ^ ¬...

()
x

y

z

A = false

B = false

...



Conflicts and Errors

• Statistical independence tests produce errors 

➡ Conflict: no graph can produce the set of constraints
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• Statistical independence tests produce errors 

➡ Conflict: no graph can produce the set of constraints

26

x

y

z

constraints     

x ?? y

x 6?? z

y 6?? z
x ?? y | z

x

y

z

weight

3000
2500

500

250

Sridhar talk



Constraint Satisfaction Approach

• INPUT: (in)dependence constraints weighted according to 
reliability 

• OUTPUT: a graph G that minimizes the cost

27

min
G

X
w(k)

k : constraint k is not satisfied by G

[Hyttinen et al. 2014]



Constraint Satisfaction Approach

• INPUT: (in)dependence constraints weighted according to 
reliability 

• OUTPUT: a graph G that minimizes the cost

27

min
G

X
w(k)

k : constraint k is not satisfied by G

• Answer Set Programming (ASP)
- solver used: Clingo
- finds globally optimal weighted maxSAT solution

[Hyttinen et al. 2014]



Constraint Satisfaction Approach

• INPUT: (in)dependence constraints weighted according to 
reliability 

• OUTPUT: a graph G that minimizes the cost

27

min
G

X
w(k)

k : constraint k is not satisfied by G

What are suitable weights?

• Answer Set Programming (ASP)
- solver used: Clingo
- finds globally optimal weighted maxSAT solution

[Hyttinen et al. 2014]
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Weighting Schemes

• Constant weights
- unit weights for all constraint

• Hard dependencies
- only treat rejections of the null-hypothesis as hard constraints, in line with 

classical statistics
- give dependences infinite weight, maximize the independences (unit weight) 

in light of these dependences

• Log weights
- obtain the probability of an (in)dependence and weigh it according to the 

log of the probability
- Model selection with Bayes rule: 

28

x 6??y|C
P (x|C)P (y|x,C)

x ??y|C
P (x|C)P (y|C)

vs.

[Hyttinen et al. 2014]



Simulation 1: no cycles, no latents, linear Gaussian 

• cPC returns a fully determined output only 58/200 times at its 
optimum
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[Hyttinen et al. 2014]



Simulation 2: no cycles, but latents

• cFCI only returns unambiguous results 61/200 times at its 
optimum
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Simulation 3: cycles and latents
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Background Knowledge
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“priors” ()
• specific probabilities for each 

graph
• soft sparsity constraint
• …
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Simulation 4: Scalability

• up to 10 variables and only a few overlapping data sets for now          
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- pathways
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• …
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• search in the equivalence class over the possible applications 
of the do-calculus rules by querying the satisfaction of their d-
separation conditions

P (y|do(x), z, w) = P (y|do(x), w) if Y ?? Z|X,W ||X

P (y|do(x), do(z), w) = P (y|do(x), z, w) if Y ?? IZ |X,Z,W ||X

P (y|do(x), do(z), w) = P (y|do(x), w) if Y ?? IZ |X,W ||X

do-calculus
Rule 1 (insertion/deletion of observations)

Rule 2 (action/observation exchange)

Rule 3 (insertion/deletion of actions)

[Hyttinen et al. 2015]
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of the do-calculus rules by querying the satisfaction of their d-
separation conditions

P (y|do(x), z, w) = P (y|do(x), w) if Y ?? Z|X,W ||X

P (y|do(x), do(z), w) = P (y|do(x), z, w) if Y ?? IZ |X,Z,W ||X

P (y|do(x), do(z), w) = P (y|do(x), w) if Y ?? IZ |X,W ||X

do-calculus
Rule 1 (insertion/deletion of observations)

Rule 2 (action/observation exchange)

Rule 3 (insertion/deletion of actions)

[Hyttinen et al. 2015]
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setting
• time series
• internal latent structures
• etc.

Encode these as 
logical constraints on 
the underlying graph 

structure

(m
ax) SAT-solver

QUERY?

P (y | do(x))
x w

x w?
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