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x is independent of its non-descendents given its parents in the
causal graph

Violations of Causal Markov
* quantum mechanics
* [lunmeasured common causes]

* [mixtures of populations]

* [variables are not distinct, or too coarsely grained]
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Causal Faithfulness

If x is independent of y given C in the probability distribution then
X is d-separated from y given C in the graph.

Violations of Causal Faithfulness

* canceling pathways

* matching pennies cases

* [small sample sizes and near violations

of faithfulness] N
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® causal Markov: permits inference from probabilistic
dependence to causal connection

® causal faithfulness: permits inference from probabilistic
independence to causal separation

® causal sufficiency: there are no unmeasured common causes

® acylicity: no variable is an (indirect) cause of itself

All graphs in an equivalence class have:
* same adjacencies ("‘skeleton™)
* same unshielded colliders

[Verma & Pearl 1990, unshielded collider
Frydenberg 1990]
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sufficient to determine thie equivalence class,
in this case, a uniqu¢ causal graph

For linear Gaussian and for multinomial causal relations, an
algorithm that identifies the Markov equivalence class of the

true model is complete.

(Pearl & Geiger 1988, Meek 1995)
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Staying in business

® Weaken the assumptions (and increase the equivalence class)
- allow for unmeasured common causes
- allow for cycles
- weaken faithfulness % Zhalama talk

® Exclude the limitations (and reduce the equivalence class)
- restrict to non-Gaussian error distributions % Tank talk
- restrict to non-linear causal relations
- restrict to specific discrete parameterizations

® Include more general data collection set-ups (and see how
assumptions can be adjusted and what equivalence class results)
- experimental evidence
- multiple (overlapping) data sets
- relational data
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Linear non-Gaussian method (LiNGaM)

® |inear causal relations:

® Assumptions:
- causal Markov
- causal sufficiency
- acyclicity

p If €, ~ non-Gaussian, then the true graph is uniquely identifiable
from the joint distribution.

[Shimizu et al., 2006]
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True model
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Why Normals are unusual

Forwards model y = B + €, Y
~ é ?é

For backwards model € — (1 — (95)517 — (9€y

Theorem 1 (Darmois-Skitovich) Let X1,..., X, be independent,
non-degenerate random variables. If for two linear combinations

[i = a1 X1+ ...4a,X,, CLZ#O
lo = b1 X9+...+0,X,, bz#()

are independent, then each X; 1s normally distributed.
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L = € : :
True model T €, €, ~ indep. Gaussian
Y =T+ €
b C
p(y | z) p(z | y)
5 0 5 50 s 5 0 3
X y X
Forwards Backwards
(true) model model

(graphics from Hoyer et al. 2009)
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Continuous additive noise models

z; = fj(pa(z;)) + €

o [f fj () is linear, then non-Gaussian errors are required for
identifiability

B \What if the errors are Gaussian, but fj () is non-linear?

B More generally, under what circumstances is the causal
structure represented by this class of models identifiable?
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Bivariate non-linear Gaussian additive noise model

True model T = €, €z, €y ~ Indep. Gaussian

y:x+x3+ey

e f
p(y | x) p(z | y)
5 0 ; 5 0 5 3 0 3
X y X
Forwards Baclkwards
(true) model model

55:9(2U)"|‘g:1:

20 (graphics from Hoyer et al. 2009)
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General non-linear additive noise models

Hoyer Condition (HC): Technical condition on the relation between the
function, the noise distribution and the parent distribution that, if satisfied,
bermits a backward model.

® |f the error terms are Gaussian, then the only functional form that
satisfies HC is linearity, otherwise the model is identifiable.

® |f the errors are non-Gaussian, then there are (rather contrived)
functions that satisfy HC, but in general identifiability is
guaranteed.

- this generalizes to multiple variables (assuming minimality*)!
= extension to discrete additive noise models

® If the function is linear, but the error terms non-Gaussian, then one

can’t fit a linear backwards model (Lingam), but there are cases
where one can fit a non-linear backwards model

21
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Experiments, Background Knowledge
and all the other Jazz

® how to integrate data from experiments!?

o r| |z
o >
pathways tier orderings “priors”

® specific search space restrictions

time

NP~
) \b‘/\b < Tank talk [ >®®®®®<

biological settings

- subsampled time series
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SATl-based Causal Discovery

® Formulate the independence rly < "AAN-DB...
constraints in propositional

logic A = ‘x — vy is present’

® Encode the constraints into A AN =B A —l(C A D) A —
one formula.

® Find satisfying assignments A = false
using a SAT-solver B = false <—

B very general setting (allows for cycles and latents) and trivially
complete
B BUT: erroneous test results induce conflicting constraints:

UNsatisfiable

25
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Conflicts and Errors / Sridhar talk

® Statistical independence tests produce errors

B Conflict: no graph can produce the set of constraints

constraints weight

r Ly 500
x iz 3000

y Lz 2500 ®)
rllylz 250

0,

26
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Constraint Satisfaction Approach

® INPUT: (in)dependence constraints weighted according to
reliability

HllIlE ’LU

. constraint k is not satisfied by G

e OUTPUT: a graph G that minimizes the cost

® Answer Set Programming (ASP)
= solver used: Clingo
= finds globally optimal weighted maxSAT solution

What are suitable weights?

27 [Hyttinen et al. 2014]
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Weighting Schemes

® Constant weights
= unit weights for all constraint

® Hard dependencies
= only treat rejections of the null-hypothesis as hard constraints, in line with
classical statistics
- give dependences infinite weight, maximize the independences (unit weight)
in light of these dependences

® |Log weights
- obtain the probability of an (in)dependence and weigh it according to the
log of the probability
= Model selection with Bayes rule:

zAy|lC Vs z Ly|C
P(z|C)P(ylz, C) | P(z|C)P(y|C)

28
[Hyttinen et al. 2014]
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r | | | | | | parameterization
000 005 010 015 020 025 0.30
FPR

29 [Hyttinen et al. 2014]
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Simulation 3: cycles and latents
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I

0.85
I

TPR

0.80
I

0.75
I

000 005 010 015 020 025 0.30
FPR

3 [Hyttinen et al. 2014]
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s ’ A g graph
priors ) ’ * soft sparsity constraint

32



assumption/
algorithm

Markov
faithfulness

causal
sufficiency

acyclicity

parametric
assumption

non-linear
additive
noise

cyclic

PC/GES FClI CCD|LINGaM IvLiNGaM LiNGaM

4

minimality

X 4

v X v

linear .. linear non-linear
linear non- ..
non- . non- additive
. Gaussian . .
Gaussian Gaussian noise

33



non-linear

assumption/| 5~ ces kel ceD| LiNGaM WLINGaM . € | additive
algorithm LINGaM oise

Markov v

faithfulness minimality

causal
sufficiency

X 4

acyclicity v X 4

. linear .. linear non-linear
parametric linear non-

: non- : non- additive
assumption Gaussian

Gaussian Gaussian noise
outbut Markov PAG PAG unique set of set of unique Uery based
P equivalence DAG DAGs  graphs DAG quety

33




Simulation 4: Scalability
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® up to |0 variables and only a few overlapping data sets for now

i [Hyttinen et al. 2014]
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Output of Causal Search Algorithms
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Query:

* list the structures in the
equivalence class

* what structural features are
determined!?
- edges, confounders
- ancestral relations
- pathways

* what are the highest scoring
equivalence classes!?

Response:

* enumeration of solutions
e “backbone” of the SAT-instance
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Computing Causal Effects
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Computing Causal Effects
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equivalence *P(y|d0(a’;)) ?

class

® search in the equivalence class over the possible applications
of the do-calculus rules by querying the satisfaction of their d-
separation conditions

. [Hyttinen et al. 2015]



equivalence

alen<e oy P(yldo(x)) ?

® search in the equivalence class over the possible applications

of the do-calculus rules by querying the satisfaction of their d-
separation conditions

do-calculus

Rule I (insertion/deletion of observations)

P(y|do(x), z,w) = P(y|do(z),w) if Y 1L Z|X, W||X

Rule 2 (action/observation exchange)

P(yldo(z),do(z),w) = P(y|ldo(x), z,w) if Y 1L Iz|X,Z, W||X

Rule 3 (insertion/deletion of actions)

P(yldo(x),do(z),w) = P(y|do(x),w) if Y 1L I7| X, W||X

. [Hyttinen et al. 2015]



equivalence

alen<e oy P(yldo(x)) ?

® search in the equivalence class over the possible applications

of the do-calculus rules by querying the satisfaction of their d-
separation conditions

do-calculus

Rule I (insertion/deletion of observations)

Pluldo(x). =) = Plyldo(z), )@Y L 2|, WX

Rule 2 (action/observation exchange)

P(yldo(x), do(2), w) = P(y|do(x), 2, w)

Rule 3 (insertion/deletion of actions)

Plyldo(s), dof), w) = P(yldo(a), )@Y L L1, WX D

. [Hyttinen et al. 2015]
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® application [Stekhoven et al. 2012]

® multi-scale causal analysis:

micro- to macro-variables [Chalupka et al. 2016]

® time-series and dynamics

VENUE

® violations of the Markov

property: non-causal \ J [Maier et al. 2013]
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Just getting started...

‘ Sokolova talk

® application

[Stekhoven et al. 2012]

® multi-scale causal analysis:

micro- to macro-variables [Chalupka et al. 2016]

Blondel talk

® time-series and dynamics

VENUE

® violations of the Markov

property: non-causal \ J [Maier et al. 2013]
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